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Purpose: In this investigation, the construct of perceptual
similarity was explored in the dysarthrias. Specifically, we
employed an auditory free-classification task to determine
whether listeners could cluster speakers by perceptual
similarity, whether the clusters mapped to acoustic metrics,
and whether the clusters were constrained by dysarthria
subtype diagnosis.
Method: Twenty-three listeners blinded to speakers’
medical and dysarthria subtype diagnoses participated.
The task was to group together (drag and drop) the
icons corresponding to 33 speakers with dysarthria on
the basis of how similar they sounded. Cluster analysis
and multidimensional scaling (MDS) modeled the
perceptual dimensions underlying similarity. Acoustic
metrics and perceptual judgments were used in correlation
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analyses to facilitate interpretation of the derived
dimensions.
Results: Six clusters of similar-sounding speakers and
3 perceptual dimensions underlying similarity were revealed.
The clusters of similar-sounding speakers were not
constrained by dysarthria subtype diagnosis. The
3 perceptual dimensions revealed by MDS were correlated
with metrics for articulation rate, intelligibility, and vocal
quality, respectively.
Conclusions: This study shows (a) feasibility of a free-
classification approach for studying perceptual similarity
in dysarthria, (b) correspondence between acoustic and
perceptual metrics to clusters of similar-sounding speakers,
and (c) similarity judgments transcended dysarthria subtype
diagnosis.
The gold standard for classification of motor speech
disorders, known as the Mayo Clinic approach,
was set forth by Darley, Aronson, and Brown

(1969a, 1969b, 1975) and was developed further by Duffy
(2005). In their seminal work, Darley et al. (1969b) rated
38 dimensions of speech and voice observed in 212 patients
with dysarthria arising from seven different neurological
conditions. Seven subtypes of dysarthria (flaccid, spastic,
ataxic, hypokinetic, hyperkinetic dystonia, hyperkinetic
chorea, and mixed), each possessing unique but over-
lapping clusters of perceptual features, were delineated.
The key to the classification system is that the underlying
pathophysiology of each type of dysarthria is presumed re-
sponsible for the resulting clusters of perceptual features.
For example, cerebellar lesions affect the timing, force,
range, and direction of limb movements and result in
dysrhythmic, irregular, slow, and inaccurate actions. Ac-
cording to the Mayo Clinic approach, the speech features
associated with ataxic speech (e.g., imprecise consonants,
equal and even stress, and irregular articulatory break-
down) can be explained by the effects of cerebellar lesions
on neuromuscular activity (as seen in the limbs). Thus, the
explanatory relationship between locus of damage and
the perceptual features associated with a dysarthria pro-
vides a valid and useful framework for clinical practice as
well as research on motor speech disorders.

This expert, analytic evaluation of dysarthric speech
is designed specifically to extract information relevant to
differential diagnosis of dysarthria, which then serves as a
source of corroborating information in the broader diagno-
sis of neurological disease or injury. However, such a level
of analysis is unlikely to uncover unique, etiology-based
communication disorders because, as Darley et al.’s (1969a,
1969b, 1975) work revealed, (a) not all speakers with a sim-
ilar etiology exhibit similar speech symptoms, (b) speech
symptoms within a given classification may differ along
the severity dimension, and (c) there is considerable overlap
in speech symptoms among the classification categories
(e.g., imprecise consonants, slow rate). This gives rise to a
gap in the ability to effectively leverage a dysarthria subtype
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diagnosis to identify appropriate treatment targets to ad-
dress the resulting communication disorder. In the present
report, we attempt to bridge this gap by exploring a para-
digm that exploits a relatively simple level of analysis,
namely, perceptual similarity. The hypothesis is that if lis-
teners are able to identify clusters of similar sounding dys-
arthric speakers, listeners must be using perceptually salient
features to accomplish the task. By extension, the features
that underlie the perceptual clusters may be suitable candi-
dates for treatment targets, to the extent that they contri-
bute to the associated communication disorder. This line
of reasoning is supported by work that demonstrates that
dysarthric speech with similar acoustic-perceptual profiles
challenges listener perceptual strategies (and outcomes)
in specific ways (e.g., Borrie et al., 2012; Liss, 2007;
Liss, Spitzer, Caviness, & Adler, 2002; Liss, Utianski, &
Lansford, 2013).

The purpose of the present study was to investigate
the construct of perceptual similarity in a heterogeneous
cohort of speakers with dysarthria (i.e., speakers with
varying dysarthria subtype diagnoses and severities). The
speakers included in this study were recruited because the
perceptual characteristics of their dysarthrias were consis-
tent with the cardinal perceptual characteristics identified
by Darley et al. (1969a, 1969b). Three research questions
were addressed:

1. Can listeners cluster dysarthric speech samples
without specific reference to speech features in an
unconstrained free-classification task (see Clopper,
2008)?

2. Do the resulting clusters scale to meaningful or
interpretable dimensions in the perceptual and acoustic
domains?

3. To what extent do the freely classified clusters contain
speakers with similar dysarthria subtype diagnoses?
Method
Speakers and Stimuli

Productions from 33 speakers were collected from a
larger corpus of research in the Arizona State University
Motor Speech Disorders laboratory (ASU MSD lab).
Speakers were diagnosed with one of the following dysar-
thria subtypes by neurologists at the Mayo Clinic: ataxic
dysarthria secondary to cerebellar degeneration (n = 11),
mixed flaccid-spastic dysarthria secondary to amyotrophic
lateral sclerosis (n = 10), hyperkinetic dysarthria secondary
to Huntington’s disease (n = 4), and hypokinetic dysarthria
secondary to Parkinson’s disease (n = 8). To be represen-
tative of previous research (Darley et al., 1969a, 1969b),
speakers were selected on the basis of the presence of hall-
mark characteristics found within the Mayo Clinic classifi-
cation system. Two speech-language pathologists (including
the second author) concurred that the dysarthria type was
consistent with the underlying medical diagnosis, and sever-
ity was rated to be moderate to severe (see Table 1).
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All speaker stimuli were previously recorded and edi-
ted for use in a larger study conducted in the ASU MSD
lab (e.g., Liss, Legendre, & Lotto, 2010; Liss et al., 2013,
2009). Each speaker read stimuli from visual prompts pre-
sented on a computer screen. All recordings utilized a head-
mounted microphone (Plantronics DSP-100), and participants
were seated in a sound-attenuating booth. Recordings were
made using a custom script in TF32 (Milenkovic, 2004;
16 bit, 44 kHz) and were saved directly to disc for subsequent
editing using commercially available software (SoundForge)
to remove any noise or extraneous articulations before or
after target utterances. For the purposes of this study, the
sentence “The standards committee met this afternoon in an
open meeting” was selected from the corpus of speech stimuli
because of its diverse representation of speech sounds. Sen-
tence durations across speakers were between 2.60 s and
13.544 s, with a mean duration of 6.486 s.

