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Abstract

With the increasing availability of high-resolution mass spectrometers, suspect screening and 

non-targeted analysis are becoming popular compound identification tools for environmental 

researchers. Samples of interest often contain a large (unknown) number of chemicals spanning 

the detectable mass range of the instrument. In an effort to separate these chemicals prior to 

injection into the mass spectrometer, a chromatography method is often utilized. There are 

numerous types of gas and liquid chromatographs that can be coupled to commercially available 

mass spectrometers. Depending on the type of instrument used for analysis, the researcher is 

likely to observe a different subset of compounds based on the amenability of those chemicals to 

the selected experimental techniques and equipment. It would be advantageous if this subset of 

chemicals could be predicted prior to conducting the experiment, in order to minimize potential 

false-positive and false-negative identifications. In this work, we utilize experimental datasets 

to predict the amenability of chemical compounds to detection with liquid chromatography-

electrospray ionization-mass spectrometry (LC–ESI–MS). The assembled dataset totals 5517 

unique chemicals either explicitly detected or not detected with LC–ESI–MS. The resulting 

detected/not-detected matrix has been modeled using specific molecular descriptors to predict 

which chemicals are amenable to LC–ESI–MS, and to which form(s) of ionization. Random 

forest models, including a measure of the applicability domain of the model for both positive and 

negative modes of the electrospray ionization source, were successfully developed. The outcome 

of this work will help to inform future suspect screening and non-targeted analyses of chemicals 

by better defining the potential LC–ESI–MS detectable chemical landscape of interest.
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Introduction

Previous studies have shown that humans are exposed to thousands of chemicals each 

day, either through near-field or far-field sources [1-4]. The totality of these exogenous 

chemical exposures comprises a large portion of the human exposome, the sum of all 

exposures (external and internal) experienced by an individual throughout their lifetime [5]. 

Comprehensive exposome analyses benefit from a combination of bottom-up and top-down 

approaches using various biological (top-down) and environmental/consumer (bottom-up) 

samples. As the field of exposomics continues to evolve, so does the ability to thoroughly 

examine the chemical complexity of these samples.

Whereas high-throughput screening assays for bioactivity have generated data on thousands 

of biological endpoints for thousands of chemicals (see, e.g., ToxCast [6] and Tox21 [7]), 

these assays are typically based on chemical-independent probes (for example, luminescence 

from green fluorescent protein) [8]. Other chemical properties key to understanding 

chemical risk posed to public health [9]. including physicochemical and toxicokinetic 

(absorption, distribution, metabolism, excretion), require the development of targeted (that 

is, chemical-specific) analysis methods [10, 11]. Nicolas et al. examined higher-throughput 

methods for measuring physicochemical properties (for example, hydrophobicity, water 

solubility) based on high-performance liquid chromatography—out of 200 ToxCast 

chemicals, methods could not be developed ~ 15% of the time [11]. In Wetmore et al., 

developing analytical methods for measuring chemical fraction unbound in plasma failed for 

38% of the chemicals [12]. In both cases, resources were expended attempting to develop 

methods for those chemicals.

Whereas targeted analytical methods can be used to determine the presence and 

concentration of small numbers of chemicals (on the order of 10s to 100s) in a given 

sample, this approach is not feasible for comprehensive chemical analysis. Two alternative 

techniques, known as non-targeted analysis (NTA) and suspect screening analysis (SSA), 

provide a means to address such a need. NTA uses high-resolution mass spectrometry 

(HRMS) to deduce the identity of unknown/understudied compounds without the use of 

chemical standards or chemical suspect lists. Similarly, SSA uses HRMS to tentatively 

identify chemicals in samples of interest using lists of chemical suspects and, in many cases, 

supporting data (e.g., reference spectra).

Non-targeted and suspect screening analyses are commonly performed using a 

chromatograph in tandem with a mass spectrometer. Both gas and liquid chromatography 

have been successfully used to aid in the characterization of large numbers of small 

molecules in various media [13-19]. However, neither approach on its own is capable 

of determining the entire chemical composition of a sample as some chemicals are 

not amenable to specific methods, ionization techniques, etc. For example, liquid 
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chromatography-electrospray ionization-mass spectrometry (LC–ESI–MS) has proven 

valuable for the analysis of chemicals with low volatility, such as some perfluoroalkyl 

substances (PFAS), e.g., perfluorocarboxylic acids and perfluorosulfonic acids. Likewise, 

many volatile chemicals, including fluorotelomer alcohols commonly found in aqueous 

film-forming foams, are much more amenable to analysis via gas chromatography-mass 

spectrometry (GC–MS) [20]. In a recent evaluation of NTA method performance (part of 

the Environmental Protection Agency’s, EPA’s Non-Targeted Analysis Collaborative Trial 

[ENTACT]), 1269 diverse chemical substances were analyzed using multiple LC–ESI–MS 

methods, with up to 40% noted as being unamenable to detection and/or identification 

[13]. Considering this result, a clear benefit would exist to having model(s) that can 

accurately predict the amenability of compounds in LC–ESI–MS experiments to aid in 

the interpretation of positive (compound reported as present) and negative (compound not 

reported as present) findings. Having this predictive capability could also reduce the costs of 

time and resources associated with analyzing unamenable compounds.

Herein, we investigate the application of quantitative structure-activity relationship (QSAR) 

modeling, where “activity” is defined in this case as “amenability to detection with 

LC–ESI–MS.” Random forest models were used to predict a compound’s amenability 

to detection with LC–ESI–MS. Specifically, we collected a large (6342 representatives) 

dataset of chemicals with known LC–ESI–MS amenability, represented our chemicals 

using PaDEL molecular descriptors, and built random forest models to predict the LC–

ESI–MS amenability of compounds for detection using both positive and negative modes 

of an electrospray ionization source. Model predictivity is evaluated using statistics from Y-

randomization, fivefold cross validation (CV), and external validation sets. An applicability 

domain is defined using the class probability estimates from each of the random forest 

models. These models provide a new technique to add weight-of-evidence when selecting 

and eliminating tentative chemical identities in NTA and/or SSA experiments. Whereas no 

model will likely ever predict the amenability of all (> 1060) organic molecules [21], the 

models presented here attempt to predict within the subspace of compounds commonly 

identified in environmental analysis.

Methods

Dataset assembly

Experimental spectra and associated metadata were assembled from the MassBank of North 

America (MoNA) database [22]. Assembled spectra were for compounds observed via 

LC–ESI–MS/MS analysis with electrospray ionization in either positive or negative modes. 

