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Abstract

Resistance to pharmacological treatments is a major public health challenge. Here we introduce 

RESISTOR—a structure- and sequence-based algorithm that prospectively predicts resistance 

mutations for drug design. RESISTOR computes the Pareto frontier of four resistance-causing 

criteria: the change in binding affinity (ΔKa) of the (1) drug and (2) endogenous ligand upon 

a protein’s mutation; (3) the probability a mutation will occur based on empirically derived 

mutational signatures; and (4) the cardinality of mutations comprising a hotspot. For validation, 

we applied RESISTOR to EGFR and BRAF kinase inhibitors treating lung adenocarcinoma and 

melanoma. RESISTOR correctly identified eight clinically significant EGFR resistance mutations, 
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including the erlotinib and gefitinib “gatekeeper” T790M mutation and five known osimertinib 

resistance mutations. Furthermore, RESISTOR predictions are consistent with BRAF inhibitor 

sensitivity data from both retrospective and prospective experiments using KinCon biosensors. 

RESISTOR is available in the open-source protein design software OSPREY.

1. Introduction

Acquired resistance to therapeutics is a pressing public health challenge that affects maladies 

from bacterial and viral infections to cancer (Centers for Disease Control and Prevention, 

2020; Housman et al., 2014; Zahreddine and Borden, 2013; Assaraf et al., 2019; Gupta 

et al., 2012; Vasan et al., 2019). There are several different ways cancer cells acquire 

resistance to treatments, including drug inactivation, drug efflux, DNA damage repair, cell 

death inhibition, and escape mutations, among others (Housman et al., 2014). Accurate, 

prospective prediction of resistance mutations could allow for design of drugs that are less 

susceptible to resistance. While it is unlikely that medicinal chemists will be able to address 

all of the resistance-conferring mechanisms in cancer cells, progress can be made by the 

incorporation of increasingly accurate models of the above contributing factors to acquired 

resistance, leading to the development of more durable therapeutics. To that end, several 

structure-based computational techniques for therapeutic design and resistance prediction 

have been proposed.

One such technique is based on the substrate-envelope hypothesis. In short, the substrate-

envelope hypothesis states that drugs designed to have the same interactions as the 

endogenous substrate in the active site will be unlikely to lose efficacy because any mutation 

that ablates binding to the drug would also ablate binding to the endogenous substrate 

(Altman et al., 2008). C. Schiffer and B. Tidor’s labs developed the substrate-envelope 

hypothesis for targeting drug-resistant HIV strains (Prabu-Jeyabalan et al., 2002; King et al., 

2004; Altman et al., 2008; Shen et al., 2013). Their design technique has been successfully 

applied to develop compounds with reduced susceptibility to drug-resistant HIV proteases 

(Shen et al., 2013).

Another computational technique is to use ensemble-based positive and negative design 

(Frey et al., 2010; Gainza et al., 2016). There are two specific ways that point mutations can 

confer resistance to therapeutics: they can decrease binding affinity to the therapeutic or they 

can increase binding to the endogenous ligand (Frey et al., 2010; Reeve et al., 2015). Protein 

design with the goal of decreasing binding is known as negative design, and increasing 

binding is known as positive design. As a concrete example, consider the case of a drug that 

inhibits the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) to treat 

lung adenocarcinoma. Here, an active site mutation could sterically prevent the inhibitor 

from entering the active site (Yan et al., 2017). On the other hand, a different mutation might 

have no effect on an enzyme’s interactions with the drug but instead increase affinity to its 

native ligands, resulting in increased phosphorylization of downstream substrates (Yun et al., 

2008; Yoshikawa et al., 2013). Because these two distinct pathways to therapeutic resistance 

exist, it is necessary to predict resistance mutations using both positive and negative design. 
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In other words, predicting resistance can be reduced to predicting a ratio of the change in Ka 

upon mutation of the protein:endogenous ligand and protein:drug complexes.

Ka is an equilibrium constant measuring the binding and unbinding of a ligand to a receptor. 

It is defined as:

Ka = kon
koff

= [RL]
[R] [L] , (1)

where kon and koff are the on- and off-rate constants, and [RL], [R], and [L] the 

equilibrium concentrations of, respectively, the receptor-ligand complex, unbound receptor, 

and unbound ligand. Ka is the reciprocal of the disassociation constant Kd. K* is an 

algorithm implemented in the OSPREY computational protein design software that provably 

approximates Ka (Georgiev et al., 2008; Hallen et al., 2018). It is defined as the quotient 

of the bound (complex) to unbound (apo protein and apo ligand) partition functions of a 

protein:ligand system. See the STAR methods for further details on the K* algorithm.

Our lab developed a provable, ensemble-based method using positive and negative K* 

design to computationally predict and experimentally validate resistance mutations in 

protein targets (Frey et al., 2010). We then applied this methodology to prospectively predict 

resistance mutations in dihydrofolate reductase when Staphylococcus aureus was treated 

with a novel antifolate (Reeve et al., 2015), which we later confirmed in vivo (Reeve et al., 

2015, 2016), demonstrating the utility of correctly predicting escape mutations during the 

drug discovery process.

From these previous works, it is clear that multiple criteria must be combined to decide 

whether a mutation confers resistance. Often it is the human designers themselves who must 

choose arbitrary weights for different criteria. Yet multi-objective, or Pareto, optimization 

techniques would allow designers to combine multiple criteria without choosing arbitrary 

decision thresholds. Pareto optimization for protein design has been employed by Chris 

Bailey-Kellogg, Karl Griswold, and co-workers (Parker et al., 2013; Choi et al., 2013; Salvat 

et al., 2015; Griswold and Bailey-Kellogg, 2016; Choi et al., 2016; Salvat et al., 2017). 

One such example is PEPFR (Protein Engineering Pareto FRontier), which enumerates 

the entire Pareto frontier for a set of different criteria such as stability vs. diversity, 

affinity vs. specificity, and activity vs. immunogenicity (He et al., 2012). Algorithmically, 

PEPFR combined divide-and-conquer with dynamic or integer programming to achieve an 

algorithm where the number of divide-and-conquer “divide” steps required for the search 

over design space is linear only in the number of Pareto optimal designs. Being dependent 

on multiple criteria, a multi-objective optimization method that ranks solutions, such as 

Pareto optimization, is particularly suitable for resistance predictions.

Instead of merely finding a single solution optimizing a linear combination of functions, 

Pareto optimization finds all consistent solutions optimizing multiple objectives such that 

no solution can be improved for one objective without making another objective worse. 

Specifically, let Λ be the set of possible solutions to the multi-objective optimization 

problem, and let λ ∈ Λ. Let F be a set of objective functions and f ∈ F, where f :Λ ℝ is 

one objective function. A particular solution λ is said to dominate another solution λ′ when
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f(λ) ≤ f(λ′) for all f ∈ F , and (2)

g(λ) < g(λ′) for at least one g ∈ F . (3)

A solution λ is Pareto optimal if it is not dominated. RESISTOR combines ensemble-based 

positive and negative design, cancer-specific mutational signature probabilities, and hotspots 

to identify not only the Pareto frontier, but also the Pareto ranks of all candidate sequences.

The inclusion of mutational signature probabilities in Pareto optimization is possible 

because distinct mutational processes are operating in different types of cancers (Alexandrov 

et al., 2013, 2020). Specifically, these mutational processes drive the type and frequency 

of DNA base substitutions. Alexandrov et al. (2013) postulated each signature to be 

associated with a biological process (such as ABOPEC activity) or a causative agent (such 

as tobacco use), although not all associations are definitively known. What is certain is that 

particular signatures tend to appear in particular types of cancer. For example, 12 single-base 

substitution signatures, 2 double-base substitution signatures, and 7 indel signatures were 

found in a large set of melanoma samples, with many of those signatures associated with 

ultraviolet light exposure (Alexandrov et al., 2020). Building on the work of Alexandrov 

et al. (2013), Kaserer and Blagg (2018) combined the multiple signatures found in each 

cancer type to generate overall single-base substitution probabilities. RESISTOR uses these 

probabilities to compute the overall probability that mutation events will occur in a gene 

independent of changes to protein fitness. This amino acid mutational probability is one of 

the axes we optimize over.