Listeners
Twenty-three graduate students in communication

disorders at ASU were recruited for this project. Partici-
pants were enrolled in a motor speech disorders class and
had received basic instruction in both dysarthria and dif-
ferential diagnosis. Listeners were native English speakers,
passed a threshold hearing screening, and self-reported
normal cognitive skills.

Procedure
An auditory free-classification task, as detailed by

Clopper (2008), was used to collect the similarity data.
Free-classification is a perceptual sorting task, in which lis-
teners are asked to group stimuli according to similarity.
It was developed by cognitive psychologists interested in
categorization of stimuli on the basis of perceptual dimen-
sions undefined by the experimenter (Imai, 1966; Imai &
Garner, 1965). Free-classification permits examination of
perceptual similarity while avoiding experimenter-imposed
categories and without naming distinctive perceptual char-
acteristics. An attractive benefit of the free-classification
method is that it is less time consuming than paired-
comparison methods traditionally used to investigate per-
ceptual similarity (Clopper, 2008). In the present study, the
use of free-classification offered a faster and unconstrained
listener task.

The stimulus materials (i.e., recordings of the sen-
tence “The standards committee met this afternoon in an
open meeting”) produced by each of the speakers were
embedded into a single PowerPoint slide and were pre-
sented to listeners. Each speaker’s recording was randomly
assigned a two-letter identifier (i.e., de-identified initials) to
be used by listeners to keep track of the speakers during
the free-classification task. The individual sound files and
static images of the identifiers were merged in PowerPoint,
such that when listeners double-clicked the image, the sound
file played automatically. The merged files were placed neatly
and randomly in three columns adjacent to a 16 × 16 cell
2051–2064 • December 2014



Table 1. Dysarthric speaker demographic information.

Speaker Gender Age (years) Dysarthria diagnosis Etiology Severity

AF1 F 72 Ataxic Cerebellar ataxia Moderate
AF2 F 57 Ataxic Multiple sclerosis/ataxia Severe
AF7 F 48 Ataxic Cerebellar ataxia Moderate
AF8 F 65 Ataxic Cerebellar ataxia Moderate
AF9 F 86 Ataxic Cerebellar ataxia Severe
AM1 M 73 Ataxic Cerebellar ataxia Severe
AM3 M 79 Ataxic Cerebellar ataxia Moderate–severe
AM4 M 46 Ataxic Cerebellar ataxia Moderate
AM5 M 84 Ataxic Cerebellar ataxia Moderate
AM6 M 46 Ataxic Cerebellar ataxia Moderate
AM8 M 63 Ataxic Cerebellar ataxia Moderate
ALSF2 F 75 Mixed ALS Severe
ALSF5 F 73 Mixed ALS Severe
ALSF6 F 63 Mixed ALS Severe
ALSF7 F 54 Mixed ALS Moderate
ALSF8 F 63 Mixed ALS Moderate
ALSF9 F 86 Mixed ALS Severe
ALSM1 M 56 Mixed ALS Moderate
ALSM4 M 64 Mixed ALS Moderate
ALSM7 M 60 Mixed ALS Severe
ALSM8 M 46 Mixed ALS Moderate
HDM8 M 43 Hyperkinetic HD Severe
HDM10 M 50 Hyperkinetic HD Severe
HDM11 M 56 Hyperkinetic HD Moderate
HDM12 M 76 Hyperkinetic HD Moderate
PDF5 F 54 Hypokinetic PD Moderate
PDF7 F 58 Hypokinetic PD Moderate
PDM8 M 77 Hypokinetic PD Moderate
PDM9 M 76 Hypokinetic PD Moderate
PDM10 M 80 Hypokinetic PD Moderate
PDM12 M 66 Hypokinetic PD Severe
PDM13 M 81 Hypokinetic PD Moderate
PDM15 M 57 Hypokinetic PD Moderate

Note. A = ataxia; F = female; M = male; ALS = amyotrophic lateral sclerosis; HD = Huntington’s disease; PD = Parkinson’s disease.
grid in a single PowerPoint slide (see Figure 1). Each image
was sized to fit precisely into one cell of the grid.

For the experimental task, listeners were seated in
front of computers located in quiet listening cubicles. All
computers were equipped with Sennheiser HD 280 sound-
attenuating headphones and were calibrated using a digital
sound level meter and a flat plate coupler. Volume was set
individually on each computer, and participants did not
adjust the volume. Listeners were informed that all of the
speakers have dysarthria. However, the listeners did not
know the underlying medical etiologies or dysarthria sub-
types. Participants were instructed to listen to all of the
merged sound files, via headphones, and to group the files in
the grid (click, drag, drop) depending on how similar they
sounded. Listeners were not provided any other instruction
regarding how to make their judgments of similarity. They did
not know the purpose of the study until they were debriefed.
They were told that icons of the speakers perceived as sound-
ing similar should be placed next to (touching) one another.
Listeners were free to make as many groups as they deemed
appropriate, with as many speakers in each group as needed
(see Figure 2). There was no time limit imposed on the task,
and listeners were permitted to listen to and rearrange the
speaker files as many times as necessary. Listeners recruited
to participate in pilot testing indicated that the processing de-
mands associated with the free-classification task taxed their
working memory. Thus, listeners recruited for the present
study were permitted, but were not required, to make nota-
tions as they made their similarity judgments in the notes
space below the PowerPoint slide. These notes were saved
for subsequent examination.
Acoustic and Perceptual Measurements
Three sets of acoustic measures and one set of per-

ceptual ratings were used in the correlation analyses (for
detailed descriptions of the metrics, see Table 2). The sen-
tence used in this study was one of five sentences produced
by all speakers, whose classification results have been re-
ported in previous work (Liss et al., 2010, 2009). Therefore,
the first set of measures included previously published
acoustic rhythm metrics (Liss et al., 2009) and envelope
modulation metrics (Liss et al., 2010). The second set of
metrics was designed to capture vowel space area and
Lansford et al.: Free-Classification of Dysarthric Speech 2053



Figure 1. Screen shot of the PowerPoint slide used for the free-classification task in its beginning position. Each
of the initialed black icons located on the left side of the slide was paired with a specific speaker’s sound file.
When the icons were double-clicked, the sound file would play.

Figure 2. Screen shot of an example free-classification PowerPoint
slide in its completed state, wherein icons touching one another in
the grid were considered to be similar sounding.
distinctiveness, and these data are reported in Lansford and
Liss (2014a, 2014b).1 The third new set of measures involved
capturing the long-term average spectra (LTAS) of the sen-
tences. Analysis of LTAS permits comprehensive explora-
tion of the frequency distribution of a continuous speech
sample and has been used in previous investigations of vocal
quality (Leino, 2009; Shoji, Regenbogen, Yu, & Blaugrund,
1992), rhythmic disturbance in dysarthria (Utianski, Liss,
Lotto, & Lansford, 2012), and perceived speech severity in
dysarthria (Tjaden, Sussman, Liu, & Wilding, 2010).