Spectra were restricted to those acquired via tandem mass spectrometry to increase the 

chance of correct chemical identification. All data were downloaded as an SD file [23] and 

parsed using the ChemmineR package [24] in the R programming language [25]. All forms 

of LC-based methods were considered acceptable, and no attempt was made to filter any 

data based on the specific use of columns, mobile phases, or method conditions. For the 

purposes of this analysis, a chemical was considered detected if spectra existed for that 

record in MoNA. Chemicals were identified by InChIKey [26], if available, or by chemical 

name. Note that the InChIKey first block (the first section of an InChIKey) represents the 
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molecular skeleton and is generally the extent of structural representation possible for a 

chemical identified using mass spectrometry. The second block of the InChIKey encodes 

stereochemistry, charge, and isotopic labeling. Quality issues associated with incorrect 

representations of stereochemistry and charge can be common in online databases, including 

MoNA [22]. Thus, for each chemical, only the first block of the InChIKey identifier (or 

the chemical name) was searched using the US EPA’s CompTox Chemicals Dashboard [27] 

(referred to hereafter as the “Dashboard”). The batch search feature of the Dashboard was 

used to download structural identifiers for each searched compound, thus enabling additional 

curation of chemical names and structures retrieved from MoNA [28]. Any chemical that 

could not be identified by InChIKey or name using the Dashboard search was discarded 

without any attempt to further curate the data. Ultimately, we assembled 3007 unique 

chemicals as being detected via ESI negative mode, 4103 as being detected in ESI positive 

mode, and 1542 of the 7110 chemicals detected in both modes.

In addition to the spectra acquired from MoNA, amenability data were also compiled 

from analyses of selected ToxCast Screening Library substances. Spectra were acquired 

on individual standards via LC–ESI–MS/MS in both ESI+ and ESI− modes and manually 

reviewed for quality. Only [M+H]+ and [M-H]− adducts were considered. Spectra were 

reviewed by evaluating base peak height, chemical noise, and mass accuracy of precursor 

and fragment ions, and consisted of a final visual review. For these purposes, spectra 

were excluded (considered not detected) when base peak heights were below 1000 counts, 

when significant impurities were present in the LC–ESI–MS/MS chromatogram, or when 

a confirmatory spectral match score was less than 90 (out of 100). Low match scores 

resulted from excessive chemical noise, impurities in MS/MS spectra, or poor mass 

accuracy of fragment ions relative to the theoretical accurate mass. Only those spectra 

meeting quality criteria were considered as “detected” for the purposes of modeling. The 

resulting dataset included 849 positively detected compounds (393 in ESI+ and 456 in 

ESI−) and 858 compounds that were undetected or considered unamenable due to not 

meeting the established quality criteria (456 in ESI+ and 402 in ESI−). The undetected 

compounds were thus assumed to be true-negative results for the purposes of this analysis, 

but it is acknowledged that there may be certain LC–ESI–MS/MS conditions where these 

compounds are amenable. In the event that an undetected compound was detected in the 

MoNA dataset, it was assumed as detected in the final dataset. In total, the following data 

compilations were produced: 4613 with ESI+ data (4226 amenable and 387 unamenable); 

3490 with ESI− data (3130 amenable and 360 unamenable); and 1761 detected in both 

methods as either amenable (1604 in ESI+ and 1583 in ESI−) or unamenable (202 in ESI+ 

and 178 in ESI−). It is important to note the large difference in amenable and unamenable 

compounds in this dataset. Methods for dealing with this imbalance will be discussed in a 

later section.

Finally, an external dataset consisting of 1767 chemicals that were tested in phase II of the 

ToxCast screening program, and for which LC–ESI–MS data were collected, was used as 

an external validation set to evaluate the predictive capability of the models derived in this 

study. A description of the phase II library contents can be found in Richard et al. [29]. 

The LC–ESI–MS data in this case were generated under EPA contract with Evotec BioCT 

(Branford, CT) on test sample plates run in high-throughput mode, i.e., in ESI− and ESI+ 
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detection modes with a single retention time scan window. The results were available only 

as a summary call in which a positive parent mass ID in either or both modes yielded a 

summary assessment of “amenable” and a negative parent mass ID in both modes yielded a 

summary assessment of “unamenable.”

Molecular descriptor calculation and reduction

Using the Dashboard’s batch search feature, QSAR-ready SMILES [30] were obtained for 

all chemicals identified in both the MoNA and ToxCast datasets. Briefly, QSAR-ready 

SMILES are representations of desalted, de-isotoped, stereoneutral forms of chemical 

structures which are appropriate for QSAR modeling (typically excluding inorganics). 

The QSAR-ready SMILES were used as the basis to obtain both 1D and 2D molecular 

descriptors using the PaDEL-descriptor software [31]. These descriptors capture aspects of 

the chemical composition and topology of molecules and have been used in a number of 

previous QSAR studies [32-35]. A total of 1444 molecular descriptors were calculated. To 

increase the efficiency and interpretability of the models, constant and highly correlated 

descriptors were eliminated, reducing the number of descriptors down to 451. Correlation 

coefficients for descriptor pairs were calculated using the Spearman method. Descriptors 

were considered highly correlated if the computed correlation coefficient was greater 

than 0.96. If the correlation threshold was exceeded, then the descriptor with the largest 

mean absolute correlation across all possible pairwise correlations was eliminated and the 

other retained. Descriptions of the 1444 PaDEL descriptors (with the 451 used descriptors 

highlighted in red) are availble in the supplemental file “PaDEL_descriptions.xlsx.”

Publicly available ToxPrint fingerprints (https://toxprints.org) were downloaded for all 

chemicals using the Dashboard batch search feature. ToxPrint chemotypes are designed 

to capture salient features of environmental and regulated chemical inventories, including 

reactive groups, bonding patterns, and scaffolds relevant to safety assessment workflows 

within regulatory agencies, such as EPA and the Food and Drug Administration [36]. 

ToxPrint chemotypes are used herein to examine model results and compare inventories with 

intuitive and visualizable chemical substructure features.

Model learning approach

The random forest (RF) classification algorithm was chosen as the modeling method for 

this study. A random forest is constructed using a user-specified number of decision trees, 

denoted here as ntree. These decision trees rely on splitting each decision node using a 

random number of descriptors (sampled with replacement), denoted here as mtry and also 

specified by the user, to classify an endpoint. The majority of the predicted classifications 

from this ensemble of decision trees is used to predict the classification of novel compounds. 

