Table 3.
The performance for each of the models.
| Decision tree | Random forest | XGboost | Support vector machine | Neural network | K-nearest neighbors | Nomogram | |
| Accuracy | 0.68 | 0.74 | 0.63 | 0.73 | 0.66 | 0.70 | 0.66 |
| Precision | 0.70 | 0.74 | 0.79 | 0.77 | 0.70 | 0.70 | 0.70 |
| Recall | 0.84 | 0.89 | 0.55 | 0.81 | 0.79 | 0.90 | 0.79 |
| F1 score | 0.77 | 0.81 | 0.65 | 0.79 | 0.74 | 0.79 | 0.74 |
| Sensitivity | 0.84 | 0.89 | 0.55 | 0.81 | 0.79 | 0.90 | 0.79 |
| Specificity | 0.41 | 0.49 | 0.77 | 0.60 | 0.44 | 0.36 | 0.44 |
| AUC score | 0.63 | 0.80* | 0.72 | 0.80 | 0.69 | 0.76 | 0.69 |
*Statistical significance of differences in AUC scores between Random forest and Nomogram (tested by the DeLong test). AUC, area under the curve.