Perceptual measures included scaled estimates of
each speaker’s overall severity, vocal quality, articulatory
imprecision, nasal resonance, and prosodic disturbance.2

The ratings of these dimensions were obtained via a visual
analog task (Alvin Software; Hillenbrand, & Gayvert, 2005)
completed by five speech-language pathologists (unaffiliated
with the ASU MSD lab). The speakers’ productions of the
stimulus item used in the free-classification perceptual task
were randomly presented, and the listeners were instructed
to place a marker along a scale (ranging from normal to
severely abnormal) that corresponded to their assessment
of the speaker’s level of impairment. Interrater reliabilities
(Cronbach’s alpha) for the ratings of severity, nasality, vocal
quality, articulatory impression, and prosody were .936, .873,
.898, .946, and .812, respectively. The ratings were normalized
(z score) and averaged across listeners. Finally, intelligibility
data (percentage of words correct on a transcription task)
1These vowel space metrics require inclusion of formant measures
from vowels not present in the stimulus item used in the current
experiment. Thus, formant measurements of vowels embedded in the
phrases used in Lansford and Liss (2014a, 2014b) were used in the
present analysis to facilitate calculation of the vowel space metrics.
2Listeners were instructed to judge prosodic disturbance without
consideration of the speaker’s overall speaking rate.
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collected for these speakers (as reported in Liss et al., 2013)
were included as a perceptual measure.

Data Analysis
The PowerPoint slide with each listener’s final speaker

groupings was coded alphanumerically, and the final group-
ings were transferred into Microsoft Excel for subsequent
analysis. Descriptive statistics were obtained to determine
the mean, median, and range of numbers of listener-derived
groups and speakers included in each group.

The similarity data obtained from each listener were
arranged into a 33 × 33 speaker-similarity matrix in Excel
(see the Appendix). A 1 was entered into cells corresponding
2051–2064 • December 2014



Table 2. Descriptions of the acoustic and perceptual metrics.

Metrics type Description

Perceptual measures
Intelligibility Percentage of words correct from a transcriptional task. Data were originally reported in Liss et al. (2013).
Severity Perceptual rating of global, integrated impression of dysarthria severity obtained from five SLPs.
Vocal quality Perceptual rating of global, integrated impression of overall vocal quality obtained from five SLPs.
Nasality Perceptual rating of global, integrated impression of nasal resonance obtained from five SLPs.
Articulatory imprecision Perceptual rating of global, integrated impression of precision of articulatory gestures obtained from five SLPs.
Prosody Perceptual rating of global, integrated impression of speaker’s rhythm, stress, and intonation obtained from

five SLPs.

Rhythm metrics Acoustic measures of vocalic and consonantal segment durations (Liss et al., 2009).
DV Standard deviation of vocalic intervals.
DC Standard deviation of consonantal intervals.
%V Percentage of utterance duration composed of vocalic intervals.
VarcoV Standard deviation of vocalic intervals divided by mean vocalic duration (× 100).
VarcoC Standard deviation of consonantal intervals divided by mean consonantal duration (× 100).
VarcoVC Standard deviation of vocalic + consonantal intervals divided by mean vocalic + consonantal duration (× 100).
nPVI-V Normalized pairwise variability index for vocalic intervals. Mean of the differences between successive vocalic

intervals divided by their sum.
rPVI-C Pairwise variability index for consonantal intervals. Mean of the differences between successive consonantal

intervals.
rPVI-VC Pairwise variability index for vocalic and consonantal intervals. Mean of the differences between successive

vocalic and consonantal intervals.
nPVI-VC Normalized pairwise variability index for vocalic + consonantal intervals. Mean of differences between

successive vocalic + consonantal intervals divided by their sum.
Articulation rate Number of (orthographic) syllables produced per second, excluding pauses.

EMS metrics The EMS variables were obtained for the full signal and for each of the octave bands (Liss et al., 2010).
Peak frequency The frequency of the peak in the spectrum with the greatest amplitude. The period of this frequency is the

duration of the predominant repeating amplitude pattern.
Peak amplitude The amplitude of the peak described above (divided by overall amplitude of the spectrum).
E3–E6 Energy in the region of 3–6 Hz (divided by overall amplitude of the spectrum). This is roughly the region of the

spectrum (around 4 Hz) that has been correlated with intelligibility (Houtgast & Steeneken, 1985) and has
been inversely correlated with segmental deletions (Tilsen & Johnson, 2008).

Below 4 Energy in the spectrum from 0 to 4 Hz (divided by overall amplitude of the spectrum).
Above 4 Energy in the spectrum from 4 to 10 Hz (divided by overall amplitude of the spectrum).
Ratio 4 Below 4/above 4.

LTAS metrics The measures of LTAS were normalized to RMS energy of entire signal and derived for 7 octave bands with
center frequencies ranging from 125 to 8000 Hz (Utianski et al., 2012).

N1RMS RMS energy of entire signal and each octave band.
nsd Standard deviation of RMS energy (for 20-ms windows) of entire signal and each octave band.
nRng Range RMS energy (for 20-ms windows) of entire signal and each octave band.
PV Pairwise variability of RMS energy: mean difference between successive 20 ms windows of nRng. Computed

for entire signal and for each octave band.

Vowel metrics Vowel measures were derived from formant frequencies of vowel tokens embedded in six-syllable phrases
produced by each speaker (Lansford & Liss, 2014a, 2014b).

Quadrilateral VSA Vowel space area. Heron’s formula was used to calculate the area of the irregular quadrilateral formed by the
corner vowels (i, æ, a, u) in F1 × F2 space. Toward this end, the area (as calculated by Heron’s formula) of
the two triangles formed by the sets of vowels, /i/, /æ/, /u/, and /u/, /æ/, /a/, is summed. Heron’s formula is
as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s s� að Þ s� bð Þ s� cð Þp

, where s is the semiperimeter of each triangle, expressed as s = ½ (a +
b + c), and a, b, and c each represent the Euclidean distance in F1 × F2 space between each vowel pair
(e.g., /i/ to /æ/ ).

FCR Formant centralization ratio. This ratio, expressed as (F2u + F2a + F1i + F1u)/(F2i + F1a), is thought to capture
centralization when the numerator increases and the denominator decreases. Ratios greater than 1 are
interpreted to indicate vowel centralization.

Mean dispersion This metric captures the overall dispersion (or distance) of each pair of the 10 vowels, as indexed by the
Euclidean distance between each pair in the F1 × F2 space.

Front dispersion This metric captures the overall dispersion of each pair of the front vowels (i, ɪ, e, ɛ, æ). Indexed by the average
Euclidean distance between each pair of front vowels in F1 × F2 space.