This sampling technique coupled with a suitably large number of decision trees leads to an 

unbiased prediction model resistant to overfitting. Random forest was implemented using 

both caret and randomForest packages in the R programming language [37]. A grid search 

procedure was used to optimize the hyperparameter mtry for each model using the highest 

receiver operating characteristic (ROC) metric value. The ROC metric was chosen to find 

the best balance between sensitivity and specificity (discussed in detail later). The grid 

search for mtry spanned the set [7, 11, 22, 44, 66], whose values were chosen as multiples of 
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the default mtry value for classification, number of descriptors. The ntree parameter was set 

to 1000, as no performance increase was observed at higher values.

Validation datasets

Training and test datasets were constructed using the PaDEL descriptors and the ESI+ and 

ESI− endpoint values discussed previously. For both endpoints, 75% of the compounds 

were randomly selected for the training set and the remaining 25% were withheld from 

the model as a test set. Care was taken to stratify the random selection of compounds to 

ensure a similar ratio of amenable and unamenable compounds in both the training and 

test sets. Because of the large imbalance of amenable versus unamenable compounds, the 

application of sampling techniques was necessary to impose a balance on the training set. 

Two approaches were taken to either upsample the minority class (unamenable compounds) 

or downsample the majority class (amenable compounds). Upsampling is defined here as 

resampling the minority class with replacement (meaning the same compound/amenability 

classification pair can appear multiple times in a new sample) and setting the number of 

samples to match the majority class. Downsampling is defined here as the random removal 

of observations in the majority class to match the number of observations in the minority 

class. Neither sampling method is applied to the test sets. These training and test sets are 

provided in the supplemental file “Supplemental_train_test.xlsx.”

The test sets are used to validate the predictive power of the constructed model. Two 

additional validation techniques, fivefold cross validation (CV) and Y-randomization, were 

utilized. Fivefold cross validation essentially builds a model using 80% of the training set 

and 20% as a test, which is then repeated five times. Y-randomization randomly permutes 

the values of the endpoint in the training set, then attempts to model this mislabeled data. 

This model is then used to make predictions for the test set. Ideally, the Y-randomization 

model suffers poor performance compared to other models built on non-random data.

Model performance

The performance of the models was evaluated using three metrics: sensitivity, specificity, 

and balanced accuracy. Sensitivity (Sn) is the rate at which true positives are correctly 

identified, specificity (Sp) is the rate at which true negatives are correctly identified, and 

balanced accuracy is the average of the two other metrics. These metrics are calculated from 

the confusion matrix [38]. This matrix is a cross-tabulation of experimental observations and 

model-predicted classes and classifies each observation as a true positive (TP), false positive 

(FP), true negative (TN), or false negative (FN). Balanced accuracy (BA) is expressed 

as BA = Sn + Sp
2  where Sn = TP

TP + FN  and Sp = TN
TN + FP . Here, we consider a compound 

correctly predicted as amenable as a TP and a compound incorrectly predicted as amenable 

as a FP. Similarly, a compound correctly predicted as unamenable is considered a TN and a 

compound incorrectly predicted as unamenable as a FN.

Applicability domain

In the case of random forest, no assumptions are made regarding dataset distribution. Rather, 

this modeling approach uses the local vicinity of each object to determine the probability 

Lowe et al. Page 6

Anal Bioanal Chem. Author manuscript; available in PMC 2022 December 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



of belonging to each end point class [39]. Let N0 represent the indices of k training set 

objects of the leaf node to which a new object, xnew, is assigned. A decision tree assigns the 

fraction of objects in class j in N0 as a confidence measure p(j ∣ xnew) for the class to which 

xnew belongs. Random forest is an ensemble of decision trees, so the confidence measure is 

averaged over all B trees:

pj xnew = 1
B ∑

i

B
p(j ∣ xnew, Bi)

Here, Bi is the jth decision tree of the ensemble to which the leaf node xnew belongs. 

The class probability pj xnew , when j represents the amenable class, determines whether 

a compound is classified as amenable or unamenable in our model where pj xnew < 0.5
classifies an object as unamenable and pj xnew ≥ 0.5 equates to an amenable compound. 

The value of pj xnew  should be considered when utilizing predictions for the elimination 

of candidate compounds in a suspect screening analysis. Consider the case where a 

molecular feature has only two possible tentative chemical identities. The model predicts 

both compounds as unamenable to LC–ESI–MS with pj xnew = 0.60 for tentative identity A 

and pj xnew = 0.89 for tentative identity B, where j represents the unamenable class. While 

both compounds may be unamenable in LC–ESI–MS, compound B is more likely to be 

unamenable based on the model predictions. In this case, compound A would be considered 

a better candidate for confirmation by chemical standard over compound B.

Results and discussion

Random forest models were constructed using both upsampled and downsampled versions 

of the ESI+ and ESI− training sets to predict amenability of novel compounds using those 

ionization modes in LC–ESI–MS. The dataset sizes and model performance metrics are 

provided in Table 1.

Comparing the performance metrics for both the model and Y-randomization model 

predictions for the test sets shows that the specificity value for the ESI+ upsampled model 

(0.19) is substantially lower than the specificity value for the upsampled Y-randomization 

model (0.63). This indicates overfitting of the model (as reflected in the overly high-

performance metrics in the training set) and a lack of predictive power for unamenable 

compounds for the upsampled model. Similarly for the ESI− models, there is only an 18% 

difference between the upsampled model (0.38) and the upsampled Y-randomization mode 

(0.56), also suggesting an overfitted model with lack of predictive power compared to 

chance.

Both ESI+ and ESI− downsampled models performed well for both cross-validated and 

final models with approximately equal performance metrics (Table 1). The application of 

both downsampled models to the test datasets showed good performance, whereas both 

performed similarly better for predicting amenable test compounds (higher sensitivity than 

specificity). Predictions from the Y-randomization models performed worse compared to 
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those from the final models (33% and 32% worse by balanced accuracy for ESI+ and ESI− 

downsampled models, respectively).

