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Summary

The rise and fall of estrogen and progesterone across menstrual cycles and during pregnancy 

regulates breast development and modifies cancer risk. How these hormones impact each cell 

type in the breast remains poorly understood, because they act indirectly through paracrine 

networks. Using single-cell analysis of premenopausal breast tissue, we reveal a network of 

coordinated transcriptional programs representing the tissue-level response to changing hormone 

levels. Our computational approach, DECIPHER-seq, leverages person-to-person variability in 

breast composition and cell state to uncover programs that co-vary across individuals. We use 

differences in cell-type proportions to infer a subset of programs that arise from direct cell-cell 

interactions regulated by hormones. Further, we demonstrate that prior pregnancy and obesity 

modify hormone responsiveness through distinct mechanisms: obesity reduces the proportion 

of hormone-responsive cells, whereas pregnancy dampens the direct response of these cells to 

hormones. Together, these results provide a comprehensive map of the cycling human breast.

Graphical Abstract

eTOC Summary

Estrogen and progesterone regulate breast development and modify cancer risk. Using singlecell 

analysis and leveraging person-to-person variability to identify gene programs that co-vary across 

individuals, Murrow et al. map the tissue-level response to ovarian hormones. Prior pregnancy and 

obesity modify hormone-responsiveness in the breast through distinct mechanisms.
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Introduction

Coordinated interactions between cells are essential for the development and maintenance 

of normal tissue function, and dysregulation of cell-cell interactions is a key driver of 

disease. In the human breast, fluctuations in the levels of estrogen and progesterone with 

each menstrual cycle and during pregnancy control cell growth, survival, differentiation, and 

tissue morphology. The impact of these changes is profound: cumulative lifetime exposure 

to cycling hormones is a major modifier of breast cancer risk (Collaborative Group on 

Hormonal Factors in Breast Cancer, 2012), and the majority of breast tumors are estrogen-

dependent. However, many of the effects of ovarian hormones within the breast are indirect. 

The estrogen and progesterone receptors (ER/PR) are expressed in only 10-15% of cells 

within the epithelium (Clarke et al., 1997). Thus, most of the changes that occur in response 

to hormone receptor activation are mediated by a complex cascade of paracrine signaling 

from hormone-responsive (HR+) cells to other cell types in the breast. Accordingly, cell-cell 

interactions between HR+ cells and other cell types are key to normal breast morphogenesis. 

However, due to a number of challenges inherent to hormone signaling and human breast 

biology, we lack a systems-level understanding of how different cell populations respond to 

cycling hormone levels.

A first challenge for understanding the tissue-level response to estrogen and progesterone 

is that there are major differences in glandular architecture and stromal composition and 

complexity between humans and model organisms like the mouse (Dontu and Ince, 2015; 

Parmar and Cunha, 2004). For example, while ER expression is restricted to the epithelium 

in humans, it is also expressed in the stroma in rodents (Mueller et al., 2002; Palmieri et 

al., 2004). Therefore, understanding the consequences of cellular crosstalk downstream of 

estrogen and progesterone requires studying these processes in humans or human models.

A second challenge is that the human breast is both heterogeneous across individuals and 

characterized by a highly dynamic microenvironment. There is a high degree of variability 

between individuals in terms of epithelial architecture (Russo et al., 1992), cell composition 

(Nakshatri et al., 2015; Rosenbluth et al., 2020), and hormone-responsiveness (Dunphy et 

al., 2020; Muenst et al., 2017; Tanos et al., 2013), and these differences likely impact both 

normal breast function and breast cancer susceptibility. Within individuals, the menstrual 

cycle and pregnancy/lactation/involution cycle are major drivers of epithelial remodeling, 

characterized by alternating periods of epithelial expansion and regression in response to 

changing hormone levels (Anderson et al., 1982; Jindal et al., 2014, Soderqvist et al., 1997, 

