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Contact tracing reveals community trans-
mission of COVID-19 in New York City

Sen Pei 1 , Sasikiran Kandula1, Jaime Cascante Vega 1, Wan Yang2,
Steffen Foerster3, Corinne Thompson3, Jennifer Baumgartner3,
Shama Desai Ahuja2,3, Kathleen Blaney 3, Jay K. Varma 4, Theodore Long5 &
Jeffrey Shaman 1,6

Understanding SARS-CoV-2 transmission within and among communities is
critical for tailoringpublic health policies to local context. However, analysis of
community transmission is challenging due to a lack of high-resolution sur-
veillance and testing data. Here, using contact tracing records for 644,029
cases and their contacts in New York City during the second pandemic wave,
we provide a detailed characterization of the operational performance of
contact tracing and reconstruct exposure and transmission networks at indi-
vidual and ZIP code scales. We find considerable heterogeneity in reported
close contacts and secondary infections and evidence of extensive transmis-
sion across ZIP code areas. Our analysis reveals the spatial pattern of SARS-
CoV-2 spread and communities that are tightly interconnected by exposure
and transmission. We find that locations with higher vaccination coverage and
lower numbers of visitors to points-of-interest had reduced within- and cross-
ZIP code transmission events, highlighting potential measures for curtailing
SARS-CoV-2 spread in urban settings.

Within metropolitan areas, infection risk and disease burden due to
SARS-CoV-2, the causative agent of COVID-19, are characterized by
spatial heterogeneity at neighborhood scales1–3. Communities with
substantial local infections can sustain the spread of SARS-CoV-2, seed
infections in interconnected neighborhoods, and spark resurgences of
cases following the relaxation of non-pharmaceutical interventions
(NPIs), such as masking and social distancing4. In densely populated
urban settings, public health tactics may need to be uniquely tailored
to specific geographic areas and/or communities that most support
the persistence and spatial dispersion of SARS-CoV-2 infections.
Development of such tailored tactics requires improved under-
standing of both transmission patterns at fine geographical scales and
the factors shaping the intensity of community outbreaks. Examples of
previously utilized targeted interventions include limiting indoor
dining and gathering, increasing testing availability, encouraging

home quarantine for exposed contacts, requiring face masks indoors,
and closing nonessential businesses in high-risk communities. While
the transmission patterns of SARS-CoV-2 at global, national, and
regional levels have been reported5–13, research on community-level
transmission is often challenging due to limited availability of high-
resolution surveillance and testing data, the lack of routine case
interviews, and the difficulty identifying transmission events. In addi-
tion, the effect of public health interventions on community trans-
mission of SARS-CoV-2 in metropolitan areas has not been well
evaluated.

Data collected through contact tracing efforts have provided
valuable insights into the transmission dynamics of SARS-CoV-2;14–18

however, most contact tracing during the early phase of the pandemic
mainly focused on specific local outbreaks, which cannot support
population-level analysis of community transmission. Here, we use
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detailed data from confirmed and probable cases19 and case investi-
gations during the second pandemic wave in New York City (NYC) to
quantify community spread of COVID-19 at small spatial scales from
October 2020 to May 2021. Unlike the initial outbreak during the
spring of 2020, the second pandemic wave was fully captured by
contact tracing. Additionally, contact tracing operation and individual
protective measures such as mask-wearing and social distancing
remained relatively stable during this period of the pandemic (in
contrast with the post-Omicron era when protective measures were
largely abandoned). As a result, data collected during the second
pandemic wave may better inform understanding of SARS-CoV-2
community transmission in NYC and the operational performance of
contact tracing during a public health emergency.

Results
Contact tracing in NYC
The NYC Test & Trace Corps initiative was launched in June 202020.
Established as an operation to provide contact tracing, testing, and
resources to support isolation and quarantine, the contact tracing
program was integrated with a set of intervention efforts designed to
limit morbidity and mortality from COVID-19 in NYC (Supplementary
Information). Contact tracing was performed through phone calls and
textmessages, capable of reachingmost residents of NYC. Specifically,
contact tracersmade phone calls to confirmed cases and symptomatic
contacts to conduct a case investigation. For children under 18 years
old, parents or legal guardians were contacted. Information about
close contacts during the infectious period was elicited during the
interview, and reported close contacts were then notified about their
status of exposure through phone calls or text messages and are
encouraged to get tested. Both confirmed/probably cases and their
close contacts were monitored daily for the duration of their
quarantine.