Predictive power and applicability domain

The confidence measure of the applicability domain of the RF model, pj xnew , was assessed 

for the test datasets for each model. The distribution of pj xnew , where j represents 

the amenable class and xnew is an element of the test set, for the downsampled ESI+ 

model is shown in Fig. 1. The distribution of predictions for LC–ESI–MS-amenable 

compounds (upper, yellow) shows a left skew, with the majority of predictions having 

probabilities > 0.70. The first quartile for amenable compounds is just above 0.5, where 

the model will predict a compound as unamenable. The distribution of pj xnew  for the 

downsampled ESI− model is shown in Fig. 2. In this case, the distribution of predictions 

for LC–ESI–MS-amenable compounds is further skewed toward the left, with a higher 

density of predictions at high probabilities. The distribution of predictions for the LC–MS 

ESI-unamenable compounds (lower, blue) is also further skewed right, with the majority 

of predictions for these unamenable compounds having probabilities strongly in favor of 

them being unamenable. This suggests that the downsampled ESI− model has better overall 

performance than the downsampled ESI+ model, which is supported by the results in Table 

1.

Descriptor importance

There is a need for a mechanistic explanation of the models presented here to satisfy 

Organisation for Economic Co-operation and Development (OECD) principle 5 [40], which 

states that QSAR models should have a mechanistic interpretation, if possible. This is 

particularly the case when the activity being modeled is biological in nature due to the 

potential mechanistic complexity in relation to the underlying chemistry. In the present 

case, the endpoint of interest, i.e., LC–ESI–MS amenability (or unamenability), has more in 

common with what are typically referred to as quantitative structure–property relationships 

(QSPR). QSPRs typically model chemical properties, such as log octanol–water partition 

coefficients, water solubility, vapor pressure, etc., which tend to relate more directly to 

underlying chemical interactions. In pursuit of some measure of interpretability, however, a 

descriptor importance metric native to the RF algorithm, the Gini index, can be leveraged to 

shed light on the underlying chemical factors influencing LC–ESI–MS amenability. Assume 

an endpoint consists of C total categories and the probability of picking a category i is 

p(i). The Gini index can be calculated as G = ∑i = 1
C p(i) ∗ (1 − p(i)). The mean decrease of 

the Gini index for a descriptor in a RF model is a measure of how likely a split on that 

descriptor will lead to the correct classification of an endpoint. Therefore, the higher the 

mean decrease in the Gini index, the more important a descriptor is to the success of the 

model. We should note that removal of underperforming descriptors based on the variable 

importance discussed here would have no significant effect on the quality of these RF 

models, due to RF’s inherent ability to consider only useful descriptors. The removal of 

highly correlated descriptors, as discussed in the “Methods” section, reduces the chance of 

discussing descriptors that are capturing the same property of the modeled compounds.
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The descriptor importance for the ESI+ downsampled model is shown in Fig. 3. A similar 

plot of variable importance for the ESI+ upsampled model can be found in Supplemental 

Figure S1. Of the descriptors shown, the top performers have been selected for discussion. 

The descriptors plotted as blue points (IC2, IC3, MIC2) are estimations of the information 

content of a molecule. Information content is an index of the topological information of a 

molecular graph using the number of neighbors and multiplicity of bonds around individual 

atoms [41]. Chemical phenomena like isomerism and tautomerism are captured in these 

descriptors, which affect the retention of molecules on a chromatography column [42].

The descriptors plotted as yellow points in Fig. 3 (MLFER_BH, MLFER_E, MLFER_S, 

MLFER_E) represent molecular linear free energy relationship terms. These terms capture 

specific interaction elements of the solvation property [43]. These interaction elements 

include polarizability and hydrogen bond basicity and acidity. Each of these properties 

influences the eluting molecule’s interaction with both mobile and stationary phases of the 

LC column. Polarizability has been shown to be predictive of LC retention time [44]. The 

acidity/basicity of a molecule is important to the selectivity of the ionization source of the 

mass spectrometer [45].

The descriptors plotted as purple points (SpMax4_Bhs, SpMax6_Bhs, SpMax2_Bhs) 

represent the largest absolute eigenvalue of the Burden modified matrix weighted by 

intrinsic state [41]. Briefly, the Burden matrix considers atomic number and bond order 

between atoms in the molecule. The intrinsic state is a ratio of the valence and sigma 

electrons in an atom [46]. These descriptors capture the electrotopological state of the 

molecule, which determines the ionization potential of the molecule. Ionization is also 

represented in the model by the descriptor plotted as a green point in Fig. 3 (SM1_Dzi). 

This descriptor is the Barysz vertex-distance matrix which represents the heteroatoms of a 

molecule and is weighted by ionization potential [41]

The descriptor importance for the ESI− downsampled model is shown in Fig. 4. A similar 

plot of variable importance for the ESI− upsampled model can be found in Supplemental 

Figure S2. Again, the top descriptors are selected for discussion. The descriptors plotted 

as purple points (SpMax3_Bhs, SpMax4_Bhs, SpMax5_Bhs, SpMax6_Bhs, SpMax2_Bhs) 

represent the Burden matrix, which, as described earlier, captures the electrotopological state 

of the molecule, which determines the ionization potential of the molecule.

The descriptors plotted as red points in Fig. 4 (ATSC0s, ATSC1c, ATS2s, ATSC0c, ATSC1s) 

represent the Centered Broto-Moreau autocorrelation weighted by atomic properties [41]. 

The calculation of autocorrelation vectors for atomic properties (in this case, atomic charge, 

intrinsic state, and Sanderson electronegativity were observed) provides a way to see the 

effect of different atoms in the same position of a molecular skeleton. This will influence 

both the polarizability of the molecule as it elutes through a LC column and its ionization 

potential as it enters the ionization source. Lastly, we note the descriptor plotted as a 

green point in Fig. 4 (MDEO.11), which is a descriptor representing the molecular distance 

between primary oxygens. Among other chemical phenomena, this can be associated with 

the molecule’s ability to polarize, which we have already noted influences the retention of 

the molecule on the column.
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Model comparison with simpler models

The models described above can (and should) be described as complex. A more simplistic 

modeling approach, wherein a small number of hand-picked descriptors are considered 

using a simpler modeling technique, can be considered as a surrogate for how an analytical 

chemist would consider the functional aspects of a molecule to determine its amenability. 

