Skip to main content
. 2022 Oct 10;13:1019037. doi: 10.3389/fendo.2022.1019037

Table 3.

The performance for each of the models.

Decision tree Random forest XGboost Support vector machine Neural network K-nearest neighbors Nomogram
Accuracy 0.68 0.74 0.63 0.73 0.66 0.70 0.66
Precision 0.70 0.74 0.79 0.77 0.70 0.70 0.70
Recall 0.84 0.89 0.55 0.81 0.79 0.90 0.79
F1 score 0.77 0.81 0.65 0.79 0.74 0.79 0.74
Sensitivity 0.84 0.89 0.55 0.81 0.79 0.90 0.79
Specificity 0.41 0.49 0.77 0.60 0.44 0.36 0.44
AUC score 0.63 0.80* 0.72 0.80 0.69 0.76 0.69

*Statistical significance of differences in AUC scores between Random forest and Nomogram (tested by the DeLong test). AUC, area under the curve.