Back dispersion This metric captures the overall dispersion of each pair of the back vowels (u, O, o, a). Indexed by the average
Euclidean distance between each pair of back vowels in F1 × F2 space.

Corner dispersion This metric is expressed by the average Euclidean distance of each of the corner vowels, (i, æ, a, u), to the
center vowel /^/.

Global dispersion Mean dispersion of all vowels to the global formant means (Euclidian distance in F1 × F2 space).

Note. SLPs = speech-language pathologists; EMS = envelope modulation spectra; LTAS = long-term average spectra; RMS: root-mean-square.

Lansford et al.: Free-Classification of Dysarthric Speech 2055



to two speakers grouped together by a listener. Likewise, a
0 was entered into the cells corresponding to speakers not
grouped together. The individual listener’s speaker-similarity
matrices were summed and converted into a dissimilarity
matrix for the subsequent analyses. First, the similarity data
were subjected to an additive similarity tree cluster analysis
described by Corter (1998) and used by Clopper (2008) to
determine the number and composition of clusters of per-
ceptually similar speakers. Multidimensional scaling (MDS)
of the similarity data was completed to examine the salient
perceptual dimensions underlying speaker similarity in this
group of speakers with dysarthria. Correlation analysis
was conducted to facilitate interpretation of the perceptual
dimensions underlying similarity as revealed by the MDS.
In addition, noncompulsory notes made by listeners as they
completed the perceptual task were examined to determine
whether the results of the quantitative analyses described
above tracked to the acoustic and perceptual characteristics
reported by the listeners to underlie speaker similarity in
dysarthria.

Results
Descriptive Analysis

Listeners derived an average of 7.7 clusters (SD = 2.85)
of similar-sounding speakers, with a median of 7 and a
range of 3–14 groups. The individual clusters of similar-
sounding speakers included an average of 4.96 speakers
(SD = 2.1), with a median of 4 and a range of 1–13 speakers.
See Figure 3 for the 33 × 33 speaker-similarity matrix.

Cluster Analysis
Additive similarity tree cluster analysis (Corter, 1998)

was used to identify clusters of similar sounding speakers.
The results of the cluster analysis are best visualized via
dendogram representation of the similarity data, in which
speakers were linked together one at a time at varying steps
of the analysis (see Figure 3). Speakers that were most fre-
quently grouped together by the listeners were linked first
by the cluster analysis. Speakers joined existing clusters
during subsequent steps of the analysis until all of the clus-
ters joined to form a single group (see the top of Figure 3).
The number of clusters revealed is experimenter defined.
For the purposes of this initial foray into similarity in the
dysarthrias, a six-cluster solution was selected. This solution
was analyzed primarily because it most closely resembled
the descriptive data (i.e., average number of groups derived
by the listeners). Unfortunately, this solution left speaker
AM3 without a cluster. He was, therefore, excluded from
subsequent cluster-based analyses. It is important to note
that the composition of each of the six clusters was not lim-
ited to a single dysarthria subtype (for cluster member dis-
tribution, see Table 3); however, one cluster contained all
of the speakers diagnosed with Parkinson’s disease and
one speaker with Huntington’s disease. Thus, these results
support the notion that speaker similarity in dysarthria may
transcend dysarthria diagnosis.
2056 Journal of Speech, Language, and Hearing Research • Vol. 57 •
MDS
The similarity data were subjected to PROXSCAL

MDS analysis (SPSS), and the normalized raw stress
values obtained for models that included one to five di-
mensions were evaluated to determine the best fit of the
data. Briefly, the stress of an MDS model refers to its over-
all stability. The normalized raw stress values of the one
through five dimensional models were included in a scree
plot to identify the point with which the addition of an-
other dimension no longer substantially lowers stress (i.e.,
the “elbow” of the plot). The three-dimensional model (dis-
persion accounted for = .9907; normalized raw stress =
.0096; and Stress 1 = .09621) was selected to facilitate visu-
alization of the dimensions and to simplify subsequent in-
terpretation. The clusters of similar-sounding speakers
were plotted in the common space revealed by the MDS
in Figures 4A, 4B, and 4C. In Figure 4A, the clusters were
plotted in the two-dimensional space created by the first
two dimensions derived by the MDS. Along the first di-
mension, Cluster 1 (composed mainly of speakers with
Parkinson’s disease) was clearly differentiated from the re-
maining five clusters. Furthermore, Clusters 2, 3, and 6
were well delineated in this space. Some overlap, though,
is noted between Clusters 4 and 5. In Figure 4B, the clus-
ters were plotted in the two-dimension space created by the
first and third dimensions revealed by the MDS. Although
substantial overlap of the clusters is evident in this repre-
sentation of the common space, it is important to note
that Clusters 4 and 5, indistinguishable in the space created
by the first two dimensions, were well delineated by the
third dimension.
Correlation Analysis
A series of correlation analyses was conducted to in-

terpret the abstract dimensions revealed by the MDS. Be-
cause of the large number of acoustic and perceptual
measures considered in this analysis, the dependent vari-
ables that correlated most meaningfully with the dimen-
sions are presented below. It is important to note that
none of the vowel measures correlated significantly with
any of the MDS dimensions. Thus, they will not be dis-
cussed in the following subsections.

Dimension 1 (D1). Across all acoustic and perceptual
variables, there were strong correlations with those mea-
sures related to rate and rhythm (see Tables 4–7 for a full
account of results). Most notably, D1 correlated strongly
with the acoustic measure of articulation rate (r = −.888).
It also demonstrated a strong relationship with a measure
of standard deviation of the durations of vocalic intervals
(DV; r = .739). In addition, several moderate relationships
with the other segmental rhythm metrics were revealed. As
reported in Liss et al. (2009), many of the rhythm metrics
(DV included) demonstrated strong relationships with artic-
ulation rate; therefore, it is not surprising that D1 corre-
lated with the majority of these temporally based measures
of rhythm.
2051–2064 • December 2014



Figure 3. Dendogram derived from the cluster analysis. The dotted line corresponds to the solution selected for the present analysis. The
solid lines demarcate cluster boundaries. One speaker, AM3 (circled in the figure), was not included in subsequent cluster-based analyses
because of his late cluster linking.
As can be seen in Table 5, strong correlations also
were found for envelope modulation spectra (EMS) mea-
sures that can be interpreted relative to articulation rate
(Below 4 at 8000 Hz: r = .809; and strong correlations with
Below 4, Above 4, and Ratio 4 variables derived for most
of the frequency bands). As reported by Liss et al. (2010),
of all the EMS variables, Below 4 at 8000 Hz correlated
most strongly with articulation rate (r = −.862), but rate
was also highly correlated with other 4-Hz variables in
most of the frequency bands.

Conclusive support for D1 capturing articulation
rate was not revealed for the LTAS measures (see Table 6).
The strongest relationships between the LTAS measures
Table 3. Listener derived clusters with members.