We analyzed data obtained from case investigations and COVID-
19 testing results (molecular and antigen) collected between 1 October
2020 and 10 May 2021 (Supplementary Fig. 1, Supplementary Infor-
mation). During this period, 691,834 confirmed and probable cases
were reported to the New York City Department of Health and Mental
Hygiene (DOHMH)21. The circulating strains of SARS-CoV-2 in NYC
were dominated by the index virus strain; however, the Iota (B.1.526)
and Alpha (B.1.1.7) variants gradually replaced the index virus during
the spring of 2021 (Supplementary Fig. 2). After excluding cases
residing in residential congregate settings, cases were sent to the NYC

Test & Trace Corps for contact tracing. Among these cases, 644,029
were reached by tracers and 450,415 completed an interview. In total,
779,011 contacts with confirmed and probable cases were self-
reported via case investigations, of whom 20.9% (162,659/779,011)
were subsequently tested. The overall positivity rate among tested
exposures is 55.8%. However, as infected individuals were more likely
to seek tests, the actual secondary attack rate should be lower. We
further disaggregated testing results for different exposure types
(healthcare facility contact, home health aide, household member,
intimate partner, large gathering contact, other close proximity,
workplace contact) (Supplementary Fig. 3). The positivity rate was
highest for household members and lowest for workplace contacts.
The median time from specimen collection to reporting results to
DOHMHwas2 days. 97%of index patients were called by tracerswithin
two days of reporting to DOHMH (Fig. 1a) and 68.4% of contacts were
called the day of reporting to the Test & Trace team (Fig. 1b). Among
tested contacts, 66.6% sought testing within one week of notification
(Fig. 1c). For traced symptomatic infections, 86.7% were tested after
symptom onset, and 13.3% were tested before symptom develop-
ment (Fig. 1d).

Adults aged 20 to 49 years old constituted the majority of index
cases (Fig. 1e), a finding in agreement with the age distribution of
confirmed infections in the United States22. Self-reported contacts
were more uniformly distributed among the population under 50
years old (Fig. 1f). The age-stratified contact matrix highlights more
frequent interactions among individuals of similar age and inter-
generation mixing within the household (Fig. 1g), a pattern also
observed in other countries23.

Exposure and transmission networks
We reconstructed the self-reported exposurenetwork at the individual
level for the study period. The exposure network was highly frag-
mented, with 947,042 individuals in 242,486 disjoint clusters. Cluster
size showed considerable heterogeneity (Fig. 2a), as did the number of
contacts reported by each index case (Fig. 2b). We visualize several
large exposure clusters in Fig. 2c, color-coded by the home borough of
eachperson. Exposure clusters exhibit diverse structures ranging from
hub-and-spoke networks with a single spreader to networks with
multiple spreaders. Over half of the clusters shown in Fig. 2c were in
Queens and Brooklyn. Within those large exposure clusters in Fig. 2c,
1195 index patients (59.4%) reported contacts living in the same bor-
ough, but 817 (40.6%) cross-borough contacts were also recorded.

Fig. 1 | Key statistics of contact tracing in NYC. a–d The distributions of: a time
between reporting date for index cases and being called by contact tracers; b time
between calling index cases and notifying exposed persons; c time between noti-
fying exposed persons and specimen sampling of notified individuals who were
tested; d time from symptom onset to specimen sampling for symptomatic COVID

infections. A negative value implies that testing preceded symptom onset. Age
distributions of index cases (e) and self-reported contacts (f). The contact mixing
matrix (g) shows the total numberof exposures among agegroups reportedduring
the study period.
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We additionally reconstructed transmission chains between
index cases and their close contacts who were confirmed positive in
laboratory tests (molecular and antigen). Due to asymptomatic and
pre-symptomatic shedding24–26, index cases were not necessarily the
source of infections in these putative transmission events. To infer
the direction of transmission, we estimated the infection date of
lab-positive cases. For symptomatic cases, infection date was esti-
mated using an empirical incubation period distribution obtained
from a prior study18; for asymptomatic cases, we used specimen
collection date to estimate infection date using amodel of viral load
dynamics coupled with a Bayesian inference (Supplementary
Fig. 4)27. Specifically, for each index case and close contact pair, we
estimated their infection times using symptom onset date or spe-
cimen collection date. The direction of transmission was then
determined by the estimated infection times—the individual infec-
ted earlier is the infector and the individual infected later is the
infectee. We sampled an ensemble of possible transmission net-
works compatible with the estimated chronological order of infec-
tions. For each sampled transmission network, we computed the
likelihood of observing the network given transmission prob-
abilities across age groups, estimated using the test and trace data
(Supplementary Table 1, Supplementary Fig. 5). The reconstructed
network was selected as the one that maximizes the likelihood
among the ensemble of possible transmission networks. We further
performed sensitivity analyses demonstrating that the network
reconstruction is robust to potential bias of the incubation period
distribution28 (Supplementary Information). More details on the
transmission network reconstruction are provided in the Supple-
mentary Information.