The most computationally complex part of provable, ensemble-based multistate design 

entails computing the K* scores of the different design states. This is largely because 

for biological accuracy it is necessary to use K* with continuous sidechain flexibility 

(Gainza et al., 2012; Qi et al., 2018). Though OSPREY has highly-optimized GPU routines 

for continuous flexibility (Hallen et al., 2018), energy minimization over a combinatorial 

number of sequences in a continuous space is, in practice, computationally expensive. 

Having a method to reduce the number of sequences evaluated would greatly decrease the 

computational cost. COMETS is an empirically sublinear algorithm that provably returns the 

optimum of an arbitrary combination of multiple sequence states (Hallen and Donald, 2016). 

RESISTOR uses COMETS to prune sequences whose predicted binding with the drug improves 

and binding with the endogenous ligand deteriorates. While COMETS does not compute the 

full partition function, it provides a useful method to efficiently prune a combinatorial 

sequence space, for example when investigating resistant protein targets with more than 

one resistance mutation. By virtue of pruning using COMETS, RESISTOR inherits the empirical 

sublinearity characteristics of the COMETS sequence search, rendering RESISTOR sublinear in 

the size of the sequence space.

The tyrosine kinase EGFR and serine/threonine-protein kinase BRAF are two oncogenes 

associated with, respectively, lung adenocarcinoma and melanoma. Both kinases are 

conformationally flexible, but two conformations are particularly determinative to their 
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kinase activity—the “active” and “inactive” conformations. Oncogenic mutations to EGFR 

include L858R and deletions in exon 19, both of which constitutively activate EGFR 

(Harrison et al., 2020; Lynch et al., 2004). Likewise, V600E is the most prevalent 

constitutively activating mutation in BRAF (Davies et al., 2002). Numerous drugs have 

been developed to treat the EGFR L858R and BRAF V600E mutations. The first generation 

inhibitors erlotinib and gefitinib competitively inhibit ATP binding in EGFR’s active site, 

whereas binding by the third generation osimertinib is irreversible (Dowell et al., 2005; 

Herbst et al., 2004; Soria et al., 2018). For BRAF, the therapeutics dabrafenib, vemurafenib, 

and encorafenib were designed to target the V600E mutation and are in clinical use, and 

PLX8394 is in clinical trials (Ballantyne and Garnock-Jones, 2013; Bollag et al., 2012; 

Shirley, 2018; Janku et al., 2020). Use of RESISTOR to predict resistance mutations to these 

drugs would provide strong validation of the efficacy of this approach.

By presenting RESISTOR, this article makes the following contributions:

1. A multi-objective optimization algorithm that combines four axes of resistance-

causing criteria to rank candidate mutations.

2. The use of COMETS as a provable and empirically sublinear pruning algorithm 

that removes a combinatorial number of candidate sequences before expensive 

ensemble evaluation.

3. A validation of RESISTOR that correctly predicted eight clinically significant 

resistance mutations in EGFR, providing explanatory ensemble-bound structural 

models for acquired resistance.

4. Prospective predictions with explanatory structural models and experimental 

validation of resistance mutations for four drugs targeting BRAF mutations in 

melanoma.

5. Newly modelled structures of EGFR and BRAF bound to their endogenous 

ligands and inhibitors in cases where no experimental structures exist.

6. An implementation of RESISTOR in our laboratory’s free and open source 

computational protein design software OSPREY Hallen et al. (2018).

2. Results

2.1. Overview of RESISTOR

The Pareto optimization in RESISTOR optimizes four axes: structure-based positive design, 

structure-based negative design, sequence-based mutational probabilities, and the count of 

resistance-causing mutations at a given amino acid location. Briefly, we chose these four 

criteria because they identify mutations that 1) increase affinity to the endogenous ligand 

in such a way that it outcompetes the inhibitor; 2) decrease the efficacy of the drug 

by reducing its binding (leading to the same effect); 3) are predicted to occur based on 

the DNA sequence and excludes those that are unlikely to arise; and, 4) are located at 

residue positions where many mutations are predicted to confer resistance, thus identifying 

a position of relative importance. We believe these criteria to be the minimal requirements a 

cancer clone must fulfill to confer resistance, and we’ve had success predicting retrospective 
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and prospective resistance mutations in a previous study using these four criteria (Kaserer 

and Blagg, 2018).

In our earlier study, we prioritized potential resistance mutants by first applying four 

sequence- and structure-based filtering steps and then pruning the remaining predicted 

resistance mutations by a) chosing the three residue locations with the highest hotspot 

cardinality (see Section 2.4), and b) ranking the individual amino acids within the hotspots 

by their mutational probability (Kaserer and Blagg, 2018). In other words, we ranked 

resistance candidates by two criteria: their hotspot cardinality and mutational probability. 

With RESISTOR hotspot cardinality instead becomes one of the Pareto objectives. Our 

earlier work used the positive and negative design K* scores as a binary resistance filter 

(Kaserer and Blagg, 2018); here we use them first as a filter and then as two additional 

Pareto optimization objectives. This allows RESISTOR to use thermodynamic predictions not 

only in a binary, qualitative manner (i.e., whether the ratio of K* positive and negative 

designs indicates resistance) but also in a quantitative manner (i.e. the magnitude of the 

affinity-driven resistance). Finally, RESISTOR also transforms mutational probability from the 

final ranking criteria to one of the four Pareto objectives. In summary, RESISTOR’s Pareto 

optimization objective function simultaneously maximizes the ΔKa of the positive design 

(the protein bound to the endogenous ligand), minimizes the ΔKa of the negative designs 

(the protein bound to the drug), maximizes the mutational probability, and maximizes the 

count of resistance-causing mutations per amino acid. Fig. 1 shows an overview how these 

axes are implemented in our algorithm. It should be mentioned that, as a generalizable 

method, additional resistance-causing criteria could be trivially added to RESISTOR for further 

refinement.

2.2. Structure-based Positive and Negative Design

We use the K* algorithm in OSPREY to predict an ε-accurate approximation to the binding 

affinity (Ka) in four states: 1) the wildtype structure bound to the endogenous ligand; 2) 

the wildtype structure bound to the therapeutic; 3) the mutated structure bound to the 

endogenous ligand; and 4) the mutated structure bound to the therapeutic. This ε-accurate 

approximation is called the K* score (Georgiev et al., 2008; Hallen et al., 2018). In 

order to calculate the K* score of a protein:ligand complex, it is necessary to have a 

structural model of the atomic coordinates. Experimentally-determined complexes have been 

solved for EGFR bound to an analog of its endogenous ligand (PDB id 2itx), to erlotinib 

(1m17), gefitinib (4wkq), and to osimertinib (4zau) (Yun et al., 2007; Stamos et al., 2002; 

Yosaatmadja et al., 2014, 2015). Similarly, we used the crystal structure for BRAF bound 

to dabrafenib (4xv2) and vemurafenib (3og7) (Zhang et al., 2015; Hodis et al., 2012). 

Experimentally-determined complexes of BRAF bound to encorafenib, PLX-8394, and an 

ATP analog in an active conformation do not exist, so we instead modelled the ligands 

into BRAF in its activated conformation (for additional details on model selection and 

preparation see the STAR methods). We used these predicted complex structures for our 

resistance predictions.

We added functionality to OSPREY that simplifies the process of performing computational 

mutational scans. A mutational scan refers to the process of computing the K* score of every 
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possible amino acid mutation within a radius of a ligand. RESISTOR uses this functionality 

to create the initial set of candidate mutant sequences by selecting and computing the K* 

scores for each amino acid within a 5 Å radius of the drug or the endogenous ligand. 

This generated a search space of 2471 sequences. We then set all residues with sidechains 

within 3 Å of the mutating residue to be continuously flexible for the RESISTOR K* designs. 

Each sequence has an associated conformation space size dependent on the total number 

of mutable and flexible residues, which one can use as a heuristic to estimate the difficulty 

of computing a complex’s partition function. The average conformation space size of each 

sequence was ~5.9 × 1010 conformations, thus computing the partition functions is only 

possible using OSPREY’s pruning and provable ε-approximation algorithms (Gainza et 

al., 2012; Hallen et al., 2018; Jou et al., 2020). Empirical runtimes of the positive- and 

negative-K* designs are shown in the STAR methods. The change in the K* score upon 

mutation for the endogenous ligand (positive design) and drug (negative design) become 

two of the four axes of optimization. These two axes also form the basis of a pruning step 

(described in Section 2.5).