Cluster Speakers

1 PDF5, PDF7, PDM8, PDM9, PDM10, PDM12,
PDM13, PDM15, HDM11

2 AF8, AM5, AM8, ALSF8, ALSM4, ALSM8
3 AF1, AF7, AM4, AM6, HDM12
4 AF2, HDM8, HDM10
5 ALSF6, ALSF7, ALSF9, ALSM1, AM1
6 AF9, ALSF2, ALSF5, ALSM7
and D1 occurred for the pairwise variability measures in
the 125-, 250-, and 500-Hz frequency bands. D1 was also
weakly correlated with a few of the measures in the 1000-Hz
band. Unlike EMS, very few of the LTAS measures were
correlated with articulation rate, as would be expected.
However, the LTAS variables that correlated significantly
with D1 were also correlated with articulation rate, provid-
ing indirect support for the articulation rate hypothesis.

D1 was moderately to strongly correlated with all
of the perceptual rating measures obtained from speech-
language pathologists who scaled perceptual features of
the sentences. Despite the strong relationships with the
other perceptual ratings, D1 was not correlated with the
intelligibility data collected for these speakers (see Table 7).
Interestingly, articulation rate was moderately to strongly
correlated with all of the perceptual rating measures
(rs ranging from −.57 to −.78), but it was not correlated
with intelligibility (r = .243). Thus, it is possible that the
relationship between D1 and articulation rate was respon-
sible for the significant relationships between D1 and the
perceptual ratings measures.

Dimension 2 (D2). Of all of the acoustic and percep-
tual variables, D2 was most strongly related to intelligibility
(r = −.646). D2 was also correlated with the perceptual rat-
ings measures of severity, nasality vocal quality, articulatory
Lansford et al.: Free-Classification of Dysarthric Speech 2057



Figure 4. (A) Listener-derived clusters plotted in the perceptual space
created by the first two dimensions derived by multidimensional
scaling (Dimension 1 [D1] and Dimension 2 [D2]). (B) Listener-derived
clusters plotted in the perceptual space created by D1 and Dimension
3 (D3). (C) Listener-derived clusters plotted in the perceptual space
created by D2 and D3.

Table 4. Significant correlations between multidimensional scaling
dimensions and temporal-based measures of rate and rhythm.

Dimension 1 Dimension 2

Variable r Variable r

Rate −.888 nPVI-V −.583
DV .739 %V .536
rPVI-VC .55 VarcoV −.447
VarcoV −.547
rPVI-C .543
nPVI-V −.392
VarcoVC −.368
%V .346

Note. The metrics in the table are rank ordered by level of signif-
icance (all ps < .05). Insignificant correlations are not included.
imprecision, and prosody. The perceptual rating measures
were significantly intercorrelated and were also significantly
correlated with both articulation rate and intelligibility in
this cohort of speakers. Intelligibility and articulation rate,
however, were not correlated.

Like D1, D2 exhibited a few correlations with duration-
based measures related to rate and rhythm, but less robustly.
The strongest correlations from the rhythm metrics included
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a pair of intercorrelated measures of standard deviation of
vocalic intervals that have been rate normalized (normalized
pairwise variability index for vocalic intervals [nPVI-V] and
standard deviation of vocalic intervals divided by mean
vocalic duration × 100 [VarcoV]; r = −.583 and −.447, re-
spectively) and a measure of the proportion of the signal
that is composed of vocalic intervals (percentage of utter-
ance duration composed of vocalic intervals [%V]; r = .536).
These measures were all significantly correlated with intel-
ligibility (absolute r ranging from .395 to .512).

With regard to EMS metrics, D2 correlated signifi-
cantly with many of the same variables that were corre-
lated with the D1, albeit less strongly. A notable deviation
from this pattern of results, however, was the moderate re-
lationships between the D2 and the E3–E6 (energy in the
region of 3–6 Hz) variables in most of the frequency bands.
Interestingly, the E3–E6 variables were not correlated with
D1. Liss et al. (2010) derived these variables largely be-
cause the energy in this region of the spectrum has been
shown to be correlated with intelligibility (Houtgast &
Steeneken, 1985). Indeed, the E3–E6 variables, particularly
in the higher frequency bands (e.g., 4000- and 8000-Hz
bands), were significantly correlated with the intelligibility
data collected for these speakers (e.g., r = .561 and .597,
respectively). It should also be noted that many significant
correlations were found between the EMS variables (par-
ticularly Below 4, After 4, and Ratio 4) and the perceptual
measures, including intelligibility and the ratings of sever-
ity, vocal quality, nasality, articulatory imprecision, and
prosody.

For the LTAS metrics, D2 correlated significantly
with all of the variables in the 4000-Hz band (r ranging
from −.559 to −.623). In addition, slightly less significant
relationships were revealed for the LTAS variables in the
8000-Hz band and D2. All of these LTAS variables were
moderately related to the perceptual measures, including
intelligibility and severity.

Dimension 3 (D3). Overall, D3 generally had weaker
correlations with all acoustic and perceptual measures than
did D1 and D2. None of the duration-based measures of
rate and rhythm correlated significantly with D3. Modest
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Table 5. Significant correlations between multidimensional scaling dimensions and measures of EMS.

Dimension 1 Dimension 2 Dimension 3

Variable r range Variable r range Variable r

Below 4 .391 to .809 E3–E6 −.433 to −.623 Peak amplitude 2000 −.469
Above 4 −.529 to −.731 Peak frequencya .346 to .568 Peak amplitude 1000 −.449
Ratio 4 .539 to .692 Above 4b −.436 to −.568
Peak frequency .41 to .605 Ratio 4 .361 to .602
Peak amplitudec .383 to −.695

Note. Because of the large number of correlated variables, the results for Dimensions 1 and 2 are summarized, and the range of correlation
coefficients is reported. The metrics in the table are rank ordered by level of significance (all ps < .05). Insignificant correlations are not
included.
aNot significant for the 250-Hz band or for the full spectrum. bSignificant correlations found for the 250-, 2000-, 4000-, and 8000-Hz bands.
cSignificant correlations found for the 125-, 250-, 1000-, and 8000-Hz bands and for the full spectrum.
relationships between D3 and an EMS measure of the
dominant modulation rate were revealed for the 1000- and
2000-Hz bands (peak amplitude; r = −.449 and −.469, re-
spectively). Although these metrics are thought to reflect,
in part, speech rhythm, there is no straightforward inter-
pretation in this context. None of the vowel space measures
correlated significantly with D3. However, D3 was signifi-
cantly correlated with all of the LTAS measures in the
8000-Hz band. Although no direct interpretation for the
metrics derived in this octave band exists, it has been dem-
onstrated that the spectral peaks of most English fricatives
are found in the higher frequency bands of the spectrum
(voiceless > voiced; Hughes & Halle, 1956; Jongman,
Waylung, & Wong, 2000; Maniwa, Jongman, & Wade,
2009). In addition, increased energy in high frequency
LTAS (>5000 Hz) has been found for speakers with breathy
vocal quality (Shoji et al., 1992). This finding was cor-
roborated by the results of a recent study that found
the energy in high frequency LTAS for softly produced
speech was relatively greater than that of loudly produced
speech when LTAS for the conditions was normalized
for overall sound pressure level (Monson, Lotto, & Story,
2012).