During the study period, we identified 58,474 potential trans-
mission clusters formed by exposures that resulted in lab-confirmed

infections. On average, these transmission clusters had a mean size of
2.3 individuals, representing 19.6% (135,478/691,834) recorded cases
during the study period. However, transmission cluster size and the
number of secondary cases linked to each index case had large var-
iance (Fig. 2d, e)—only 0.2% of transmission clusters involved more
than 6 infections. The largest identified transmission cluster consisted
of 12 cases, and the maximum number of secondary cases for a single
index case was 7. Transmission clusters with at least 6 infections are
visualized in Fig. 2f.

To quantify the spatial spread of SARS-CoV-2 in NYC at fine geo-
graphical scales, we mapped exposure and transmission networks
across modified ZIP code tabulation areas (MODZCTAs, referred to as
ZIP codes hereafter; Fig. 3a, b). Among 72,191 transmission events
where place of residence was known, 7826 (10.8%) included multiple
ZIP codes. Among these cross-ZIP code transmission events, only 2536
(32.4%) occurred between neighboring ZIP code areas, indicating that
the majority of cross-ZIP code transmission drove non-local disease
spread. For 2187 cross-borough transmission events, only 48 (2.2%)
were between neighboring ZIP code areas. We observed several local
clusters of ZIP codes that were tightly interconnected by exposure and
transmission, centered around locations with high community pre-
valence. Infections in those high-prevalence ZIP code clusters were
linked to self-reported contacts in nearby and far locations (Fig. 3a),
which may have facilitated the spread of COVID-19 across the city
(Fig. 3b). Among the cross-ZIP code transmission chains, we examined
distributions of index caseswho initiated transmission (Fig. 3c) and the
infected contacts (Fig. 3d) across ZIP codes. A distinct skew in the
distribution suggests that certain ZIP codes were more involved in the
spatial spread of COVID-19. Geographically, most cross-ZIP code
transmission events occurred within 10 km; however, long-distance
transmission up to 40 km was also evident (Fig. 3e).

Fig. 2 | Structure of exposure and transmission networks. a, b The distributions
of cluster size and number of close contacts reported by each index case in the
exposurenetwork. Exposure clusterswithmore than35 individuals are visualized in
(c). The exposure network is undirected. Index cases and reported close contacts
are connected. Node size is proportional to the number of connected individuals.

Colors indicate the home location of each person (five boroughs in NYC, outside
NYC, and unknown). The distributions of cluster size and the number of secondary
cases in the transmission network are shown in (d) and (e), respectively. fVisualizes
transmission clusters with more than six infected individuals. Node size represents
the number of secondary cases. Arrows indicate the direction of transmission.
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Evaluation of intervention measures
During the period fromOctober 2020 toMarch 2021, a dynamic zone-
based control strategy was adopted in New York State to limit viral
spread in communities with high case growth rates while avoiding
undue harm to the economy29. Three tiers of zones (yellow, orange,
and red) were identified based on a set of metrics, collectively defined
by test positivity rate, hospital admissions per capita, and hospital
capacity29,30. Local restrictions on business and services were imposed
based on zone conditions. Compliance to these restrictions can be
reflected by the number of individuals visiting points-of-interest (POIs,
e.g., restaurants, grocery stores, gyms, and bars) in each ZIP code. In
December 2020, vaccines became available to the population at
highest risk for severe outcomes associated with COVID-19 in NYC and
were subsequently available to all eligible individuals over 15 years old
during early April 2021. With the support of the detailed contact tra-
cing data, we evaluated the impact of these public health interventions
on community transmission of SARS-CoV-2 in NYC.