2.3. Computing the Probability of Amino Acid Mutations

To convert the trinucleotide to trinucleotide probabilities into amino acid to amino acid 

mutational probabilities, RESISTOR constructs a directed graph with the trinucleotides as 

nodes and the probability that one trinucleotide mutates into another trinucleotide as 

directed edges. It then reads the cDNA of the protein in a sliding window of 5′ - and 

3′ -flanked codons, since the two DNA bases flanking a codon are necessary to determine 

the probabilities of either the first or third base of a codon mutating. We designed a recursive 

algorithm to traverse the graph and find all codons that can be reached within n single-base 

mutations, where n is an input parameter. The algorithm then translates the target codons 

into amino acids and, as a final step, sums the different probabilities on each path to an 

amino acid into a single amino acid mutational probability (see Fig. 1F-I). One can either 

(a) precompute a cancer-specific codon-to-codon lookup table consisting of every 5′ - and 

3′ -flanked codon to its corresponding amino acid mutational probabilities, or (b) read in a 

sequence’s cDNA and compute the mutational probabilities on the fly. The benefit of (a) is 

it only needs to be done once per cancer type and can be used on an arbitrary number of 

sequences. On the other hand, when assigning mutational probabilities to proteins that have 

strictly fewer than 45 amino acids, it is faster to compute the amino-acid specific mutational 

signature on the fly. In both cases, the algorithm is strictly polynomial and bounded by 

O(kn9), where k is the number of codons with flanking base pairs (upper-bounded by 

45) and n is the number of mutational steps allowed, which in the case of RESISTOR is 2. 

An implementation of this algorithm is included in the free and open source OSPREY 

repository on GitHub (Hallen et al., 2018).

2.4. Identifying Mutational Hotspots

After calculating the positive and negative change in affinity ΔKa and determining the 

mutational probability of each amino acid, RESISTOR prunes the set of candidate mutations 

(see section 2.5). Post-pruning, it counts the number of mutations at each amino acid 

location. This count is necessary to determine whether a residue location is likely to become 

a “mutational hotspot”, namely a residue location where many mutations are predicted to 
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confer resistance. Correctly identifying mutational hotspots is vital because they indicate 

that a drug is dependent on the wildtype identity of the amino acid at that location, and it is 

likely that many mutations away from that amino acid will cause resistance. Consequently, 

the fourth axis used in RESISTOR’s Pareto optimization is the count of predicted resistance-

conferring mutations per residue location, termed hotspot cardinality.

2.5. Reducing the Positive Prediction Space

Prior to carrying out the multi-objective optimization to identify predicted resistance 

mutations, we prune the set of candidates. First, we introduce a cut-off based on the ratio of 

K* scores of positive and negative designs, an adaption from Kaserer and Blagg (2018). We 

determine the average of the K* scores for the drug and endogenous ligand across all of the 

wildtype designs for the same protein. The cut-off c is:

c =
c0KL

∗

KD
∗ , (4)

where c0 is a user-specified constant, KL
∗  is the average of the K* scores for the wildtype 

protein bound to the endogenous ligand, and KD
∗  is the average of the K* score for the 

wildtype protein bound to the drug. We recommend in practice to set c0 to be greater than 

the range (Kmax
∗ − Kmin

∗ ) of wildtype K* scores—we set it to 100 for the tyrosine kinase 

inhibitor (TKI) predictions.2 A mutation m is predicted to be resistant when:

KL
∗ (m)

KD
∗ (m)

> c, (5)

where KL
∗ (m) is the K* score of the endogenous ligand bound to the mutant, and KD

∗ (m) is the 

K* score of the drug bound to the mutant.

We also prune mutations predicted to completely ablate endogenous ligand binding, i.e., 

the predicted K* score of the protein and endogenous ligand is 0, because such a mutation 

renders a critical protein non-functional. This is particularly detrimental to a cancer cell, 

which relies heavily on the activity of a protein. We lastly prune the predicted resistance 

mutation candidates by removing all mutations that cannot arise within two DNA base 

substitutions. Whether an amino acid can be reached within two DNA base substitutions is 

determined by the algorithm described in section 2.3, and if it cannot, then that particular 

mutation is assigned a mutational probability of 0 and pruned.

2.6. RESISTOR Identifies 8 Known Resistance Mutations in EGFR

We evaluated a total of 1257 sequences across the three TKIs for EGFR. Among these 

sequences, the average conformation space size for computing a complex’s partition 

function was ~1.3 × 107. After we ran the RESISTOR algorithm on these sequences, a total 

2In the future, c0 could be learned from running RESISTOR on a resistance mutation dataset for homologous systems and examining 
the K* scores.
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of 108 mutants were predicted as resistance-conferring candidates for all three inhibitors 

combined from a purely thermodynamic and probabilistic basis, i.e. these mutations were 

required to lower affinity of the drug in relation to the endogenous ligand (K* Positive and 

Negative Design, Fig. 1A-D) and could be formed in patients by less than three base pair 

exchanges (Calculating Mutational Probabilities, Fig. 1F-I). To further prioritize mutations 

and identify those that are most likely to be clinically relevant, we then computed the Pareto 

frontier over the four axes for each drug (Fig. 1J). Out of these 108 candidates, RESISTOR 

correctly prioritized eight clinically significant resistance mutants, with 7 of the 8 in the 

Pareto frontier of the corresponding inhibitor and the remaining mutant in the 2nd Pareto 

rank (see Table 1). A detailed description of the result for each inhibitor is included in the 

sections below.

2.6.1. EGFR Treated with Erlotinib and Gefitinib—Of the 462 sequences evaluated 

for the TKI erlotinib, RESISTOR identified 50 as candidate resistance mutations. Pareto 

ranking placed 19 sequences on the frontier, 13 sequences in the second rank, and 11, 

6, and 1 sequences in the third, fourth, and fifth ranks, respectively. RESISTOR correctly 

identified two clinically significant mutations, T790M and G796D, as being on the Pareto 

frontier (Helena et al., 2013; Avizienyte et al., 2008). This is concordent with empirical 

data showing that T790M is, by far, the most prevalent resistance mutation that occurs 

in lung adenocarcinoma treated with erlotinib (Tate et al., 2019). Similarly, for gefitinib, 

RESISTOR evaluated 438 sequences and identified 22 as candidate resistance mutants. The 

most relevant clinical mutant, T790M, is found on the Pareto frontier.

2.6.2. EGFR and Osimertinib—RESISTOR evaluated 357 OSPREY-predicted structures 

of EGFR bound with osimertinib and EGFR bound with its endogenous ligand. Of those, 

36 were predicted as resistance candidates. Pareto optimization placed 16 sequences on the 

frontier, 2 sequences in rank 2, 8 sequences in rank 3, 1 sequence in rank 4, and 5 sequences 

in rank 5. RESISTOR correctly identified five clinically significant resistance mutations to 

osimertinib: L792H, G796R, G796S, G796D, and G796C (Chen et al., 2017; Yang et al., 

2018; Ou et al., 2017; Fairclough et al., 2019; Li et al., 2021; Yang et al., 2018; Zheng et 

al., 2017), and while L792H was in the 2nd Pareto rank, all of the other correctly predicted 

resistance mutations are on the Pareto frontier.

Two osimertinib resistance mutations in particular stand out: L792H and G796D (see Fig. 

2). Both of these mutants have appeared in the clinic (Zheng et al., 2017; Chen et al., 2017; 

Yang et al., 2018; Ou et al., 2017). OSPREY generated an ensemble of the bound positive 

and negative complexes upon mutation, providing an explanatory model for how resistance 

occurs. In both cases, the mutant sidechains are much bulkier than the wildtype sidechain 

(Fig. 2A and D) and thus are predicted to clash with the original osimertinib binding pose 

(Fig. 2B and E). Consequently, in both cases the ligand is predicted to translate and rotate to 

create additional space for the mutant sidechains (Fig. 2C and F). We hypothesize that this 

movement weakens the other molecular interactions osimertinib makes in the EGFR active 

site.