Russo et al., 1992). Histological analyses of paraffin-embedded human tissue sections have 

also identified cyclical alterations in epithelial architecture and stromal organization across 

the menstrual cycle (Ramakrishnan et al., 2002; Vogel et al., 1981) and broad remodeling 

following weaning (Lyons et al., 2011; O’Brien et al., 2010). However, little is known about 

how this underlying heterogeneity impacts cell state and the intercellular signaling networks 

that control tissue morphogenesis. As it enables unbiased analysis of cell types within the 

human mammary gland at single-cell resolution, single-cell RNA sequencing (scRNA-seq) 

is particularly well-suited to investigate this problem.
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Here, we use scRNA-seq in a cohort of twenty-eight premenopausal reduction mammoplasty 

tissue specimens to trace the transcriptional changes that occur in the human breast 

downstream of hormone signaling. To provide insight into the cellular interactions 

that regulate breast tissue homeostasis, we develop DECIPHER-seq (Deconstructing Cell-

cell Interactions using Phenotypic Heterogeneity in single-cell RNA sequencing data), 

a systematic computational approach that leverages the high degree of inter-sample 

transcriptional heterogeneity in the breast to identify coordinated interaction networks 

across cell types. Our approach was guided by two hypotheses. First, we predicted that 

if two cell types are acting together—via either direct cell-to-cell signaling or a response 

to shared microenvironmental/paracrine cues—the transcriptional signatures representing 

those cell-cell interactions should be correlated across samples. More specifically, since 

the effects of estrogen and progesterone on other cell types in the breast are controlled by 

paracrine signaling from HR+ luminal cells, we reasoned that hormone receptor activation 

in HR+ luminal cells would be correlated with transcriptional changes in other cell types, 

representing the downstream paracrine response. Second, we predicted that we could infer 

the types of cell-cell interactions that make up each pairwise correlation by incorporating 

information about: 1) the proportion of each cell type across samples, 2) the similarity of 

each transcriptional signature, and 3) enrichment of common biological pathways across 

signatures. Thus, we sought to use the inter-sample transcriptional variability and differences 

in cell type proportions present in the dataset as a type of “natural experiment” to understand 

how the behaviors of different cell types in the breast are coordinated at the tissue level.

Based on this approach, we identify a network of coordinated activity programs in HR+ cells 

and other cell types that represent the dynamic tissue-level response of the human breast 

to changing hormone levels. Using differences in cell-type proportions across samples, 

we infer a subset of activity programs that depend on direct cell-to-cell signaling, and 

find that these direct interactions primarily comprise signaling from HR+ cells to other 

cell types. Using these data, we generate hypotheses about how person-to-person variation 

at the tissue level is linked to specific biological mechanisms at the cellular level, and 

directly test these hypotheses using flow cytometry and immunostaining in an expanded 

cohort of samples. We find that paracrine signaling from HR+ cells to neighboring cell 

types depends on both the magnitude of the ER/PR transcriptional response and the overall 

abundance of HR+ cells in the tissue. Accordingly, we demonstrate that prior pregnancy 

and obesity both lead to decreased hormone responsiveness in the breast, but act through 

distinct mechanisms: pregnancy influences the magnitude of the ER/PR signaling response 

in HR+ luminal cells, whereas obesity reduces the proportion of HR+ cells and therefore 

downstream paracrine signaling. These changes are consistent with the protective effect of 

prior pregnancy and high body mass index (BMI) against premenopausal breast cancer. 

Overall, these results provide a comprehensive map of the cycling human breast and the 

dynamic cell-cell interactions that underlie normal breast function and breast cancer risk. 

More broadly, we describe a systematic approach to unravel the functional significance of 

person-to-personal variability in the human breast at the tissue level, by linking individual 

cell types’ transcriptional signatures to higher order modules of cell-cell interactions.
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Results

Person-to-person variability in transcriptional cell state in the premenopausal human 
breast

To identify inter-individual differences in transcriptional cell state in the human breast, we 

performed scRNA-seq on 86,136 cells collected from 28 healthy premenopausal donors 

who underwent reduction mammoplasty surgery (Figure 1A, Figure S1A, and Table S1). 