Commonly considered aspects would include the number of acidic or basic functional 

groups along with its overall tendency to act as a proton donor or acceptor (dependent 

on the ionization mode). The “nBase” and “MLFER-BH” descriptors were chosen for a 

simple model of LC–MS ESI+ amenability, and the “nAcid” and “MLFER-A” descriptors 

were chosen to provide a simple model of LC–MS ESI− amenability. Logistic regression 

models were then constructed using the ESI+/− downsampled training sets with the two 

relevant descriptors. The logistic regression models were then applied to the appropriate 

test set as performed with the earlier random forest models. Table 2 shows the results of 

these simplistic models. Overall, these models performed significantly better than those built 

on randomized endpoints (Y-randomized models in Table 1); however, they fall short of 

the performance of the downsampled random forest models. While acidity/basicity is an 

important aspect of a molecule’s amenability in LC–ESI–MS, other important factors such 

as size/shape and polarizability are captured in the more complex random forest models.

Model comparison with expert intuition

An analytical chemist with extensive training in LC–ESI–MS will possess chemical intuition 

capable of hypothesizing the amenability of a molecule based solely on its structure. For 

instance, the carboxylic acid functional group present on a small molecule like benzoic acid 

would suggest the compound is amenable to ESI− LC–MS, as the acid group has a high 

affinity for proton loss, or amenable to ESI+ LC–MS, as the double-bonded oxygen can 

accept a proton and subsequently be stabilized through resonance. This kind of intuition 

should align with the results produced by the models presented in this work.

As a simple test for this concordance, we compared the ESI− and ESI+ downsampled 

model results for a set of chemicals with a common substructure, in this case, the presence 

of a carboxylic acid group. The subset of chemicals containing this functional group 

was determined using the ToxPrint “bond:C(= O)O_carboxylicAcid_generic.” A total of 

464 chemical compounds with experimentally measured ESI+ data out of 4613 and 773 

chemical compounds with experimentally measured ESI− data out of 3490 were found to 

contain this ToxPrint. Predictions using both ESI+ and ESI− downsampled models were 

then generated for these compounds. Table 3 shows the confusion matrix and performance 

metrics for these predictions. As would be expected, a large majority, 92%, of these 

compounds were detectable using ESI+ LC–MS and 94% using ESI–LC–MS. The ESI+ 

downsampled model was capable of correctly predicting the amenability of 93% of these 

compounds, and the ESI− downsampled model was capable of correctly predicting 93%. 

The ESI− downsampled model had poorer performance predicting unamenable compounds 

with only 69% correctly predicted; however, the ESI+ downsampled model performed much 

better, correctly predicting all 10 ESI+ unamenable compounds listed in Table 3. While this 

is another indicator that more unamenable data would improve modeling, the results are 

promising as a large majority of these compounds fit with intuition. Future work will strive 
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to highlight the ToxPrints that are commonly used by experts to hypothesize the amenability 

of compounds in relation to the models presented here.

External validation

Although the dataset used to construct the models in this work was split in order to leave 

out a portion of the data for validation, best modeling practices necessitate an external 

validation dataset also be considered for predictability. As part of the ToxCast program, 

a number of chemical standards have been analyzed for quality using multiple analytical 

methods, including LC–ESI–MS. In total, there are 1768 chemical compounds analyzed 

for their amenability in LC–ESI–MS that are not found in the training and test sets used 

in our models. These chemicals were solely reported as detected or not-detected in LC–

ESI–MS and were not differentiated between either of the modes of ESI. While we may 

consider the chemicals detected as amenable to LC–ESI–MS, the not-detected chemicals 

are not necessarily unamenable to the method as there are considerable method application 

variables across laboratories and instrumentation. Hence, this exercise attempted to assess 

the applicability of our models in such cases. Predictions were generated for these chemicals 

using both ESI+ and ESI− downsampled models and compared to experimental observations 

in the confusion matrices in Table 4. As there was no differentiation between ESI+/− in 

this external dataset, model predictions were combined. In the event that a chemical was 

predicted as amenable by either ESI+ or ESI− downsampled model, the chemical was 

considered as amenable in the combined model in Table 4. Those predicted as unamenable 

in both modes were considered unamenable. In this combined model approach, performance 

metrics are generally favorable compared to those observed for the model test sets in 

Table 1. A balanced accuracy of 0.76 for predicted amenability for these 1768 chemical 

compounds suggests our models should be applicable to chemical data generated from 

LC–ESI–MS setups in labs novel to those included in the model dataset. The dataset 

and experimental and predicted amenability calls are provided in the supplemental file 

“Supplemental_ToxCast_PhaseII.xlsx.”

Model application to suspect screening

To show the potential usefulness of the models described herein, we considered a typical 

suspect screening scenario. As part of the previously mentioned ENTACT study, a set 

of compounds was identified among multiple laboratories as amenable in LC–MS using 

electrospray ionization. There were 228 compounds identified in ESI+ (of which only 39 

are found in the ESI+ downsampled model training set) and 108 compounds identified in 

ESI− (of which only 13 are found in the ESI− downsampled model training set), with 37 

of the compounds detected in both ESI+ and ESI− modes. To simulate a suspect screening 

approach, the molecular formula matching each of these compounds was searched on the 

Dashboard using the batch search feature and each matching structure was downloaded as a 

candidate. For the 228 compounds identified in ESI+, there were 13,325 candidates, and for 

the 108 compounds identified in ESI−, there were 7079 candidates. PaDEL descriptors were 

generated for each candidate and amenability predictions were calculated using both ESI+ 

and ESI− downsampled models. The resulting dataset is available in the supplemental file 

“Supplemental_Application.xlsx.”
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The confidence measure, pj xnew , where j represents the amenable class, was then used 

to determine the potential amenability of each candidate compound. For each molecular 

formula, candidates were ranked based on the value of pj xnew , with the highest pj xnew
being assigned rank 1, the next highest being assigned rank 2, etc., such that the higher-

ranked compounds (those close to rank 1) have the highest probabilities of detection in 

LCMS and the lower-ranked compounds (those farther away from rank 1) have the lowest 

probabilities of detection in LCMS. For example, if a formula has two potential candidate 

matches, with pj xnew = 0.85 for tentative identity A and pj xnew = 0.90 for tentative identity 

B, tentative identity A would be assigned a rank of 2 and tentative identity B would 

be assigned a rank of 1. These ranks were used in a manner analogous to data source 

counts [47] to determine the best candidate compounds for each molecular formula. These 

candidate ranks were then compared to the compound(s) identified in the ENTACT study 

to test the hypothesis that higher-ranked candidates will match compounds identified in the 

ENTACT study more often than lower-ranked candidates. The frequency of candidate ranks 

matching an ENTACT compound are shown in Fig. 5.