In the case of G796D, there are additional factors that contribute to acquired resistance. 

First, the mutation to aspartate introduces a negative charge, which probably leads to 
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electrostatic repulsion with the carbonyl oxygen of the osimertinib amide (Fig. 2F, 

highlighted with a dashed oval). In addition, the exit vector of the hydrogen bound to 

the amide nitrogen does not allow a hydrogen bond with the aspartate. Second, the allyl-

group of osimertinib must be in close proximity to C797 for covalent bond formation. In 

fact, C797 is so important to osimertinib’s efficacy that mutations at residue 797 confer 

resistance (Thress et al., 2015; Arulananda et al., 2017). Even if osimertinib still binds to 

G796D, the allyl group would have to move away from C797 (Fig. 2F, highlighted with a 

black arrow). This would prevent covalent bond formation and thus reduce the efficacy of 

osimertinib considerably. Lastly, it is likely that the mutation away from glycine reduces 

the conformational flexibility of the loop, incurring an entropic penalty while also plausibly 

making it more difficult to properly align osimertinib and C797.

2.7. RESISTOR Predicts Previously Unreported Resistance Mutations in BRAF and Provides 
Structural Models

In addition to retrospective validation by comparison to existing clinical data for EGFR, we 

used RESISTOR to predict how mutations in the BRAF active site could confer resistance. 

Specifically, we used RESISTOR to predict which of 1214 BRAF sequences would be 

resistant to four kinase inhibitors—vemurafenib, dabrafenib, encorafenib, and PLX8394. 

On the Pareto frontier for vemurafenib are 13 mutations, for dabrafenib 16 mutations, for 

encorafenib 15 mutations, and for PLX8394 15 mutations. The full sets of predictions 

are included in the supplementary tables S4-S7. To validate RESISTOR’s predictions, we 

compared them with two sources of experimental data: a saturation mutagenesis variant 

effect assay from Wagenaar et al. (2014) and a cell-based kinase conformation reporter assay 

termed KinCon (Röck et al., 2019; Mayrhofer et al., 2020). Furthermore, we carried out 

additional KinCon experiments on a number of RESISTOR predictions to validate RESISTOR’s 

predictive capabilities.

2.7.1. Retrospective and prospective validation of RESISTOR predictions using 
the BRAF KinCon biosensor reporter—KinCon, developed by Stefan and colleagues, 

is an in-cell protein-fragment complementation assay (PCA) that provides a readout of the 

activity conformation change of full-length BRAF upon mutation or exposure to different 

inhibitors (Enzler et al., 2020). KinCon’s bioluminescence assay functions by appending 

parts of a luceriferase enzyme to the N- and C-termini of full-length BRAF and observing 

the amount of bioluminescence, indicating whether BRAF favors an open, catalytically 

active or a closed, autoinhibited conformation (see Fig. 3A) (Enzler et al., 2020). Stefan and 

colleagues have demonstrated that activation of BRAF either via upstream regulators such as 

EGFR and GTP activated Ras or via tumorigenic mutations cause BRAF to favor an open 

conformation (Röck et al., 2019; Mayrhofer et al., 2020). The inhibitors bind to BRAF in 

the ATP binding site and cause BRAF’s N- and C-termini to interact, shifting BRAF back 

towards a more closed, intermediate state (see Fig. 3A) (Röck et al., 2019; Enzler et al., 

2020; Mayrhofer et al., 2020). This implies that for inhibitor binding and BRAF closing 

to occur, a mutation (or a combination of mutations and/or upstream signaling events) 

needs first to induce an open conformation. Not all clinically observed BRAF mutations 

cause opening, even if they activate the MAPK pathway (e.g. L472C) (Mayrhofer et al., 

2020; Sen et al., 2012). In the same vein, not all BRAF resistance mutants show increased 
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kinase activity, in fact several are classified as kinase impaired (Mayrhofer et al., 2020; 

Zheng et al., 2015; Sen et al., 2012). One prominent mutation that shows both increased 

kinase activity and induces an open conformation is V600E (Fig. 3B). Inhibitor treatment 

shifts the V600E conformational equilibrium towards a more closed state (Röck et al., 

2019; Mayrhofer et al., 2020). In contrast, the gatekeeper mutations T529M and T529I 

do not confer opening of the kinase conformation and are thus insensitive to inhibitor 

treatment (Röck et al., 2019). However, in combination with V600E these mutations do 

confer resistance to BRAF inhibitors to varying degrees. Given that we model a state that 

is permissive of ligand binding at the outset (i.e., the ligand-bound BRAF complex), our 

RESISTOR calculations align very well with the reported KinCon measurements of double 

mutants (e.g. V600E/T529M and V600E/T529I, see STAR Methods for additional details on 

modeling).

Specifically, the RESISTOR predictions of resistance concord with the previous KinCon 

biosensor results for V600E/T529M and V600E/T529I for three of the four inhibitors: 

vemurafenib, dabrafenib, and PLX8394 (Röck et al., 2019). In the case of vemurafenib 

treatment, the proportion of open to closed conformations in the V600E/T529I mutant 

is not significantly different from the untreated V600E mutant, indicating vemurafenib 

treatment is not closing the conformational distribution in the double mutant (Röck et 

al., 2019). These data agree with the RESISTOR calculation of the ratios of the log10 K* 

scores, which predict that both double mutants are resistant to vemurafenib, with V600E/

T529M more resistant. Treatment of BRAF with PLX8394 follows the same pattern as 

vemurafenib, namely the V600E/T529I mutant’s closed population increases only 1.2 fold 

compared to the untreated mutant, and the PLX8394-treated V600E/T529M mutant does 

not noticeably alter the conformational distribution (Röck et al., 2019). In contrast, the 

PLX8394-treated V600E mutant’s closed population increases ~3 fold compared to the 

untreated population, indicating V600E sensitivity to PLX8394 (see Fig. 3C). RESISTOR 

correctly predicted the V600E/T529I and V600E/T529M double mutants are resistant to 

PLX8394, with the change in the ratio of the log10 K* scores of the two mutants suggesting 

that V600E/T529M confers greater resistance. In the case of dabrafenib, treatment of the 

V600E/T529I mutant closed the conformational distribution (2.4 fold more closed compared 

to untreated) more than treatment of the V600E mutation (2 fold more closed compared to 

untreated), whereas dabrafenib treatment of the V600E/T529M mutant increased the closed 

conformational population less effectively than the V600E mutant alone (1.4 fold vs. 2 fold). 

This again agrees with the RESISTOR predictions, namely that V600E/T529I remains sensitive 

to dabrafenib but V600E/T529M is resistant. RESISTOR predicted that the V600E/T529I and 

V600E/T529M mutants would be resistant to encorafenib, but the KinCon data indicates that 

these mutants may actually retain sensitivity to encorafenib, as the inhibitor induces BRAF’s 

closed state.

In addition, all inhibitors except dabrafenib were predicted to be sensitive against the 

G466V mutation and showed closing of the kinase conformation (Mayrhofer et al., 2020). 

However, in the case of dabrafenib, the response was comparable to vemurafenib, although 

vemurafenib was classified as sensitive. Previous KinCon experiments have also shown that 

G466V (and G466R and G466E (Zheng et al., 2015), see below) impaired kinase function 
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consistent with the reduced endogenous ligand binding predicted by RESISTOR (see “All 

BRAF Predictions” supplementary table) (Mayrhofer et al., 2020).

In addition to the above retrospective validation, we chose a few RESISTOR-predicted 

mutations and evaluated them using the KinCon reporter. We selected the mutants G466E, 

G466R, V471F, L505H, and G593D because they were prioritized by RESISTOR for at least 

one of the investigated inhibitors and were reported as patient mutations in either the 

COSMIC (Tate et al., 2019) or cBioPortal (Cerami et al., 2012; Gao et al., 2013) databases, 

using the curated set of non-redundant studies (see Table 2).