We assessed the associations of the numbers of non-household
within- and cross-ZIP code transmission events across NYC with
demographic, socioeconomic, disease surveillance, vaccination cov-
erage, and human mobility features (Supplementary Information,
Supplementary Figs. 6–7). Here cross-ZIP code transmission events
include both directions, i.e., transmission for which either infector or
infectee lived in a certain ZIP code. As non-household transmission
contributed to the expansion of SARS-CoV-2 outside the household,
we focused on 4642 non-household transmission events, representing
7% of all transmission events. We used aggregated foot traffic records

derived from mobile phone data31 documenting weekly numbers of
POI visitors in each ZIP code as an indicator of human mobility and
compliance with the zone-based local restrictions (Supplementary
Information, Supplementary Fig. 7). We used conditional auto-
regressive (CAR) models32 to assess the effects of the above factors on
within- and cross-ZIP code transmission (Fig. 4). Specifically, for both
within- and cross-ZIP code transmission, we fitted Poisson generalized
linear mixed models (GLMM) with random effects and CAR priors to
account for the inherent spatial-temporal autocorrelation in disease
transmission data32,33 (Supplementary Information, Supplementary
Figs. 8–9).

We found that higher vaccination coverage and fewer POI visitors
were associated with reduced non-household within- and cross-ZIP
code transmission in the same week (Fig. 4). Estimates of coefficients
are provided in Supplementary Table 2. The model identifies a strong
effect of vaccination on SARS-CoV-2 transmission: during the early
phase of vaccine rollout that alignswith the studyperiod, a 12.5%newly
vaccinated population was associated with reductions of 28.0% (95%
CI: 14.0%–40.0%) and 14.8% (1.7%–26.4%) for within- and cross-ZIP
code non-household transmission events, respectively. This marginal
benefit may diminish for higher vaccine coverage as we expect the
effect is nonlinear when the vaccinated population is near 100%. In
contrast, a 78.1% increaseofPOI visitorsper capita (ratio of the number
of POI visitors to the population of each ZIP code) was associated with
increases of 9.6% (0.3%–19.3%) and 14.4% (8.7%–20.2%) for within- and
cross-ZIP code transmission outside households, respectively. In the
foot traffic data, the POI category with the largest number of visitors

Fig. 3 | Spatial transmission of SARS-CoV-2 in NYC. a, b The exposures and
transmission events across ZIP codes in NYC identified from contact tracing data.
Arrows indicate direction of exposure (from index cases to reported close con-
tacts) and transmission (from index infections to infected contacts). Arrow thick-
ness indicates the number of exposures and transmission events. ZIP code area
color represents the cumulative number of confirmed cases during the study
period (yellow to red—low tohigh). Tobetter visualize, exposure linkswith less than

30 events and transmission links with <2 events are not shown on the maps. For
cross-ZIP code transmission events, the distributions of index infections and
infected contacts across ZIP code areas are presented in c and d. e The distribution
of distance between home ZIP codes of index infections and infected contacts in
cross-ZIP code transmission events. The population weighted centroids for ZIP
code areas were used to compute the distance.

Article https://doi.org/10.1038/s41467-022-34130-x

Nature Communications |         (2022) 13:6307 4



was restaurants and bars. It is possible, but not known, whether
gathering in these places may contribute more to cross-ZIP code
transmission than to within-ZIP code transmission. We further found
that both within- and cross-ZIP code transmission had strong positive
associations with log weekly cases per capita. A 13.5% increase of log
weekly cases per capita was associated with increases of 158.8%
(126.5%–196.4%) and 117.3% (97.7%–137.9%) for non-household within-
and cross-ZIP code transmission. Higher percentage of Hispanic resi-
dents and lower cumulative cases per capita were associated with
higher non-household transmission (see strength of effect in Supple-
mentary Table 2). For cross-ZIP code transmission, cumulative cases
per capita had a stronger effect than vaccination and POI visitors
(Fig. 4b, Supplementary Table 2), indicating that prior infections may
result in reduced cross-ZIP code transmission in locationswith a higher
attack rate. These findings reveal how health inequities related to
COVID-19manifest across NYC communities. Results also indicate that
promoting vaccination and capacity limits or temporary limits on local
businesses, schools, and other POIs in high-prevalence communities
were effective in reducing SARS-CoV-2 transmission in NYC. These
findings were corroborated with an alternate random-effect model
(Supplementary Information) and testing of effect lags of one week
and two weeks (Supplementary Figs. 10–12). Findings were also found
robust to possible reduced response rate in contact tracing among
children and elderly (Supplementary Fig. 13).

