Skip to main content
. 2022 Sep 27;7(4):144. doi: 10.3390/biomimetics7040144

Table 12.

The optimal result of various algorithms for Himmelblau problem, the bold numbers means the best performance among whole competitors.

x1 x2 x3 x4 x5 g1 g2 g3 g4 g5 g6 Value Constraints
ESOA 78 33 29.9984 45 36.77 −0.00018 −91.9998 −11.16 −8.841 −4.9988 −0.00120342 −30,664.5 Yes
PSO [16] 78 33 29.9953 45 36.77 0 −92 −11.15 −8.84 −5 0 −30,665.5 Yes
GA [5] 78.047 35.02 31.81 44.81 32.57 −0.27373 −91.7263 −10.95 −9.04 −4.98832 −0.0116773 −30,333.1 Yes
DE [6] 78 33.00 30.002 44.97 36.77 −0.00107 −91.9989 −11.15 −8.84 −4.99875 −0.00124893 −30,663.2 Yes
GWO [18] 78.0031 33.00 30.0069 45 36.75 −0.00201 −91.998 −11.15 −8.84 −4.99815 −0.0018509 −30,662.7 Yes
HHO [83] 78 33 32.4546 43.68 31.56 −0.86883 −91.1312 −12.05 −7.94 −5 9.56 × 10−7 −30,182.6 Yes
L-Shade [59] 78 33 27 27 27 −1.88843 −90.11157 −13.83258 −6.16742 −8.23715 3.23715 −32,217.4 No
iL-Shade [60] 78 33 27 27 27 −1.88843 −90.11157 −13.83258 −6.16742 −8.23715 3.23715 −32,217.4 No
MPEDE [90] 78 33 27 27 27 −1.88843 −90.11157 −13.83258 −6.16742 −8.23715 3.23715 −32,217.4 No