Of all of the perceptual measures, D3 correlated only
with the rating of vocal quality (r = −.414). Recall that the
combined results of the cluster and MDS analyses demon-
strated that Clusters 4 and 5 were not well delineated by
the first two dimensions (see Figure 4A); however, with in-
clusion of the third dimension, they were separated. A post
hoc analysis (i.e., one-way analysis of variance with multi-
ple comparisons) was conducted to determine whether the
clusters of speakers, particularly Clusters 4 and 5, pos-
sessed significantly different ratings of vocal quality. In-
deed, a main effect, F(5, 31) = 20.838, p < .0001, of cluster
group on vocal quality rating was revealed. Inspection
of the cluster means (see Table 8) revealed speakers be-
longing to Cluster 5 had the highest vocal quality ratings
(M = 1.17, SD = 0.4), and Cluster 4 speakers had the
lowest (M = 0.03, SD = 0.21). Bonferroni-corrected mul-
tiple comparisons demonstrated that the vocal quality
ratings of the Cluster 5 speakers were significantly higher
(meaning more impaired) than those of the other clusters,
with the exception of Cluster 6. Thus, the results of this
post hoc analysis provide some evidence to support inter-
pretation of D3 as one that may capture some aspects of
vocal quality.

Examination of Listener Notes
To assuage the processing and working memory de-

mands placed on the listeners by the free-classification
task, listeners were permitted to take notes as they grouped
together similar-sounding speakers. This afforded an op-
portunity to qualitatively evaluate the perceptual relevance
of the dimensions revealed by the MDS analysis. In total,
21 of the 23 listeners elected to make notations as they
completed the task. We found that 100% of these listeners
mentioned rate and rhythm of speech in their notations.
This finding corresponds with the quantitative results that
demonstrated that metrics capturing rate and rhythm were
significantly correlated with a primary dimension underly-
ing similarity in dysarthria. In addition, approximately
66% of listeners mentioned intelligibility in their notes.
Again, this finding tracks to the results of our quantitative
approach that revealed intelligibility was salient to similar-
ity judgments. The third dimension revealed by MDS was
correlated with the perceptual rating measure of vocal
quality. Indeed, 85.7% of the listeners mentioned vocal
quality characteristics in their notes. Other perceptual fea-
tures mentioned by the listeners included the following:
articulatory imprecision (62%), severity (23.8%), resonance
(23.8%), prosody (23.8%), respiratory differences (19%),
variable loudness (14.3%), pitch breaks (9%), word bound-
ary errors (4.7%), and overall “bizarreness” (4.7%).
Discussion
The contributions of the present study are threefold.

First, results demonstrate proof-of-concept for the use of
an auditory free-classification task in the study of percep-
tual similarity in the dysarthrias. Because the paradigm
does not rely on a predetermined set of clustering variables,
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Table 6. Significant correlations between multidimensional scaling
dimensions and measures of LTAS.

Dimension 1 Dimension 2 Dimension 3

Variable r Variable r Variable r

PV125 −.583 nsd4000 −.623 N1RMS8000 −.493
PV250 −.52 N1RMS4000 −.599 nsd8000 −.474
PV500 −.517 PV4000 −.582 PV8000 −.447
N1RMS1000 .383 nRng4000 −.559 nRng8000 −.446
nRng1000 .377 PV8000 −.496
nsd1000 .367 nsd8000 −.462

N1RMS8000 −.451
nRng8000 −.419

Note. The metrics in the table are rank ordered by level of sig-
nificance (all ps < .05). Insignificant correlations are not included.
PV = pairwise variability.
listeners cluster by whatever similarities are salient to them.
Until now it was not known whether dysarthria was ame-
nable to free-classification by judges with minimal experience
with dysarthria. The second contribution is the demon-
stration that the clusters were made along three dimensions
and that these dimensions corresponded with independent
acoustic and perceptual measures. The third contribution
is that the results of this perceptual similarity task tran-
scended dysarthria subtype diagnoses, providing support for
the notion that the paradigm may provide clusters more
closely linked with the nature of the communication disorder.
These contributions and some of their limitations are detailed
below.
Proof-of-Concept
Free-classification methods have been used to in-

vestigate perceptual similarity of environmental sounds
(Guastavino, 2007; Gygi, Kidd, & Watson, 2007), musical
themes (McAdams, Vieillard, Houix, & Reynolds, 2004),
and American-English regional dialects (Clopper &
Bradlow, 2009; Clopper & Pisoni, 2007). To our knowl-
edge, perceptual similarity has not been previously directly
assessed in the dysarthrias. Therefore, it was necessary
to determine the appropriateness of free-classification
techniques in the investigation of perceptual similarity in
dysarthria. A feature of free-classification that made it
appealing for the current study is that it liberates partici-
pants from experimenter-defined categories. For example,
Clopper and Pisoni (2007) found that in using a free-
classification task to investigate regional American-English
dialects, listeners were able to make finer distinctions be-
tween dialectal speech patterns when specific labels were
not experimenter imposed. The ability of the statistical
analyses to adequately model the similarity data in concert
with the finding that the perceptual dimensions under-
lying similarity correlated meaningfully with acoustic and
perceptual metrics supports the use of free-classification
methodology as a viable tool for the study of perceptual
similarity in dysarthria.
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In this initial assessment of perceptual similarity in
dysarthria, it was necessary to make a variety of methodo-
logical decisions that were undoubtedly contributors to
the cluster outcomes. Our targeted listeners were graduate
students in communication disorders with basic familiarity
with dysarthrias and the Mayo classification scheme—but
with limited clinical exposure. We selected this group of
listeners because they were expected to have more finely
honed perceptual judgment skills than truly naïve partici-
pants, but they were expected to have less honed skills
than those of clinicians experienced in the Mayo Clinic
approach to differential diagnosis of dysarthria. Although
supported by intuition, this assumption must be verified in
the context of experimental design. To identify ecologically
valid parameters contributing to similarity, it will be im-
portant to explore how listener variables—such as clinical
sophistication, experience/exposure, perceptual astuteness/
awareness, or even listening strategies—influence judg-
ments of perceptual similarity. Toward this end, clustering
data elicited from practicing speech-language pathologists
on these same stimuli are presently being analyzed, the
results of which will partially inform this question.