Discussion
Here, leveraging detailed test and tracing data, we performed an
analysis of ZIP code level SARS-CoV-2 transmission in NYC. The
observed heterogeneity of SARS-CoV-2 spread at community scales
implies that NPIs focusing on neighborhoods with extensive commu-
nity transmission could potentially be more cost-effective. However,
because communities with high test positivity were typically high
poverty areas3, during isolation and quarantine resources (such as
food delivery, medication delivery, and access to safe isolation places)
should be provided to address the disproportionate impact of the
pandemic on these communities. Our statistical analyses suggest that
the combination of vaccination and reactive, zone-based intervention
measures implemented in NYC likely reduced the spread of COVID-19
during the second wave. There is evidence showing that COVID-19

vaccines can reduce transmission of SARS-CoV-234–37, although such
effect has diminished with the emergence of more recent variants38,39.
In the meantime, COVID-19 vaccine acceptance was found to be cor-
related with perception of risk and other psychological characteristics
that may decrease the risk of transmission40. As a result, the overall
effect of vaccination is possibly driven by the combineddirect effect of
transmission reduction and behavioral factors that correlate with
vaccination coverage.

Our study found that the number of POI visitors is associatedwith
both within- and cross-ZIP code transmission. As people travel for
different reasons, it is critical to identify the types of travel that should
be targeted by NPIs to reduce disease transmission. For instance,
individuals working in essential businesses or emergency servicesmay
not be able to reduce movement, whereas individuals who travel long
distances for resources might be better served by delivery or reloca-
tion of resources. In futureoutbreaks of respiratory infections, settings
with increased infection risk should be first targeted through NPIs.
Further studies are needed to identify the specific settings and beha-
viors for more precise interventions that simultaneously minimize
disturbance to the society.

This study has several limitations. Firstly, the contact tracing
data were biased to household exposure, and voluntarily reported
close contacts, especially outside the household, were incomplete.
As a result, identified clusters of exposure and transmission are
largely confined to small networks, limiting the detection of com-
plete transmission networks, including super-spreading events.
Such bias is further compounded by differential reporting rate
across age groups. However, the spatial transmission pattern is less
affected by the selection bias if such bias is similar across ZIP code
areas. Secondly, some communities may have a lower response rate
to the calls from tracers. Further studies are needed to quantify the
factors associatedwith the lower response rate for improving future
contact tracing effectiveness. Thirdly, due to missing and incorrect
personal identifying information, the matching to close contacts
and their test results may be incomplete. Lastly, foot traffic data
may have bias among POI categories and different age-groups. For
instance, school-age children under 13 years old and other indivi-
duals without access to smart phones are not represented in
the data.

Fig. 4 | Effects of various features on the transmission of SARS-CoV-2 in NYC.
Incidence rate ratios (exponentiated coefficients) for non-household within-ZIP
code transmission and cross-ZIP code transmission are shown for 12 covariates in
a and b, respectively (Deviance information criterion, DIC = 6342 for a and DIC=
12,644 forb). Coefficients were estimated using a Poisson generalized linearmixed
model controlling for spatial-temporal autocorrelations. We used the log-
transformed population as the offset in the regression model. Covariates were

standardized and are shown on the y-axis. The incidence rate ratio quantifies the
multiplicative change in the number of transmission events per each covariate
increaseof one standard deviation, controlling for other covariates. The violin plots
show the distributions of incidence rate ratios. Blackdots andhorizontal black lines
highlight themedian estimates and 95%CIs. Distributions in a and bwere obtained
using n= 20,000 MCMC samples of the posterior estimates.
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With the global circulation of new variants of concern, such as
Omicron and its sublinages41, our findings can inform control man-
agement in other urban settings beyond NYC. Specifically, public
health authorities should consider the community-level spatial dis-
persion of SARS-CoV-2 when designing control tactics, which can be
analyzed in real time using contact tracing data. During the early stage
of an emerging outbreak, contact tracing data may not be sufficient to
support real-timeanalysis.However, once routine contact tracing is set
up, it can support subsequent spatial analyses in real time if there is
prevalent community transmission. Our analysis on the exposure
network may inform a better definition of the proper geographical
units for observation and interventions based on actual human inter-
actions and disease transmission in NYC and elsewhere. Coordinated
interventions targeting identified clusters of ZIP codes currently sup-
porting the spatial transmission of SARS-CoV-2 could potentially pro-
duce more effective outbreak control. The findings may also support
future pandemic preparedness and response. Further, the spatial
transmission patterns might inform control policy for other respira-
tory pathogens sharing similar transmission routes. The operational
performance of contact tracing can be used as a benchmark in urban
settings and support modeling studies42–45 of the potential effects of
contact tracing on emerging infectious disease containment.