To obtain an unbiased snapshot of the epithelium and stroma, we collected live (DAPI 

negative) singlet cells from all samples by fluorescence activated cell sorting (FACS) (Figure 

S1A-B, Table S2). For a subset of samples, we also collected purified epithelial cells or 

purified luminal and basal/myoepithelial cells (Figure S1A-B, Table S2). We used MULTI-

seq barcoding and in silico genotyping for sample multiplexing to minimize technical 

variability between samples (Figure S1C, Table S2, and STAR Methods) (Heaton et al., 

2020; McGinnis et al., 2019).

Sorted basal and luminal cell populations were well-resolved by UMAP (Figure S1D). 

Unsupervised clustering identified one basal/myoepithelial cluster, two luminal clusters, 

and six stromal clusters (Figure 1B). Based on the expression of known markers, the 

two luminal clusters were annotated as hormone-responsive (HR+) and secretory luminal 

cells, and the six stromal clusters were annotated as fibroblasts, vascular endothelial 

cells, lymphatic endothelial cells (“lymphatic”), smooth muscle cells/pericytes (“vascular 

accessory”), lymphocytes, and macrophages (Figure 1B and Figure S1E-F). The luminal 

populations described here closely match those identified as “hormone-responsive/mature 

luminal” and “secretory/luminal progenitor” in previous scRNA-seq analyses of the human 

breast (Bhat-Nakshatri et al., 2021; Nguyen et al., 2018). Here, we use the nomenclature 

“hormone-responsive/HR+” and “secretory” to refer to these two luminal cell types. The 

HR+ cluster was enriched for the hormone receptors ESR1 and PGR (Figure S1G), 

and other known markers such as ANKRD30A (Figures S1E-F) (Nguyen et al., 2018). 

Consistent with previous studies demonstrating variable hormone receptor expression across 

the menstrual cycle (Battersby et al., 1992), expression of ESR1 and PGR transcripts were 

sporadic and often non-overlapping. Within the HR+ luminal cluster, 22% of the cells had 

detectable levels of ESR1 or PGR, with only 2% of hormone-responsive cells expressing 

both transcripts (Figure S1H).

Beyond identifying the major cell types, single-cell analysis resolved a high degree of 

person-to-person transcriptional variability in the human breast. Following batch-correction 

(Figure S2A) (Butler et al., 2018), cells from different individuals were represented across 

all cell-type clusters (cluster entropy = 0.93, STAR Methods) (Figure S1B). However, 

despite this mixing across cell types, individuals displayed distinct transcriptional signatures 

within individual cell type clusters (Figure 1C, Figure S1C). Because we used MULTI-seq 

to multiplex samples, we were able to confirm that this variation in cell state was not 

due to technical variation, as we directly compared cells from different samples that were 

multiplexed in the same batch to cells from matched samples that were run across multiple 

batches. Cells from the same sample were more similar to each other than cells from 

Murrow et al. Page 5

Cell Syst. Author manuscript; available in PMC 2023 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different samples, regardless of the batch/day of processing (Figure S2D-E, Table S2, and 

STAR Methods).

Inferring shared transcriptional responses and direct cell-to-cell signaling interactions in 
the human breast

Since estrogen and progesterone are master regulators of breast development, and the 

levels of these hormones fluctuate across the menstrual cycle, we predicted that ER/PR 

signaling and the downstream paracrine response would be a major source of transcriptional 

heterogeneity across samples in our dataset. Based on random sampling across the menstrual 

cycle and differences in hormonal contraceptive use, we would expect to identify samples 

with varying levels of ER/PR activation in hormone-responsive (HR+) luminal cells (Figure 

1D). If these hormone-responsive cells are signaling to other cell types, such as basal 

cells, we would further expect to see a second activity program in those cells representing 

the downstream paracrine response. Finally, this “paracrine response” activity program 

should co-vary with the level of ER/PR activation across different samples (Figure 1D). 