A second methodological decision was to use speech
samples, specifically a single sentence, from speakers who
ranged in speech impairment from moderate to severe and
who were selected in a larger investigation because their
speech exhibited perceptual characteristics associated with
their dysarthria subtype diagnosis. There is every reason
to believe that clustering decisions were influenced by both
the speech sample used in the task and the constellation
of speakers to be clustered, as this is a comparative task.
Thus, it will be critical in future studies to assess the stabil-
ity of perceptual decisions for a given speaker across a va-
riety of speech samples and across groups that vary in
speaker composition. Optimally, a free-classification para-
digm will reveal the most perceptually salient parameters
for any given group of speakers, irrespective of speech
sample material, and that individual members of the clus-
ters will be similar on these parameters. Computational
modeling methods conducted on sets of clustering data will
be important for establishing characteristics that influence
judgment stability.

Interpretability of the Dimensions
Underlying Similarity

MDS of the similarity data uncovered a minimum of
three salient perceptual dimensions underlying similarity in
this cohort of speakers. In addition, the similarity-based
clusters of speakers were well delineated in these dimen-
sions (see Figure 4). The results of the correlation analyses,
which compared the abstract MDS dimensions with a host
of acoustic and perceptual measures, provided important
information that facilitated their interpretation. The inter-
pretations of the first two dimensions were fairly straight-
forward: D1 correlated strongly with measures capturing
articulation rate, and D2 correlated with measures captur-
ing overall intelligibility. Interpretation of D3 was less
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Table 7. Significant correlations between multidimensional scaling dimensions and perceptual measures of intelligibility, severity, vocal
quality, nasality, articulatory imprecision, and prosody.

Dimension 1 Dimension 2 Dimension 3

Variable r Variable r Variable r

Vocal quality .716 Intelligibility −.646 Vocal quality −.414
Severity .702 Severity .632
Nasality .632 Prosody .624
Articulatory precision .544 Articulatory precision .622
Prosody .544 Nasality .55

Vocal quality .434

Note. The metrics in the table are rank ordered by level of significance (all ps < .05). Insignificant correlations are not included.
clear; however, results of a post hoc analysis demonstrated
it is probably related to vocal quality characteristics. A
number of features included in the listeners’ notations (e.g.,
pitch breaks and resonance) were not revealed as contrib-
uting to similarity by the quantitative approaches used
in the present analysis. It is important to note that the sta-
tistical techniques used in this investigation were largely
linear, and it is likely that listeners’ judgments of similarity
are not always amenable to such approaches (e.g., poten-
tial binary decisions made by listeners regarding the ab-
sence or presence of a perceptual feature in a speaker or
cluster of speakers). Thus, alternative techniques (e.g., lo-
gistic regression) should be considered as this line of re-
search progresses. In addition, although a large number of
acoustic and perceptual features were considered in this
preliminary step, it was in no way exhaustive. The percep-
tual ratings of severity, vocal quality, nasality, articulatory
imprecision, and prosody were useful in this analysis but
are subjective and vulnerable to poor intra- and interrater
reliability (e.g., Kreiman & Gerratt, 1988). Bunton, Kent,
Duffy, Rosenbek, and Kent (2007) investigated intrarater
and interrater agreement for the Mayo Clinic system’s per-
ceptual indicators (i.e., the 38 dimensions of speech and
voice originally outlined by the Mayo Clinic) and found lis-
tener agreement to be highest when ratings of each dimen-
sion were at the endpoints of a 7-point scale (e.g., normal or
very severe deviation from normal). In other words, there
was greater variability in listener agreement in the middle
of the scale. Thus, a rating scale that denotes the absence or
presence of a perceptual feature may prove useful in subse-
quent investigations of similarity in dysarthria.
Table 8. Mean vocal quality ratings (z-score normalized) for each
similarity-based cluster.

Cluster N M SD

1 9 −0.7463 0.4015
2 6 0.0413 0.3566
3 5 −0.5418 0.2325
4 3 0.0292 0.2114
5 5 1.1699 0.4013
6 4 0.7066 0.786
Relationship Between Dysarthria Diagnosis
and Similarity-Based Clusters

Given that the speakers used in this investigation
were recruited because their speech exhibited the hallmark
characteristics of their dysarthria diagnosis, one might
expect that perceptual clustering would mirror dysar-
thria subtype more often than not. With the exception of
Cluster 1, which was composed primarily of speakers with
hypokinetic dysarthria with intact or fast speaking rate,
this generally did not occur. Thus, the results of this anal-
ysis suggest that if we had sampled a random group of
speakers with dysarthria (i.e., without selection of speakers
on the basis of perceptual features or dysarthria diagnosis),
a similarity-clustering paradigm would be successful in
identifying speakers with common acoustic speech features.
However, it is important to note that although the clusters
were not constrained by dysarthria subtype, influence of
disease process on perceived acoustic similarity was evident.
For example, Clusters 2–6, each composed of a mixture of
speakers with hyperkinetic, ataxic, or mixed flaccid-spastic
dysarthria, were well distinguished along the intelligibility
dimension (D2). Examination of the speakers’ severity
ratings revealed that all speakers belonging to Clusters 2
and 3, represented at one end of the D2/intelligibility con-
tinuum, were diagnosed with moderate dysarthria, and at
the other end of the continuum was Cluster 6, composed of
four speakers with severe dysarthria. Further evidence of
disease process on listeners’ judgments of similarity can be
found for Clusters 4 and 5. Recall, Clusters 4 and 5 blurred
along the first two dimensions but were differentiated by
the third/vocal quality dimension, and the results of the
post hoc analysis discussed in the Results section suggested
that Cluster 5 speakers had more abnormal vocal quality
than Cluster 4 speakers. Cluster 5 was composed of one
speaker with ataxic dysarthria and four speakers with
mixed dysarthria (secondary to amyotrophic lateral scle-
rosis), and Cluster 4 was composed of a single speaker
with ataxic dysarthria and two speakers with hyperkinetic
dysarthria. Given that strained-strangled vocal quality is
a hallmark of mixed flaccid-spastic dysarthria and that
these speakers were recruited because of the presence of
such characteristics, it follows that vocal quality abnormali-
ties would be greater for Cluster 5 than for Cluster 4.
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The results of the present analysis are consistent with
a taxonomical approach to dysarthria diagnosis, which has
been offered as an alternative to classification (Weismer
& Kim, 2010). Weismer and Kim (2010) proposed a tax-
onomical approach to studying dysarthria subtypes, in
which the goal is to identify a core set of deficits (i.e., simi-
larities) common to most, if not all, speakers with dysar-
thria. With respect to the present report, identification of
perceptual similarities among dysarthric speech would fa-
cilitate (a) the detection of differences that reliably distin-
guish different types of motor speech disorders irrespective
of damaged component of motor control and (b) system-
atic investigation of the perceptual challenges associated
with the defining features of dysarthria. Indeed, the acous-
tic and perceptual dimensions underlying similarity in this
cohort of speakers—speaking rate, intelligibility, and vocal
quality—are speech features that generally unite speakers
with dysarthria. Thus, the present investigation represents
the first phase of research that explores the use of a taxo-
nomical approach to understanding and defining dysar-
thria. The results of the cluster analysis, which identified
six clusters of similar-sounding speakers, were experi-
menter defined. This solution was selected largely because
it reflected the mean number of speaker groups identified
by the listeners. However, before all six clusters were
united into a single group, Clusters 2 and 3 merged, as did
Clusters 4, 5, and 6, forming three discrete groups (see
Figure 3). Uncovering the acoustic and perceptual features
that unite a more parsimonious clustering of speakers is
the goal in developing a taxonomical approach. Thus, as
this line of research advances, realization of this goal will
become requisite.