Methods
Data
We used contact tracing data collected in NYC from 1October 2020 to
10 May 2021. The study period spans the second pandemic wave of
COVID-19 in NYC. The data contain 5,735,726 phone call records of
interactions between contact tracers and confirmed/probable cases
and their contacts, as well as information gathered during the phone
calls. Age and zip code of home location are available for most cases
and contacts. Index cases and their contacts were identified in the
dataset using a matching algorithm based on personal identifying
information (see Supplementary Information). Use of this dataset in
this study was approved by Columbia University Institutional Review
Board (IRB) AAAT2182. Informed consent was obtained during the
phone calls between contact tracers and participants prior to the
collection of contact tracing information.

Demographic and socioeconomic data for NYC zip code tabula-
tion areas (ZCTA) were compiled from the 5-year American Commu-
nity Survey (ACS) (https://www.census.gov/programs-surveys/acs/
data.html). Variables include population size, population density
(persons per square kilometer), percentage of Black residents, per-
centage of Hispanic residents, percentage of population over 65 years
old, median household income, percentage of residents with bache-
lor’s degree, and mean household size. We downloaded the 2019
estimates for these variables using the R package tidycensus46.

COVID-19 surveillance data in NYC at the MOZCTA (modified ZIP
code tabulation area) level are available at the GitHub repository
maintained by the NYC Department of Health and Mental Hygiene
(DOHMH) (https://github.com/nychealth/coronavirus-data). We used
weekly cases per capita, weekly tests per capita, and percentage of
tests positive. Vaccination data were obtained from the public repo-
sitory of DOHMH (https://github.com/nychealth/covid-vaccine-data).
Humanmobility data recording theweekly numberof visitors topoints
of interest (POIs) in NYC were provided by SafeGraph (https://
safegraph.com/), which aggregates anonymized location data from
numerous mobile phone applications to provide insights about phy-
sical places, via the SafeGraph Community. To enhance privacy, Safe-
Graph excludes census block group information if fewer than five
devices visited an establishment in a month from a given census block
group. We aggregated the mobility data to zip code level to estimate
the weekly number of visitors (regardless of visitors’ location of resi-
dence) to POIs in each zip code area. In the statistical analysis, we
mapped the ACS data from the ZCTA level to the MOZCTA level to

align the scaleof thedata. ThemappingbetweenZCTAandMOZCTA is
available at https://data.cityofnewyork.us/Health/Modified-Zip-Code-
Tabulation-Areas-MODZCTA-/pri4-ifjk.

Reconstructing transmission networks
Due to asymptomatic and pre-symptomatic shedding, the reporting
dates of index cases and contacts cannot be used to determine the
direction of transmission. To address this issue, we developed a
maximum-likelihood method to reconstruct transmission chains
based on the risk of COVID-19 spread across different age groups. This
approach includes three steps: (1) Estimate the infection time using
symptom onset date or specimen collection date. Use the estimated
infection time to determine the direction of exposure and transmis-
sion. (2) Estimate the probability of transmission for exposures across
age groups using test and trace data. (3) Sample an ensemble of pos-
sible transmission networks and select the one that maximizes the
transmission likelihood. Data analysis was performed using MATLAB
R2021a. Details are provided in Supplementary Information.

Statistical analysis
We used conditional autoregressive (CAR) models to analyze non-
household within- and cross-ZIP code transmission in two separate
models. The CAR model was implemented in a Bayesian hierarchical
framework. Specifically, we fitted a Poisson generalized linear mixed
model (GLMM)where the randomeffectwasmodeledbyCARpriors to
account for the inherent spatial-temporal autocorrelation present in
the disease transmission data.