Figure 5 shows that a significant portion of candidate compounds that are matches for 

ENTACT compounds are assigned to the top ten (1–10) rank values (57.5% in ESI+ and 

43.5% in ESI−) based on the amenability prediction value. However, not all molecular 

formulae have similar numbers of candidate compounds. For example, the molecular 

formula C6HCl5O matches only one compound in DSSTox, pentachlorophenol, whereas 

the formula C11H14O3 matches 956 unique compounds. For this reason, each rank was 

scaled by the number of compounds matching each formula as a percentile between 0 and 1, 

where 1 is the highest-ranked candidate (rank 1) and 0 is the lowest-ranked candidate. The 

cumulative amount of correctly matched compounds by scaled rank is shown in Fig. 6. For 

ESI+, ~ 25% of compounds are correctly matched by the highest-ranked prediction (value at 

rank 1.00 in the lower left of the figure) and the result for ESI− is similar at ~ 23%. Whereas 

this initial percentile of candidate compounds correctly matching the scaled rank predictions 

based on rank 1 predictions is promising, the trend moving to the right of the figure with the 

lower scaled ranked compounds has an approximately linear relationship with the percentile 

of correctly matched compounds, indicating only incremental gains in detection of correct 

matches.

Whereas we do not anticipate this kind of modeling replacing other candidate ranking 

methods (such as data source ranking or molecule fragmentation approaches), it can provide 

a useful complimentary and/or weight-of-evidence approach. It should be noted that the 

dataset used in this demonstration is biased toward environmentally relevant chemicals, 

many of which appear in a large number of chemical lists on the Dashboard (see the 

DATA_SOURCES column in “Supplemental_Application.xlsx” for both ESI+ and ESI−). 

In the case of this dataset, the amenability model predictions would underperform relative 

to ranking candidates based on data source counts alone. However, typical suspect screens 

of unknown mixtures may not have the advantage of data source–rich candidates, in which 

case, the present models could be more useful.
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Model applicability to environmental datasets

The external validation results presented in Table 4, using the present models to predict LC–

ESI–MS amenability of ToxCast chemicals, provided an initial estimate of applicability of 

the models to environmental datasets. To further anticipate differences between the chemical 

compounds in the modeling dataset versus those encountered in a typical analysis of an 

environmental media, we compared ToxPrint chemotype profiles for our dataset versus the 

larger Tox21 compound library [48]. The Tox21 program was conceived as a cooperative 

effort of multiple US government agencies to assemble a dataset of 8947 unique chemical 

compounds spanning a wide range of criteria, particularly those of environmental hazard or 

exposure concern.

Figure 7 shows the chemotypes with the greatest difference of frequency of occurrence 

between the two datasets. There are a number of chemotypes not represented in the 

modeling dataset that are prevalent in the Tox21 dataset. Two conclusions can be drawn 

based on the chemotypes that are largely absent from the modeling dataset. A number of 

these chemotypes are metal-containing substructures, which cannot be represented using the 

current modeling methodology (QSAR-ready structures exclude organometallics and salt 

components). Capturing compounds containing these substructures would require another 

modeling approach, beyond the scope of this work. The remaining chemotypes are purely 

organic (e.g., sample structures illustrated in Fig. 7). Analytical QC data gathered in the 

course of the Tox21 programs are currently being compiled into datasets for public release 

and will be represented in a future modeling dataset.

Conclusion

We have constructed models that capture the physicochemical properties of molecules 

that determine their amenability to detection in different LC–ESI–MS modes of detection. 

Predictions made using these models can be used to deduce the likelihood of a chemical 

compound appearing in an LC–ESI–MS analysis and in what polarity of ESI. Furthermore, 

these predictions can be used to rank a list of potential chemical identities in suspect 

screens for further evaluation, such as in conjunction with an applicable retention time 

prediction model, data source ranking scheme, and/or spectral matching in a weight-of-

evidence approach. In turn, this should result in the need for fewer chemical standards for 

confirmation of identity. These amenability models have the potential to save researchers’ 

time and resources by better anticipating which chemicals are amenable to LC–ESI–MS. 

Furthermore, additional savings can be found by prioritizing lower-confidence predictions 

for follow-up analysis using other methods such as GC–MS, rather than attempting to 

address whether there is a sample issue versus a method issue.

As more analytical data are acquired, these models will continue to be improved. The 

models herein were trained using chemical compounds detected using a multitude of LC–

ESI–MS methods, whereas non-detects were limited to only one method. Future models 

will incorporate both detects and non-detects from the various instrumentation used in 

the ENTACT study. This will allow for a comparison of individual methods as well as 

a consensus model similar to what is presented here. Future models will also attempt 

to predict compound amenability in other instrumentation, such as GC–MS. Real-time 

Lowe et al. Page 13

Anal Bioanal Chem. Author manuscript; available in PMC 2022 December 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



predictions using these models will be available through the predictions page of the 

Dashboard, https://comptox.epa.gov/dashboard/predictions/index, at a future date.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors would like to acknowledge Ralph Hindle from Vogon Laboratory Services along with Tarun Anumol 
and Craig Marvin from Agilent Technologies, Inc. for assisting with the spectral collection and curation of 
the ToxCast Screening Library data used in this study. We would also like to thank Katherine Phillips, Katie 
Paul-Friedman, and Risa Sayre for preliminary conversations surrounding this study.

Funding

The US EPA Office of Research and Development funded and managed the research described here.

Data availability

All data generated or analyzed during this study are included in this published article and its 

supplementary information files.

Code availability

The computer code created for the current study is available from the corresponding author 

on reasonable request.