The expression-normalized basal biosensor signal suggests that both G466E and G466R 

mutants shift the conformation to an opened state, comparable to the highly oncogenic 

V600E variant and similar to the effect of the common non-small-cell lung cancer mutation 

G466V (Mayrhofer et al., 2020). The V471F, L505H and G593D mutations, in contrast, 

did not appear to induce a change in the active conformation (Fig. 3B). When exposed to 

BRAF inhibitors (Fig. 3C), G466E and G466R mutants showed the highest fold increase 

of the biosensor signal for all four inhibitors tested. The majority of inhibitors, three 

out of four, were predicted as sensitive against these mutants. RESISTOR predicted G466E 

and G466R to be resistant to dabrafenib, and while RESISTOR predicted dabrafenib had 

lower sensitivity compared to encorafenib and PLX8394 (which is consistent with the 

KinCon results), dabrafenib-treated mutants shifted to a closed comformation at least as 

much as vemurafenib-treated mutants did. The L505H and G593D KinCon mutants were 

not affected by any inhibitors, as those mutations do not shift the kinase into an active 

opened kinase conformation which is required for inhibitor binding. While vemurafenib and 

dabrafenib do not appear to affect the V471F mutant, encorafenib and PLX8394 did induce 

a closing of the kinase, suggesting that the structural properties of the inhibitor determine 

the binding affinity to this mutant. This is particularly intriguing, given that the V471F 

mutation was selected because we predicted it would confer resistance to encorafenib and 

PLX8394. While the KinCon results suggest that these two compounds still retain binding 

to the V471F mutant, the mutant itself did not induce a significant opening of the kinase 

confirmation required for ligand binding. For the latter three mutations (i.e. L505H, G593D, 

and V471F), it would therefore be required to induce the open conformation some other 

way, for example by introducing the V600E mutation similar to T529I and T529M described 

above, to investigate whether resistance would develop to the inhibitors (Röck et al., 2019).

2.7.2. Retrospective validation of RESISTOR predictions using BRAF saturation 
mutagenesis experiments—Wagenaar et al. (2014) examined the effects of BRAF 

inhibitor binding site mutations on inhibitor efficacy. To do so, they carried out targeted 

saturation mutagenesis on the BRAF vemurafenib binding site in the A375 human 

melanoma cell line and challenged the mutants with vemurafenib over a three week period 

(Wagenaar et al., 2014). They then sequenced the emergent clones and measured the IC50 

values of a subset of the mutants. Their work demonstrated a correlation between a mutant’s 

deep sequencing enrichment, i.e. the increase in the amount of an amino acid sequence 

in a sample before and after the addition of an inhibitor, and its IC50 value (Wagenaar 

et al., 2014). We therefore compared their enrichment data to the RESISTOR predictions 

and determined RESISTOR’s vemurafenib resistance prediction specificity to be 91%. There 
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were five RESISTOR-predicted resistance mutations that had increased enrichment over the 

three week period: T529M already discussed above (enriched 47.96 fold above the V600E 

baseline, which was the experiment’s largest change in enrichment), T529L (enriched 18.57 

fold above baseline), T529F (enriched 7.87 fold above baseline), G593I (enriched 4.84 fold 

above baseline), and L514E (enriched 3.73 fold above baseline). Furthermore, Wagenaar 

et al. determined the relative IC50 values of T529M, T529L, and G593I which were, 

respectively, 2.05, 2.16, and 3.19 times larger than the IC50 for vemurafenib applied to 

the V600E mutant. The IC50 of T529F and L514E were not determined.

To further elucidate the molecular mechanisms conferring resistance to the G593I and 

L514E mutants, we analyzed the OSPREY-predicted structural models. While neither 

mutant requires a movement of vemurafenib (Fig. 4A) akin to what was observed in the 

EGFR and osimertinib structures (Fig. 2), the mutations still lead to a loss of favorable 

interactions and/or the introduction of energetically unfavorable contacts. The residue 

G593 (Fig. 4B) may facilitate structural adaptions required for BRAF to accommodate 

the vemurafenib propyl sulfonamide moiety in the rear of the ATP binding site and the 

G593L mutations may thus constrain the flexibility of this loop region. In addition, the 

leucine side chain may project near to the fluoro-substituted central phenyl ring and 

introduce steric clashes (Fig. 4C). The neighboring D594 backbone interacts with the 

vemurafenib sulphonamide-nitrogen (Fig. 4B), and this interaction would be weakened in 

the G593L mutant. Furthermore, residue L514 makes a range of hydrophobic contacts with 

vemurafenib (Fig. 4D), including the central phenyl ring and the propyl-chain, which are lost 

in the L514E mutant (Fig. 4E).

2.8. Complexity

There are a number of distinct steps in RESISTOR, each of which has its own complexity. 

While there are sublinear K* algorithms, such as BBK* (Ojewole et al., 2018) with MARK* 

(Jou et al., 2020), these algorithms so far have only been applied to positive and negative 

design with optimization of specific multiple objectives, such as minimizing/maximizing 

the bound (respectively unbound) state partition functions and their ratios for computing 

binding affinity or stability. COMETS (Hallen and Donald, 2016) provably does multistate 

design optimizing arbitrary constrained linear combinations of GMEC energies, but COMETS 

does not model the partition functions required for calculating binding affinity. A provable 

ensemble-based algorithm analogous to COMETS for arbitrary multistate design optimization 

is yet to be developed. Thus, general multistate K* design remains, unfortunately, a problem 

linear in the number of sequences and thus exponential in the number of mutable residues.

Computing K* itself, as a ratio of partition functions built from the thermodynamic 

ensembles of the bound to unbound states, can be expensive (Valiant, 1979; Nisonoff, 2015; 

Viricel et al., 2016). In order to reduce the number of K* problems to solve, COMETS is 

employed as a pruning mechanism for all sequences in which there are more than one 

mutation. Without COMETS, RESISTOR would need to compute sN K* scores, where s is the 

number of states and N is the number of sequences. With COMETS, RESISTOR is able to avoid 

computing many of these K* scores, as COMETS has been shown in practice to reduce the 

number of required GMEC calculations by over 99% and to reduce N for continuous designs 
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by 96%, yielding an overall speedup of over 5 × 105-fold (Hallen and Donald, 2016). Since 

in this study we considered only single residue mutations we omitted the COMETS pruning 

step, but in any use of RESISTOR that considers multiple simultaneously mutable residues 

we believe COMETS’ empirical sublinearity will make the difference between feasible and 

infeasible searches.

Moreover, by using an approximation containing fixed partition function size and sparse 

residue interaction graphs, we can use the BWM* algorithm (Jou et al., 2016) to compute 

the K* scores in time O(nw2q
3
2w + kn log q), where w is the branch-width and q the number 

of rotamers per residue. When we have w = O(1) this is polynomial time. In this study 

we found that the ε-approximation algorithms using adaptively-sized partition functions, 

such as BBK* with MARK*, were fast enough. However, for larger problems the sparse 

approximations allow us to approximate the necessary K* scores for resistance prediction 

in time exponential only in the branch-width, and thus polynomial time for fixed branch-

widths.

3. Discussion

In this work, we report RESISTOR, a computational algorithm to systematically investigate 

protein mutations and identify those that have a high likelihood of lowering drug potency in 

comparison to native substrates. In addition, we analyze the probability that such a mutation 

is generated in cancer patients and thus likely of clinical importance. Our algorithm applies 

the power of Pareto optimization to resistance predictions, which provides an objective 

way of prioritizing the most relevant mutations for experimental testing. In addition, 

we used computationally predicted input structures of ligand-target complexes whenever 

experimental data was lacking. This broadens the targets on which RESISTOR can be used, as 

we have found that the availability of high-resolution experimental ligand-target structures 

still can present a major bottleneck in computational protein design.

We have applied RESISTOR to two case studies, EGFR and BRAF, in a retrospective manner 

and, in case of BRAF, also included prospective experimental data for validation. In EGFR 

and BRAF, the algorithm correctly identified resistance mutations. Using the vemurafenib 

data from Wagenaar et al. (2014), which is the most comprehensive dataset on BRAF 

mutations and vemurafenib resistance available, we determined RESISTOR’s vemurafenib 

resistance prediction specificity and sensitivity to be 91% and 31%, respectively. In a 

data-rich setting such as proteomics (e.g. Lilien et al. (2003)), the sensitivity could be 

regarded as low. However, the prediction of antineoplastic resistance mutations is a sparse 

data problem. Comprehensive datasets on drug resistance mutations on specific targets are 

virtually non-existent. We speculate that the reason for this can be found in the large number 

of individual mutants that must be generated and tested. For example, in our study we 

used RESISTOR to investigate 462, 438, and 357 individual mutants for erlotinib, gefitinib, 

and osimertinib, respectively. While this is computationally feasible, it far exceeds the 

testing capacities of most experimental groups. Clinical resistance data is even more limited. 

