Table 4.
Result comparison of TextConvoNet with attention and/or transformer-based deep learning models
| Accuracy | Precision | Recall | F1-score | Specificity | Gmean 1 | Gmean 2 | MCC | |
|---|---|---|---|---|---|---|---|---|
| DATASET-1 | ||||||||
| BiLSTM + Attention | 0.806 | 0.816 | 0.790 | 0.803 | 0.822 | 0.803 | 0.806 | 0.613 | 
| BERT | 0.776 | 0.736 | 0.859 | 0.793 | 0.694 | 0.795 | 0.772 | 0.560 | 
| HAN | 0.802 | 0.791 | 0.821 | 0.806 | 0.783 | 0.806 | 0.802 | 0.606 | 
| BerConvoNet | 0.831 | 0.802 | 0.797 | 0.794 | 0.697 | 0.799 | 0.814 | 0.640 | 
| CNN-BiLSTM | 0.820 | 0.796 | 0.859 | 0.826 | 0.781 | 0.827 | 0.819 | 0.642 | 
| TLGNN | 0.710 | 0.725 | 0.675 | 0.699 | 0.745 | 0.700 | 0.709 | 0.422 | 
| SeqGNN | 0.821 | 0.787 | 0.882 | 0.828 | 0.763 | 0.829 | 0.820 | 0.649 | 
| TextConvoNet_6 | 0.822 | 0.848 | 0.783 | 0.814 | 0.860 | 0.815 | 0.821 | 0.645 | 
| TextConvoNet_4 | 0.819 | 0.833 | 0.798 | 0.815 | 0.841 | 0.815 | 0.819 | 0.639 | 
| DATASET-2 | ||||||||
| BiLSTM + Attention | 0.886 | 0.883 | 0.846 | 0.864 | 0.915 | 0.864 | 0.880 | 0.766 | 
| BERT | 0.772 | 0.685 | 0.867 | 0.765 | 0.700 | 0.771 | 0.779 | 0.564 | 
| HAN | 0.863 | 0.880 | 0.788 | 0.831 | 0.919 | 0.833 | 0.851 | 0.720 | 
| BerConvoNet | 0.883 | 0.821 | 0.911 | 0.866 | 0.859 | 0.849 | 0.852 | 0.755 | 
| CNN-BiLSTM | 0.872 | 0.901 | 0.861 | 0.881 | 0.886 | 0.881 | 0.873 | 0.745 | 
| TLGNN | 0.732 | 0.653 | 0.800 | 0.719 | 0.680 | 0.723 | 0.737 | 0.476 | 
| SeqGNN | 0.821 | 0.780 | 0.882 | 0.828 | 0.763 | 0.829 | 0.820 | 0.649 | 
| TextConvoNet_6 | 0.904 | 0.905 | 0.867 | 0.886 | 0.932 | 0.886 | 0.899 | 0.804 | 
| TextConvoNet_4 | 0.872 | 0.819 | 0.902 | 0.858 | 0.849 | 0.859 | 0.875 | 0.745 | 
| DATASET-3 | ||||||||
| BiLSTM + Attention | 0.990 | 0.960 | 0.960 | 0.960 | 0.994 | 0.960 | 0.977 | 0.954 | 
| BERT | 0.956 | 0.825 | 0.825 | 0.825 | 0.975 | 0.825 | 0.897 | 0.801 | 
| HAN | 0.890 | 0.560 | 0.560 | 0.560 | 0.937 | 0.560 | 0.724 | 0.497 | 
| BerConvoNet | 0.992 | 0.968 | 0.968 | 0.968 | 0.995 | 0.966 | 0.982 | 0.966 | 
| CNN-BiLSTM | 0.989 | 0.959 | 0.959 | 0.959 | 0.994 | 0.959 | 0.976 | 0.954 | 
| TLGNN | 0.944 | 0.777 | 0.777 | 0.777 | 0.968 | 0.777 | 0.867 | 0.745 | 
| SeqGNN | 0.967 | 0.962 | 0.819 | 0.885 | 0.994 | 0.887 | 0.902 | 0.870 | 
| TextConvoNet_6 | 0.992 | 0.968 | 0.968 | 0.968 | 0.995 | 0.968 | 0.981 | 0.963 | 
| TextConvoNet_4 | 0.992 | 0.969 | 0.969 | 0.969 | 0.996 | 0.969 | 0.982 | 0.965 | 
| DATASET-4 | ||||||||
| BiLSTM + Attention | 0.861 | 0.792 | 0.792 | 0.792 | 0.896 | 0.792 | 0.843 | 0.689 | 
| BERT | 0.808 | 0.712 | 0.712 | 0.712 | 0.856 | 0.712 | 0.7806 | 0.568 | 
| HAN | 0.795 | 0.693 | 0.693 | 0.693 | 0.846 | 0.693 | 0.766 | 0.540 | 
| BerConvoNet | 0.882 | 0.824 | 0.824 | 0.824 | 0.921 | 0.826 | 0.868 | 0.738 | 
| CNN-BiLSTM | 0.841 | 0.762 | 0.762 | 0.762 | 0.881 | 0.762 | 0.819 | 0.643 | 
| TLGNN | 0.800 | 0.700 | 0.706 | 0.706 | 0.850 | 0.706 | 0.771 | 0.551 | 
| SeqGNN | 0.875 | 0.861 | 0.747 | 0.8 | 0.940 | 0.802 | 0.838 | 0.714 | 
| TextConvoNet_6 | 0.884 | 0.826 | 0.826 | 0.826 | 0.913 | 0.826 | 0.869 | 0.739 | 
| TextConvoNet_4 | 0.873 | 0.809 | 0.809 | 0.809 | 0.904 | 0.809 | 0.855 | 0.713 | 
| DATASET-5 | ||||||||
| BiLSTM + Attention | 0.799 | 0.493 | 0.493 | 0.493 | 0.874 | 0.499 | 0.660 | 0.374 | 
| BERT | 0.711 | 0.278 | 0.278 | 0.278 | 0.819 | 0.278 | 0.477 | 0.098 | 
| HAN | 0.700 | 0.250 | 0.250 | 0.250 | 0.812 | 0.250 | 0.450 | 0.062 | 
| BerConvoNet | 0.828 | 0.572 | 0.572 | 0.572 | 0.894 | 0.572 | 0.721 | 0.474 | 
| CNN-BiLSTM | 0.830 | 0.576 | 0.576 | 0.576 | 0.89 | 0.576 | 0.718 | 0.470 | 
| TLGNN | 0.729 | 0.322 | 0.322 | 0.322 | 0.830 | 0.322 | 0.517 | 0.153 | 
| SeqGNN | 0.737 | 0.285 | 0.209 | 0.241 | 0.869 | 0.244 | 0.426 | 0.0885 | 
| TextConvoNet_6 | 0.839 | 0.597 | 0.597 | 0.597 | 0.899 | 0.597 | 0.732 | 0.496 | 
| TextConvoNet_4 | 0.828 | 0.571 | 0.571 | 0.571 | 0.893 | 0.571 | 0.714 | 0.463 | 
Bold entries show the significant values