References

1. Wambaugh JF, Setzer RW, Reif DM, Gangwal S, Mitchell-Blackwood J, Arnot JA, et al. High-
throughput models for exposure-based chemical prioritization in the ExpoCast Project. Environ Sci 
Technol. 2013;47(15):8479–88. [PubMed: 23758710] 

2. Csiszar SA, Meyer DE, Dionisio KL, Egeghy P, Isaacs KK, Price PS, et al. Conceptual framework 
to extend life cycle assessment using near-field human exposure modeling and high-throughput 
tools for chemicals. Environ Sci Technol. 2016;50(21):11922–34. [PubMed: 27668689] 

3. Li L, Westgate JN, Hughes L, Zhang X, Givehchi B, Toose L, et al. A model for risk-based 
screening and prioritization of human exposure to chemicals from near-field sources. Environ Sci 
Technol. 2018;52(24):14235–44. [PubMed: 30407800] 

4. Isaacs KK, Glen WG, Egeghy P, Goldsmith M-R, Smith L, Vallero D, et al. SHEDS-HT: an 
integrated probabilistic exposure model for prioritizing exposures to chemicals with near-field and 
dietary sources. Environ Sci Technol. 2014;48(21):12750–9. [PubMed: 25222184] 

5. Wild CP, Scalbert A, Herceg Z. Measuring the exposome: a powerful basis for evaluating 
environmental exposures and cancer risk. Environ Mol Mutagen. 2013;54(7):480–99. [PubMed: 
23681765] 

6. Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ. The ToxCast program for 
prioritizing toxicity testing of environmental chemicals. Toxicol Sci. 2007;95(1):5–12. [PubMed: 
16963515] 

7. Tice RR, Austin CP, Kavlock RJ, Bucher JR. Improving the human hazard characterization of 
chemicals: a Tox21 update. Environ Health Perspect. 2013;121(7):756–65. [PubMed: 23603828] 

8. Hertzberg RP, Pope AJ. High-throughput screening: new technology for the 21st century. Curr Opin 
Chem Biol. 2000;4(4):445–51. [PubMed: 10959774] 

Lowe et al. Page 14

Anal Bioanal Chem. Author manuscript; available in PMC 2022 December 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://comptox.epa.gov/dashboard/predictions/index


9. NRC U. Risk assessment in the federal government: managing the process. National Research 
Council, Washington DC. 1983;11(3).

10. Tolonen A, Pelkonen O. Analytical challenges for conducting rapid metabolism characterization 
for QIVIVE. Toxicology. 2015;332:20–9. [PubMed: 23994130] 

11. Nicolas CI, Mansouri K, Phillips KA, Grulke CM, Richard AM, Williams AJ, et al. Rapid 
experimental measurements of physicochemical properties to inform models and testing. Sci Total 
Environ. 2018;636:901–9. [PubMed: 29729507] 

12. Wetmore BA, Wambaugh JF, Ferguson SS, Sochaski MA, Rotroff DM, Freeman K, et al. 
Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity 
assessment. Toxicol Sci. 2012;125(1):457–74.

13. Sobus JR, Grossman JN, Chao A, Singh R, Williams AJ, Grulke CM, et al. Using prepared 
mixtures of ToxCast chemicals to evaluate non-targeted analysis (NTA) method performance. Anal 
Bioanal Chem. 2019;411(4):835–51. [PubMed: 30612177] 

14. Newton SR, McMahen RL, Sobus JR, Mansouri K, Williams AJ, McEachran AD, et al. Suspect 
screening and non-targeted analysis of drinking water using point-of-use filters. Environ Pollut. 
2018;234:297–306. [PubMed: 29182974] 

15. Schymanski EL, Williams AJ. Open science for identifying “known unknown” chemicals. Environ 
Sci Technol. 2017;51(10):5357. [PubMed: 28475325] 

16. Sobus JR, Wambaugh JF, Isaacs KK, Williams AJ, McEachran AD, Richard AM, et al. Integrating 
tools for non-targeted analysis research and chemical safety evaluations at the US EPA. J Eposure 
Sci Environ Epidemiol. 2018;28(5):411–26.

17. Ulrich EM, Sobus JR, Grulke CM, Richard AM, Newton SR, Strynar MJ, et al. EPA’s non-targeted 
analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal Bioanal Chem. 
2019;41l(4):853–66.

18. McEachran AD, Chao A, Al-Ghoul H, Lowe C, Grulke C, Sobus JR, et al. Revisiting five years of 
CASMI contests with EPA identification tools. Metabolites. 2020;10(6):260.

19. Newton SR, Sobus JR, Ulrich EM, Singh RR, Chao A, McCord J, et al. Examining NTA 
performance and potential using fortified and reference house dust as part of EPA’s Non-Targeted 
Analysis Collaborative Trial (ENTACT). Anal Bioanal Chem. 2020;412(18):4221–33. [PubMed: 
32335688] 

20. Favreau P, Poncioni-Rothlisberger C, Place BJ, Bouchex-Bellomie H, Weber A, Tremp J, et 
al. Multianalyte profiling of per- and polyfluoroalkyl substances (PFASs) in liquid commercial 
products. Chemosphere. 2017;171:491–501. [PubMed: 28038421] 

21. Reymond J-L, Ruddigkeit L, Blum L, van Deursen R. The enumeration of chemical space. WIREs 
Comput Mol Sci. 2012;2(5):717–33.

22. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al. MassBank: a public repository 
for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45(7):703–14. [PubMed: 
20623627] 

23. Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA, et al. Description of 
several chemical structure file formats used by computer programs developed at Molecular Design 
Limited. J Chem Inf Model. 1992;32(3):244–55.

24. Cao Y, Charisi A, Cheng L-C, Jiang T, Girke T. ChemmineR: a compound mining framework for 
R. Bioinformatics. 2008;24(15):1733–4. [PubMed: 18596077] 

25. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. https://www.R-project.org/.

26. Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D. InChI, the IUPAC international 
chemical identifier. J Cheminform. 2015;7(1):23. [PubMed: 26136848] 

27. Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al. The CompTox 
Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminform. 
2017;9(1):61. [PubMed: 29185060] 

28. Lowe CN, Williams AJ. Enabling high-throughput searches for multiple chemical data using 
the U.S.-EPA CompTox chemicals dashboard. J Chem Inf Model. 2021;61(2):565–70. [PubMed: 
33481596] 

Lowe et al. Page 15

Anal Bioanal Chem. Author manuscript; available in PMC 2022 December 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://www.R-project.org/


29. Richard AM, Judson RS, Houck KA, Grulke CM, Volarath P, Thillainadarajah I, et al. 
ToxCast chemical landscape: paving the road to 21st century toxicology. Chem Res Toxicol. 
2016;29(8):1225–51. [PubMed: 27367298] 

30. Mansouri K, Grulke C, Richard A, Judson R, Williams A. An automated curation procedure for 
addressing chemical errors and inconsistencies in public datasets used in QSAR modelling. SAR 
QSAR Environ Res. 2016;27(11):911–37. [PubMed: 27885861] 

31. Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and 
fingerprints. J Comput Chem. 2011;32(7):1466–74. [PubMed: 21425294] 

32. Mansouri K, Grulke CM, Judson RS, Williams AJ. OPERA models for predicting physicochemical 
properties and environmental fate endpoints. J Cheminform. 2018;10(1):10. [PubMed: 29520515] 