Wemodeled the numbers of non-householdwithin- and cross-ZIP
code transmission events using a modified Poisson generalized linear
mixed model. Denote ywithinði, tÞ and ycrossði, tÞ as the weekly numbers
of non-household within-ZIP code and cross-ZIP code transmission
events in ZIP code i and week t. Here cross-ZIP code transmission
events include both directions, i.e., transmission for which either
infector or infectee lived in a certain ZIP code. The week for trans-
mission is determinedby the self-reported contact timebetween index
cases and contacts. Fixed effects include log-transformed population
density, log-transformed weekly cases per capita, log-transformed
weekly tests per capita, cumulative cases per capita, percentage of
Black residents, percentage of Hispanic residents, percentage of
population over 65 years old, median household income, percentage
of residents with a bachelor’s degree, mean household size, percen-
tage of fully vaccinated residents, and number of POI visitors per
capita. All covariates were standardized to have mean zero and stan-
dard deviation one. We used log-transformed population as an offset,
assuming the numbers of both within-ZIP code and cross-ZIP code
transmission events are proportional to local population. In the
regression model, we used the weekly case per capita to represent the
local force of infection that impacts the number of observedwithin-ZIP
code transmission events.

Specifically, the model for non-household within-ZIP code trans-
mission is described by the following equation:

log ywithinði,t +dÞ
� �

= log populationðiÞð Þ+β1 × log population densityðiÞð Þ+β2

× log weekly cases per capita i, tð Þð Þ+β3

× log weekly tests per capita i, tð Þð Þ+β4

× cumulative cases per capita i, tð Þ+β5 × %Black resident ið Þ+β6

× %Hispanic resident ið Þ+β7 × % resident over 65 ið Þ+β8

× medianhousehold income ið Þ+β9 ×%bachelor0s degree ið Þ+β10

×meanhousehold size ið Þ+β11 × % f ully vaccinated resident i, tð Þ+β12

×weekly POI visitors per capita i, tð Þ+ψit + εit :

ð1Þ

Here d is the lag (in weeks), log populationðiÞð Þ is the offset, ψit is
the random effect for location i and week t, and εit is the error term. In
themainmodel,we usedd =0 (no lag).We additionally testedd = 1 and
d =2 as a sensitivity analysis.
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The model for cross-zip code transmission is defined similarly:

log ycrossði, t +dÞ
� �

= log populationðiÞð Þ+β1 × log population densityðiÞð Þ+β2

× log weekly cases per capita i, tð Þð Þ+ β3

× log weekly tests per capita i, tð Þð Þ+β4

× cumulative cases per capita i, tð Þ+β5 × %Black resident ið Þ+ β6

× %Hispanic resident ið Þ+β7 × % resident over 65 ið Þ+β8

× medianhousehold income ið Þ+β9 ×%bachelor0s degree ið Þ+β10

×meanhousehold size ið Þ+ β11 ×% f ully vaccinated resident i, tð Þ+β12

×weekly POI visitors per capita i, tð Þ+ψit + εit :

ð2Þ

We implemented the model using the function ST.CARar in the R
package CARBayesST. Using a Bayesian hierarchical framework,model
coefficients and parameters were estimated using a Markov chain
Monte Carlo (MCMC) algorithm. We fitted the model using data from
177MOZCTAs and 31 weeks. Statistical analysis was performed using R
statistical software version 4.1.0. Details on model implementation,
evaluation of spatial-temporal autocorrelation in residues, and sensi-
tivity analysis are provided in Supplementary Information.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
COVID-19 surveillance data in NYC at the MOZCTA (modified ZIP code
tabulation area) level are publicly available at the GitHub repository
maintained by the NYC Department of Health and Mental Hygiene
(DOHMH) (https://github.com/nychealth/coronavirus-data). Demo-
graphic and socioeconomic data for NYC zip code tabulation areas
(ZCTA) are available from the 5-year American Community Survey
(ACS) (https://www.census.gov/programs-surveys/acs/data.html).
Contact tracing records and individual testing results are subject to
restrictions for the protection of patient privacy. Requests for data
access should be addressed to NYC DOHMH and NYC Health + Hos-
pitals or the corresponding author. The corresponding author will
respond to requests within two weeks and facilitate communications
withNYCDOHMHandNYCHealth +Hospitals, whowill provide details
of any restrictions imposed on data use via data use agreements.

Code availability
Custom code and data supporting the statistical analysis are publicly
available at GitHub (https://github.com/SenPei-CU/NYC_
contacttracing)47.
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