Conclusion
Results of the present investigation reveal (a) feasibil-

ity of a free-classification approach for studying perceptual
similarity in dysarthria, (b) correspondence between acous-
tic and perceptual metrics to clusters of similar-sounding
speakers, and (c) impressions of perceptual similarity trans-
cended dysarthria subtype. Together, these findings sup-
port future investigation of the link between perceptual
similarities and the resulting communication disorders and
targets for interventions.
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Appendix

Pooled speaker similarity matrix.
Speaker 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

AF1 0 0 14 8 0 2 4 6 0 6 9 1 1 1 4 2 3 3 3 1 2 0 6 10 3 8 0 1 1 2 0 0 0
AF2 0 0 2 4 8 7 6 3 5 2 4 3 4 5 4 5 3 3 7 4 5 11 0 1 7 1 1 0 0 1 1 0 0
AF7 14 2 0 6 1 3 5 8 2 8 7 0 1 0 3 4 1 1 2 1 7 0 9 12 1 4 0 1 1 2 0 0 0
AF8 8 4 6 0 0 7 6 7 10 6 12 2 1 5 9 8 6 7 9 1 8 3 2 11 4 4 0 1 0 2 0 0 0
AF9 0 8 1 0 0 3 1 2 2 2 0 9 11 5 3 3 3 1 3 10 2 7 2 1 2 2 1 2 2 1 0 2 2
AM1 2 7 3 7 3 0 8 1 7 4 3 6 3 13 8 5 11 10 5 2 6 3 1 0 4 3 0 1 0 0 0 1 1
AM3 4 6 5 6 1 8 0 3 4 2 5 3 1 5 4 3 3 6 3 1 2 3 2 2 5 0 2 2 2 3 1 1 2
AM4 6 3 8 7 2 1 3 0 6 12 6 1 1 2 4 3 1 2 3 1 5 4 5 13 4 4 1 0 1 0 2 1 1
AM5 0 5 2 10 2 7 4 6 0 8 7 1 4 2 4 15 6 4 8 2 15 6 0 7 4 0 1 0 0 2 0 0 0
AM6 6 2 8 6 2 4 2 12 8 0 6 0 2 1 7 6 2 3 5 1 12 3 4 9 4 3 0 1 1 2 0 0 0
AM8 9 4 7 12 0 3 5 6 7 6 0 1 0 3 5 6 4 4 11 1 6 4 3 10 6 5 0 1 1 3 0 0 0
ALSF2 1 3 0 2 9 6 3 1 1 0 1 0 15 10 1 1 6 5 1 19 0 1 0 0 2 1 0 0 0 0 0 0 0
ALSF5 1 4 1 1 11 3 1 1 4 2 0 15 0 5 4 3 6 3 2 19 4 3 0 1 2 0 0 0 0 0 1 0 0
ALSF6 1 5 0 5 5 13 5 2 2 1 3 10 5 0 7 1 10 11 4 6 0 2 0 0 2 3 0 0 0 0 0 0 0
ALSF7 4 4 3 9 3 8 4 4 4 7 5 1 4 7 0 7 10 11 9 3 7 2 0 2 5 3 0 1 0 1 1 0 0
ALSF8 2 5 4 8 3 5 3 3 15 6 6 1 3 1 7 0 5 2 7 3 14 4 1 8 4 0 1 0 0 1 0 0 0
ALSF9 3 3 1 6 3 11 3 1 6 2 4 6 6 10 10 5 0 10 5 6 3 5 0 1 3 2 0 0 0 1 0 0 0
ALSM1 3 3 1 7 1 10 6 2 4 3 4 5 3 11 11 2 10 0 6 2 4 3 0 3 4 5 0 1 0 1 0 0 0
ALSM4 3 7 2 9 3 5 3 3 8 5 11 1 2 4 9 7 5 6 0 1 9 4 5 4 4 5 1 1 1 1 1 2 2
ALSM7 1 4 1 1 10 2 1 1 2 1 1 19 19 6 3 3 6 2 1 0 1 2 0 1 2 0 0 0 0 0 0 0 0
ALSM8 2 5 7 8 2 6 2 5 15 12 6 0 4 0 7 14 3 4 9 1 0 5 1 5 6 0 0 1 0 2 1 0 0
HDM10 0 11 0 3 7 3 3 4 6 3 4 1 3 2 2 4 5 3 4 2 5 0 1 2 11 0 0 0 1 2 1 0 0
HDM11 6 0 9 2 2 1 2 5 0 4 3 0 0 0 0 1 0 0 5 0 1 1 0 7 2 9 5 3 3 3 3 6 6
HDM12 10 1 12 11 1 0 2 13 7 9 10 0 1 0 2 8 1 3 4 1 5 2 7 0 2 5 1 2 1 1 1 1 0
HDM8 3 7 1 4 2 4 5 4 4 4 6 2 2 2 5 4 3 4 4 2 6 11 2 2 0 0 0 1 1 3 2 0 0
PDF5 8 1 4 4 2 3 0 4 0 3 5 1 0 3 3 0 2 5 5 0 0 0 9 5 0 0 6 6 6 5 5 7 7
PDF7 0 1 0 0 1 0 2 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 5 1 0 6 0 19 16 13 20 22 19
PDM10 1 0 1 1 2 1 2 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 3 2 1 6 19 0 17 16 18 19 18
PDM12 1 0 1 0 2 0 2 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 3 1 1 6 16 17 0 16 16 16 18
PDM13 2 1 2 2 1 0 3 0 2 2 3 0 0 0 1 1 1 1 1 0 2 2 3 1 3 5 13 16 16 0 12 13 15
PDM15 0 1 0 0 0 0 1 2 0 0 0 0 1 0 1 0 0 0 1 0 1 1 3 1 2 5 20 18 16 12 0 21 19
PDM8 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 6 1 0 7 22 19 16 13 21 0 20
PDM9 0 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 6 0 0 7 19 18 18 15 19 20 0

Note. The frequency with which each pair of speakers was judged to be similar by listeners is shown in each cell. This matrix was used to
conduct the cluster and multidimensional scaling analyses. A = ataxia; F = female; M = male; ALS = amyotrophic lateral sclerosis; HD =
Huntington’s disease; PD = Parkinson’s disease.
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