Furthermore, even for those mutations that have been confirmed to confer clinical resistance 

in patients, the underlying molecular mechanisms often remain uninvestigated.
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RESISTOR prioritizes escape mutations causing ablation of inhibitor binding and/or tighter 

substrate binding (the latter as a proxy for KM). However, mutations affecting the drug target 

could also mediate resistance via other molecular processes, such as altering the stability of 

conformational states or affinity of protein-protein interactions (Lyczek et al., 2021; Assaraf 

et al., 2019). One limitation of this present study is that we modelled BRAF in its active 

conformational state. As Röck et al. (2019) showed, BRAF inhibitors exhibited differences 

in specificity and efficacy by shifting BRAF’s conformational probability distribution from 

an open and active to a closed, inactive state. It is plausible that mutations far from the 

active site could destabilize the closed, inactive state and shift the conformational probability 

distribution back towards the open, active state. Modeling of large allosteric destabilization 

of the inactive conformations has been discussed extensively in our previous work (Chen et 

al., 2009; Gorczynski et al., 2007), but its integration into RESISTOR is left for future work.

In addition, clinical resistance is caused by several different mechanisms, of which the 

relative importance of escape mutations can vary greatly. In some kinases, such as c-Abl, 

EGFR, and FLT3, active site escape mutations are the main cause of acquired resistance 

(Sierra et al., 2010). In other kinases, such as BRAF, escape mutations are not the main 

mechanism of acquired resistance (Rizos et al., 2014). Rather, splice variants, amplification, 

and mutations in related genes such as N-RAS, MEK1, MEK2, IGF-1R, and AKT comprise 

the majority of cases of clinical resistance (Rizos et al., 2014). From this perspective, the 

specificity of RESISTOR for BRAF and vemurafenib is remarkable and the sensitivity is in line 

with the fraction of resistance mutations whose aetiology is definitively escape via active site 

mutation.

We believe that the remaining gap can be closed in future work by modelling additional 

conformational flexibility, kinetics, and the protein-protein interactions of additional 

effectors. Yet, despite these limitations, RESISTOR is able to prioritize mutations that are 

demonstrated to confer resistance in patients. Specifically, our results show that detailed 

and combinatorial thermodynamic computations can form the basis for predicting escape 

mutations to TKIs. In the future, since some resistance mutations exploit kinetic phenomena, 

kinetics could be incorporated for a more comprehensive model.

4. Conclusions

RESISTOR contributes to the science of predicting resistance mutations by providing an 

algorithm to enumerate the entire Pareto frontier of multiple resistance-causing criteria. 

By categorizing predicted resistance mutations by their Pareto rank, it allows the drug 

discovery community to prioritize escape mutations on the Pareto frontier. RESISTOR also 

provides structural justification for the mechanism of each predicted escape mutation 

by generating an ensemble of predicted structural models upon mutation. In this study, 

we have applied RESISTOR to predict resistance mutations in EGFR and BRAF for a 

number of different therapeutics. We demonstrate that RESISTOR can also be applied to 

computationally generated input structures, although the accuracy of the results may be 

somewhat diminished compared to experimentally determined structures of target-ligand 

complexes. However, computationally-derived models can still provide useful insights, 

especially when considering that the availability of experimental structures appears as major 
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bottleneck. While RESISTOR as described herein optimizes over 4 objectives, as a general 

method any number of diverse objectives could be added. RESISTOR can be applied not only 

to cancer therapeutics, but also to antimicrobial or antiviral drug design. It is our hope that 

that the drug discovery community can use RESISTOR to design drugs that are less prone to 

resistance.

STAR Methods:

Resource Availability:

Lead contact: Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Bruce Donald 

(brd+cellsys22@cs.duke.edu).

Materials availability: Materials are available upon request to the Lead Contact.

Data and code availability:

• OSPREY design specifications and mutational signature probabilities required to 

reproduce the predictions in this paper have been deposited at in the Harvard 

Dataverse and are publicly available as of the date of publication. DOIs are listed 

in the key resources table.

• The version of OSPREY used in this paper has been deposited in the Harvard 

Dataverse and is publicly available as of the date of publication. DOIs are 

listed in the key resources table. For new empirical designs, we recommend 

using the latest version of OSPREY available for free at http://www.cs.duke.edu/

donaldlab/osprey.php. All code for the OSPREY software package is also 

available on GitHub at https://github.com/donaldlab/OSPREY3, and is free and 

open-source.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental Model and Subject Details:

Cell Culture and Antibodies: HEK293T cells were grown in Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS). Transient 

transfections were performed with Transfectin reagent (Bio-Rad, 1703352). Mouse anti-

BRAF (Santa Cruz, F-7: sc-5284) antibody was used to determine biosensor expression 

levels.

Method Details:

Preparation of Empirical and Docked Structures for K* Predictions: The crystal 

structures used for the EGFR predictions were adopted from Kaserer and Blagg (2018). 

A full description of the PDB entries used can be found in that paper’s section Table S7, 

and details on how the structures were prepared for OSPREY predictions is in that paper’s 

section Structure Selection and Preparation.
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For BRAF, the crystal structures of vemurafenib (PDB id 3og7, Hodis et al. (2012)) and 

dabrafenib (PDB id 4xv2, Zhang et al. (2015)) in complex with BRAF V600E were selected 

as input for RESISTOR. Both structures have been prepared using the default setting of the 

Protein Preparation Wizard (Sastry et al., 2013) in Maestro (Schrödinger, LLC, New York, 

NY). In the case of encorafenib and PLX8394, crystal structures of structurally closely 

related, but not the identical, molecules were available. These experimental complexes were 

used to generate encorafenib and PLX8394 models. Encorafenib was docked into PDB id 

4xv3 (Zhang et al., 2015) using the default settings of the induced fit docking procedure in 

Maestro (Farid et al., 2006; Sherman et al., 2006a,b; Schrödinger, LLC, New York, NY). For 

validation, the co-crystallized ligand PLX7922 was re-docked. The highest scored docking 

pose of encorafenib was selected for further investigation. We found that the conserved 

substructures in encorafenib and PLX7922 aligned very well in this docking pose.

For PLX8394, re-docking of the co-crystallized ligand PLX7904 (PDB id 4xv1, Zhang et 

al. (2015)) failed with the induced fit docking procedure, but was successful using a rigid 

docking workflow in GOLD version 5.8.0 (Jones et al., 1997). The binding site was defined 

as 6 Å around the ligand and the water molecule HOH905 was set to toggle and spin. The 

default settings of all other parameters were used.

An experimental structure of the endogenous ligand ADP was available, however, BRAF 

adopted in inactive conformation in this complex. Apo BRAF in its active conformation 

(PDB id 4mne, Haling et al. (2014)) was thus combined with ANP-bound protein kinase 

c-src (PDB id 2src, Xu et al. (1999)) to generate an active, endogenous ligand-bound BRAF 

complex. This model was used as template to build a BRAF:ADP homology model in the 

Molecular Operating Environment (Chemical Computing Group ULC) using the default 

settings. This included refinement steps to resolve potential steric clashes in the rather crude 

ANP-BRAF input template.

As we note in these preceding paragraphs, in each case the BRAF structure we modeled 

was in its active conformation. There are some mutations, such as V600E, that are activating 

mutations and shift BRAF’s conformational probability distribution to the active state (Röck 

et al., 2019; Mayrhofer et al., 2020). With use of RESISTOR for mutational scanning of 

single point mutations within the active site, we assumed that the mutation is either itself 

activating or is a secondary mutation following an activating mutation, such as V600E. In 

our discussion of RESISTOR predictions of the BRAF double mutants V600E/T529M and 

V600E/T529I in Section 2.7.1, our assumption was that the V600E mutation is the activating 

mutation (which the existing drugs are effective against) and T529M/I are the secondary, 

resistance-causing mutations.