33. Mansouri K, Cariello NF, Korotcov A, Tkachenko V, Grulke CM, Sprankle CS, et al. Open-source 
QSAR models for pKa prediction using multiple machine learning approaches. J Cheminform. 
2019;11(1):60. [PubMed: 33430972] 

34. Khan K, Baderna D, Cappelli C, Toma C, Lombardo A, Roy K, et al. Ecotoxicological QSAR 
modeling of organic compounds against fish: application of fragment based descriptors in feature 
analysis. Aquat Toxicol. 2019;212:162–74. [PubMed: 31128417] 

35. Gramatica P, Cassani S, Chirico N. QSARINS-chem: Insubria datasets and new QSAR/QSPR 
models for environmental pollutants in QSARINS. J Comput Chem. 2014;35(13):1036–44. 
[PubMed: 24599647] 

36. Yang C, Tarkhov A, Marusczyk J, Bienfait B, Gasteiger J, Kleinoeder T, et al. New publicly 
available chemical query language, CSRML, to support chemotype representations for application 
to data mining and modeling. J Chem Inf Model. 2015;55(3):510–28. [PubMed: 25647539] 

37. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22.

38. Altman DG, Bland JM. Diagnostic tests. 1: sensitivity and specificity. BMJ. 1994;308(6943):1552. 
[PubMed: 8019315] 

39. Klingspohn W, Mathea M, ter Laak A, Heinrich N, Baumann K. Efficiency of different measures 
for defining the applicability domain of classification models. J Cheminform. 2017;9(1):44. 
[PubMed: 29086213] 

40. Gramatica P Principles of QSAR models validation: internal and external. QSAR Comb Sci. 
2007;26(5):694–701.

41. Todeschini R, Consonni V. Molecular descriptors for chemoinformatics: volume I: alphabetical 
listing/volume II: appendices, references: John Wiley & Sons; 2009. 10.1002/9783527628766

42. D’Amboise M, Bertrand MJ. General index of molecular complexity and chromatographic 
retention data. J Chromatogr A. 1986;361:43–24.

43. Platts JA, Butina D, Abraham MH, Hersey A. Estimation of molecular linear free energy relation 
descriptors using a group contribution approach. J Chem Inf Comput Sci. 1999;39(5):835–45.

44. Jinno K, Kawasaki K. The correlation between molecular polarizability of PAHs and their retention 
data on various stationary phases in reversed-phase HPLC. Chromatographia. 1984;18(2):103–5.

45. Ehrmann BM, Henriksen T, Cech NB. Relative importance of basicity in the gas phase and in 
solution for determining selectivity in electrospray ionization mass spectrometry. J Am Soc Mass 
Spectrom. 2008;19(5):719–28. [PubMed: 18325781] 

46. Hall LH, Mohney B, Kier LB. The electrotopological state: structure information at the atomic 
level for molecular graphs. J Chem Inf Comput Sci. 1991;31(1):76–82.

47. McEachran AD, Sobus JR, Williams AJ. Identifying known unknowns using the US 
EPA’s CompTox Chemistry Dashboard. Anal Bioanal Chem. 2017;409(7):1729–35. [PubMed: 
27987027] 

48. Richard AM, Huang R, Waidyanatha S, Shinn P, Collins BJ, Thillainadarajah I, et al. The 
Tox21 10K Compound Library: collaborative chemistry advancing toxicology. Chem Res Toxicol. 
2021;34(2):189–216. [PubMed: 33140634] 

Lowe et al. Page 16

Anal Bioanal Chem. Author manuscript; available in PMC 2022 December 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. 1. 
The distribution of pamenable xnew  for the downsampled ESI+ model applied to the test set. 

The quartiles of the distribution are provided as a box plot inlayed into the violin plot
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Fig. 2. 
The distribution of pamenable xnew  for the downsampled ESI− model applied to the test set. 

The quartiles of the distribution are provided as a box plot inlayed into the violin plot
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Fig. 3. 
A plot of variable importance based on the mean decrease in the Gini index gain for 

the downsampled ESI+ model. Descriptors chosen for discussion in the main text are 

represented as colored points on the graph

Lowe et al. Page 19

Anal Bioanal Chem. Author manuscript; available in PMC 2022 December 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. 4. 
A plot of variable importance based on the mean decrease in Gini-index gain for 

the downsampled ESI− model. Descriptors chosen for discussion in the main text are 

represented as colored points on the graph
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Fig. 5. 
Frequency counts of candidate compounds found to be a match for an ENTACT compound 

ordered by prediction rank value (with 1 being the highest confidence rank and 50 the 

lowest) based on ESI+ LC–MS (a) and ESI− LC–MS (b) amenability predictions. Ranks 

greater than 50 are omitted due to very low occurrence
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Fig. 6. 
A plot of the percentile of correctly matched ENTACT compounds at a given scaled rank 

value based on ESI+ LC–MS (a) and ESI− LC–MS (b) amenability predictions
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Fig. 7. 
A plot of prevalent chemotypes in the Tox21 dataset and the model dataset used in this work, 

selected based on the absolute difference of frequency of occurrence between datasets
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Table 3

Confusion matrix and performance metrics for ESI− and ESI+ downsampled model predictions compared to 

the subset of model datasets containing a carboxylic acid functional group

Amenable
(prediction)

Unamenable
(prediction)

ESI− downsampled model Detected (experiment) 728 4

Not detected (experiment) 37 9

Sensitivity 0.95

Specificity 0.69

Balanced accuracy 0.82

ESI+ downsampled model Detected (experiment) 573 42

Not-detected (experiment) 0 10

Sensitivity 0.93

Specificity 1.00

Balanced accuracy 0.97
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Table 4

Confusion matrices and performance metrics for ESI+ and ESI− downsampled model predictions compared to 

external validation data

Amenable
(prediction)

Unamenable
(prediction)

ESI− downsampled model

Detected (experiment) 323 502

Not-detected (experiment) 68 874

Sensitivity 0.83

Specificity 0.64

Balanced accuracy 0.73

ESI+ downsampled model

Detected (experiment) 423 402

Not-detected (experiment) 103 839

Sensitivity 0.80

Specificity 0.68

Balanced accuracy 0.74

Combined models

Detected (experiment) 505 320

Not-detected (experiment) 129 813

Sensitivity 0.80

Specificity 0.72

Balanced accuracy 0.76
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