For all complexes, water molecules not involved in mediating interactions between the 

ligand and the target were deleted and only residues with a 12 Å radius around the ligand 

were kept in the final input structures.

Evaluation of Ligand Affinity: The command line interface of OSPREY was used 

to generate distinct YAML design files for each residue within 5 Å of a ligand. These 

YAML design files specify the input structures, the mutable residues, the flexible residues, 
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and connectivity templates for OSPREY. To create the forcefield parameters files for the 

inhibitors and endogenous ligands, we used the Antechamber program in the AmberTools 

software package (Case et al., 2021). Then, to calculate the K* scores we used OSPREY 

with the following command input:

osprey affinity –design <YAML design file> –epsilon 0.63 –frcmod <force field

modification file> –stability–threshold −1

where <YAML design file> was replaced with the individual YAML design file and 

<force field modification file> was replaced with the AmberTools-generated file. 

The YAML design and forcefield modification files used in this study are available in the 

Harvard Dataverse (see Key Resources Table).

Luciferase PCA analyses: We transiently overexpressed indicated versions of the Rluc-

PCA–based KinCon biosensors in 24-well plate formats. Experiments were performed 48h 

post transfection. For the luciferase-PCA measurements, the growth medium was carefully 

removed and the cells were washed with phosphate-buffered saline (PBS). Cell suspensions 

were transferred to 96-well plates and subjected to luminescence analysis using the 

PHERAstar FSX (BMG Labtech). Luciferase luminescence signals were integrated for 10 

seconds following addition of the Rluc substrate benzyl-coelenterazine (NanoLight, #301). 

Cell lysates were prepared post RLU measurements. Expression levels of the biosensor were 

determined via western blot analysis.

The K* algorithm: K* is an ε-accurate algorithm for computing a provable approximation 

to the affinity constant Ka. It is implemented in the OSPREY computational protein design 

software package (Lilien et al., 2005; Hallen et al., 2018). K* is defined as the quotient of 

the bound to unbound partition functions of a protein:ligand system for a given amino acid 

sequence. For a proof that K* approximates Ka see Appendix A of Lilien et al. (2005).

K* calculates an ε-accurate partition function for three structures: the bound protein:ligand 

complex (denoted PL), the unbound protein (denoted P), and the unbound ligand (denoted 

L). Let X be an arbitrary state, X ∈ {P, L, PL}. The partition function is a summation of the 

Boltzmann-weighted energies for all of the conformations in the thermodynamic ensemble 

of X. Let s denote an arbitrary amino acid sequence, then the partition function of s in state 

X (which we donate as qX(s)) is:

qX(s) = ∑
c ∈ QX(s)

exp ( − E(c) ∕ RT ),
(6)

where Qx(s) is the entire conformational ensemble of sequence s in state X, and c is a single 

conformation from that ensemble. E(c) is the energy of conformation c. R is the ideal gas 

constant and T is the temperature in absolute Kelvin.

The K* score for a sequence s approximates Ka:
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K∗(s) =
qPL(s)

qP(s)qL(s) . (7)

By using an A* search over Qx(s) to generate an ordered, gap-free list of low energy 

conformations, the K* algorithms generates an ε-approximation of the partition function 

qx(s) and the ensemble-complete K* value. This approximation is known as the K* score.

Inputs to the K* algorithm include 1) an input structure; 2) a conformation library; 3) an 

energy function; 4) ε, and; 5) flexibility and mutability choices.

Empirical RESISTOR runtimes: The RESISTOR computation entails three stages: 1) 

computing the positive and negative K* designs; 2) assigning mutational signature 

probabilities to each mutation, and; 3) run Pareto optimization over the four axes. Steps 

2 and 3 empirically take a negligible amount of time, on the order of seconds. Step 1, 

however, computes two partition functions for each sequence and can take more time. Figure 

5 shows the empirical runtime (in seconds) that it took our computers to run the positive 

and negative K* designs, where a design mutated a residue to each of the 19 other possible 

amino acids.

Quantification and Statistical Analysis:

In Fig. 3, the student’s T-test was used to evaluate whether the mean of the RLU of a mutant 

was significantly different from that of the relative DMSO control. The SEM was used with 

n = 4. Significance was defined to three different p-levels, where *p < 0.05, **p < 0.01, and 

***p < 0.001.

To compute the specificity and sensitivity values reported in Section 3, we used the dataset 

in supplementary table S1 from Wagenaar et al. (2014). We then reduced this set to those 

mutants for which RESISTOR made a prediction (RESISTOR made predictions for sequences 

with a mutated amino acid within 5 Å of the inhibitor or endogenous ligand). If RESISTOR 

predicted that a mutation caused resistance and Wagenaar et al. indicated that the mutant 

increased normalized drug enrichment, then that was considered a true positive. If RESISTOR 

predicted that a mutation was benign and Wagenaar et al. did not find increased drug 

encrichment, then that was considered a true negative. The specificity and sensitivity values 

were computed using their standard formulas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

Progress and Potential

Targeted cancer drugs developed over the past two decades have been instrumental in 

treating certain types of cancer and extending patient lifespans. These drugs include 

kinase inhibitors targeting EGFR and BRAF, two important enzymes of the mitogen-

activated protein kinase pathway whose dysregulation can lead to many types of cancer, 

including melanoma and non-small cell lung cancer. The inhibitors are effective for a 

period of time but the tumors often develop resistance to the drugs, leading once again 

to cancer progression. The ability to predict how an enzyme target can develop drug 

resistance would allow for a proactive, resistance-aware approach to drug design. Here 

we introduce RESISTOR, an algorithm that uses structure-based computational design to 

predict how different mutations in an enzyme will affect a drug’s efficacy. It pairs these 

predictions with empirical data on how likely a mutation is to occur in a given cancer 

type, which allows researchers to identify “mutational hotspots,” or particular places 

where mutations are most likely to cause drug resistance. These predictions provide 

designers new insights during the drug development process that should allow for the 

quicker development of more durable and longer-lasting cancer therapeutics.
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Figure 1. An example RESISTOR workflow with EGFR.
RESISTOR finds the Pareto frontier from OSPREY positive and negative designs, mutational 

probabilities, and resistance hotspots. (A) Two structures are required as input to OSPREY 

to compute postive and negative design K* scores. The structure for positive design is 

EGFR (green) bound to its endogenous ligand ATP (blue), for the negative design EGFR 

is bound to the drug erlotinib (pink). The goal of positive (resp. negative) design is to 

improve (resp. ablate) binding affinity. A mutation is resistant when its ratio of positive to 

negative K* scores increases. (B) All residues within 5 Å (purple) of the drug are allowed 

to mutate to any other amino acid. (C) COMETS is used as an efficient, sublinear algorithm 

to quickly prune infeasible mutations. BWM* is used with a fixed branch width to compute 

a polynomial-time approximation to the K* score. (D) Candidate mutations that pass the 

COMETS pruning step have their positive and negative K* scores computed in OSPREY. We 

recommend using the BBK* with MARK* algorithm as it is the fastest for computing K* 

scores. (E) Candidate resistance mutations are pruned when their ratio of positive to negative 

K* scores indicates a mutation does not cause resistance or if the target amino acid requires 

a mutation in all three DNA bases. (F) RESISTOR computes mutational probabilities using a 

protein’s coding DNA along with cancer-specific trinucleotide mutational probabilities for 

lung adenocarcinoma (abbreviated as LuAd), sliding a window (G) over 5′ - and 3′ -flanked 

codons. (H) RESISTOR employs a recursive graph algorithm to compute the probability that 
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a particular amino acid will mutate to another amino acid (I). (J) Finally, RESISTOR uses 

Pareto optimization on the positive and negative K* scores, the mutational probabilities, and 

hotspot counts to predict resistance mutants.
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Figure 2. Structural models predicted by OSPREY agree with experimental data and explain 
mechanisms of Osimertinib resistance to EGFR mutations L792H and G796D.
Structural models predicted by OSPREY of EGFR wildtype (blue) and resistance mutations 

(red) bound to osimertinib (yellow sticks). The histidine (A) and glutamate (D) side chains 

(red sticks) in the EGFR L792H (A) and G796D (D) mutations are bulkier than the wildtype 

leucine (A) and glycine (C) residues (blue sticks). They clash with osimertinib in its original 

binding pose as highlighted by the sphere representation in panels B and E. (C+F) To allow 

for accommodation of osimertinib in the modelled EGFR mutant structures (red sticks), the 

inhibitor’s position within the binding pocket moves from the experimentally determined 

binding pose (yellow sticks). Movements are indicated by black arrows. (F) In case of the 

G796D mutation, the carboxylate moiety of D796 is predicted to be in close proximity to the 

osimertinib amide oxygen (highlighted with the dashed circle), thus leading to electrostatic 

repulsion. This mutation site is adjacent to C797, which reacts with the allyl-moiety of 

osimertinib to form a covalent bond in the wildtype. Due to the steric and electrostatic 

properties of the G796D mutant, the allyl group is located further away from C797 in 

the model, thus preventing covalent bond formation. The movement of the allyl group is 

indicated by the black arrow.
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Figure 3. KinCon biosensor results for RESISTOR-predicted mutants.
(A) Schematic depiction of Renilla luciferase (RLuc; F1: fragment 1, F2: fragment 2) PCA-

based BRAF kinase conformation (KinCon) reporter system. Conformational rearrangement 

of the reporter upon (de)activation of the kinase are indicated. Closed kinase conformation 

induces complementation of RLuc PCA fragments resulting in increased RLuc-emitted 

bioluminescence signal. (B) Domain organization of the BRAF-KinCon reporter (top) 

and basal bioluminescent signals of the BRAF-wt (black), V600E (red), and RESISTOR-

predicted mutant (grey) KinCon biosensors. Bars represent the mean signals, relative to 

BRAF-wt, in relative light units (RLU) with SD of four independent experiments (nodes). 

Raw bioluminescence signals were normalized on reporter expression levels, determined 

through western blotting. Asterisk indicates level of significance versus the wild type BRAF 

biosensor. (C) BRAF-KinCon biosensor dynamics, induced via treatment with respective 

BRAFi (1μM for 1h) prior to bioluminescence measurement. BRAF wt and V600E KinCon 

variants serve as control (left). The RESISTOR-predicted mutants are shown in a separate bar 

chart (right). Bars represent the mean signals, relative to the DMSO control, in relative 

light units (RLU) with SEM of four independent experiments (nodes). All experiments were 

performed in HEK293T cells 48 hours post transfection. *p < 0.05; **p < 0.01; ***p < 

0.001; n.s., not significant by t-test.
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Figure 4. Structural analysis of BRAF mutations G593I and L514E.
(A) No major movements were required for vemurafenib to bind to the G593I (yellow) and 

L514E (orange) mutation in comparison to the wild type binding pose (blue). (B) BRAF 

G593 is located on the N-terminus of the activation loop and may facilitate conformational 

changes required to accommodate the vemurafenib propyl sulfonamide moiety in the back 

of the pocket. The backbone of the neighboring D594 residue interacts with the sulfonamide 

nitrogen of vemurafenib as indicated by black dashed lines. (C) Mutation of G593 to L 

not only restricts flexibility of the loop, but also puts the leucine side chain in too close 

proximity to the fluoro-substituted phenyl ring (highlighted with the dashed circle). (D) 

Residue L514 is involved in a variety of hydrophobic contacts with vemurafenib (indicated 

by yellow arrows), which are lost in the L514E mutant (E).
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Figure 5. Positive and negative design runtimes.
Box-and-whisker plot showing the minimum, maximum, median, first quartile, and third 

quartile runtimes per inhibitor:kinase pair. The whiskers extend to points that lie within 

1.5x the interquartile range. Each dot represents the number of seconds that RESISTOR 

took to compute the positive and negative K* designs for a given mutation location in a 

kinase:inhibitor complex. In other words, each dot represents the computation of 40 K* 

scores. The computation times across all the inhibitors range from 813 seconds to 972465 

seconds, with the average being 40630 seconds or 1015 seconds per sequence. The designs 

were run on a 24-core, 48-thread Intel Xeon processor with 4 Nvidia Titan V GPUs.

Guerin et al. Page 31

Cell Syst. Author manuscript; available in PMC 2023 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guerin et al. Page 32

Table 1
RESISTOR correctly identified 8 resistance mutations in EGFR to erlotinib, gefitinib, and 
osimertinib.

For osimertinib, G796R, G796S, G796D, and G796C were on the RESISTOR-identified Pareto frontier. L792H 

was in the 2nd Pareto rank. For erlotinib, both T790M and G796D were on the Pareto frontier. For gefitinib, 

T790M was also on the Pareto frontier. Previous studies have documented all of these resistance mutations 

as occurring in the clinic (Helena et al., 2013; Avizienyte et al., 2008; Chen et al., 2017; Yang et al., 2018; 

Ou et al., 2017; Fairclough et al., 2019; Li et al., 2021; Yang et al., 2018; Zheng et al., 2017). † indicates 

that RESISTOR predicted the mechanism of resistance to be improved binding of the endogenous ligand to the 

mutant. # indicates that RESISTOR predicted the mechanism of resistance to be decreased binding of the drug 

to the mutant. Note that these predicted mechanisms are only attributed here if the predicted change in the 

log10(ΔK*) ≥ 0.5.

RESISTOR Identifies Clinically-Relevant Resistance Mutations in EGFR

Osimertinib Erlotinib Gefitinib

L792H# T790M†# T790M †#

G796R†# G796D#

G796S#

G796D#

G796C#
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Table 2
Prioritized BRAF mutations selected for experimental testing.

We selected these mutants because they were prioritized by RESISTOR for at least one of the investigated 

inhibitors and were reported as patient mutations in either the COSMIC or cBioPortal databases. The numbers 

in the first four columns indicate the RESISTOR-predicted Pareto rank with melanoma mutational probabilities. 

The numbers in the last two columns indicate the number of patient samples containing the mutation reported 

in the respective database (access date 01/12/2022). Absence of a Pareto rank indicates RESISTOR predicted the 

mutant would remain sensitive to the drug.

Mutation Vemurafenib Dabrafenib Encorafenib PLX8394 COSMIC cBioPortal

G466E - 1 - - 49 31

G466R - 1 - - 17 3

V471F - - 2 3 5 2

L505H - - 3 - 8 10

G593D 1 1 1 1 4 0
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KEY RESOURCES TABLE

REAGENT or
RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-BRAF Santa Cruz F-7: sc-5284

Chemicals, Peptides, and Recombinant Proteins

Vemurafenib MedChemExpress HY-12057

Encorafenib MedChemExpress HY-15605

Dabrafenib Selleckchem S2807

PLX8394 MedChemExpress HY-18972

Benzyl-coelenterazine Nanolight 301

Transfectin BioRad 1703352

Deposited Data

K* designs, mutational signatures This studyAlexandrov et al. 2013 https://doi.org/10.7910/DVN/DA0WWK 
ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtA

Coding sequence for wt targets COSMIC, Bamford et al. 2004 http://cancer.sanger.ac.uk/cosmic

COSMIC mutation data, version 95 COSMIC, Bamford et al. 2004 http://cancer.sanger.ac.uk/cosmic

cBioPortal mutation data, version 4.0.3 Cerami et al. 2012 https://www.cbioportal.org/

Structures of the target-ligand complexes The Protein Data Bank This study http://www.rcsb.org/pdb/home/home.do 
https://doi.org/10.7910/DVN/DA0WWK

OSPREY-predicted structures of the 
kinase:ligand complexes

This study https://doi.org/10.7910/DVN/DA0WWK

Experimental Models: Cell Lines

HEK293T ATCC N/A

Recombinant DNA

KinCon PCA reporters This paper Roeck et al, 2019 N/A

Software and Algorithms

OSPREY 3 Hallen et al. 2018 https://doi.org/10.7910/DVN/DA0WWK

Maestro Release 2021-1 Schrödinger https://www.schrodinger.com/products/maestro

AmberTools21 Case et al. 2021 https://ambermd.org/GetAmber.php#ambertools

GOLD version 5.8.0 Jones et al. 1997 https://www.ccdc.cam.ac.uk/solutions/csd-discovery/
Components/Gold/

MOE 2015.1001 Chemical Computing Group https://www.chemcomp.com/
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