Thus, we developed a computational pipeline, DECIPHER-seq, based on the hypothesis 

that inter-sample transcriptional variation contains meaningful information about how the 

behaviors of different cell types in the breast are coordinated at the tissue level, and that 

transcriptional signatures (“activity programs”) representing interactions between two cell 

types should correlate across samples. DECIPHER-seq uses individual pairwise correlations 

between activity programs to build a higher-order network map of coordinated cell-state 

changes in the human breast (Figure 1E).

The activities of two cell types can be coordinated in multiple ways. In the premenopausal 

breast, we expect the tissue-level response to hormones to lead to at least two types of 

coordinated interactions: direct cell-to-cell signaling interactions between HR+ cells and 

other cell types, and more complex downstream interactions involving cell-type-specific 

responses to a shared microenvironment. We predict that the first type of interaction would 

depend on the proportion of HR+ cells in the breast, whereas the second type of interaction 

would involve cell-type specific (e.g. transcriptionally distinct) activity programs that may 

be enriched for similar biological processes. Therefore, in downstream analyses, we infer 

modules that are enriched for direct cell-cell signaling interactions (i.e. modules containing 

links that depend on the proportion of one cell type across samples), and exclude modules 

driven by non-cell-type specific responses (i.e. modules containing transcriptionally similar 

activity programs) (Figure 1E). We also define individual activity programs and modules by 

performing gene set enrichment analysis, which allows us to infer higher-order functional 

interactions between multiple cell types. Finally, we uncover associations between annotated 

metadata features and sets of activity programs to infer potential sources of biological 

variation (Figure 1E). Known biology associated with paracrine signaling downstream of 

ER/PR activation provides a powerful “proof of concept” to establish that correlated changes 

in cell state can be used to identify biologically relevant cell-cell interactions.

To identify activity programs within cell types in the premenopausal breast, we performed 

non-negative matrix factorization (NMF) on each of the major cell type clusters in our 

dataset (Figure S3A). A similar approach was recently used by Pelka et al. to identify 
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multicellular immune “hubs” in colorectal cancer (Pelka et al., 2021). We used integrative 

NMF (iNMF) (Gao et al., 2021; Welch et al., 2019), which successfully corrected for batch 

differences while retaining sample-to-sample transcriptional variability (Figures S4A-B), 

and adapted a consensus approach (Kotliar et al., 2019) to identify activity programs that 

were consistent across replicates (Figure S4C, STAR Methods). The main user-supplied 

parameter in NMF is the number of programs identified (rank, K). None of the three 

commonly used heuristics for guiding the choice of K identified an obvious “elbow” in our 

dataset (Figure S4D-E). We therefore developed a metric based on the goal of identifying 

the greatest number of robust (i.e. consistent across values of K) and unique (i.e. distinct 

from other programs at the same K) activity programs (Figure S5, STAR Methods). This 

approach identified distinct “blocks” of activity programs in multiple cell types that co-

varied across samples (Figure 2A). To build a tissue-level map of these cell-cell interactions, 

we constructed a weighted network of coordinated activity programs based on the pair-wise 

Pearson correlations r (Figure S3B, Figure S6). Based on this analysis, we identified eight 

major modules comprising highly correlated transcriptional states across cell types in the 

breast (Figure 2A, S6D).

To exclude non-cell-type specific transcriptional responses—that are unlikely to be directly 

related to hormone signaling in the breast—we identified modules made up of activity 

programs with similar gene loadings. We found that modules 7 and 8 were highly 

enriched for activity programs with correlated gene loadings (Figure 2B, S7A). Programs 

in module 7 primarily consisted of ribosomal transcripts and genes involved in cellular 

respiration, whereas programs in module 8 consisted of stress response genes such as 

heat shock and chaperone proteins (Figure 2C, Figure S7C). We speculate that module 8 

represents an artifact of tissue processing rather than biologically meaningful transcriptional 

variation, since prior studies have identified a similar signature in dissociated solid tissues 

(O’Flanagan et al., 2019). However, one advantage of DECIPHER-seq is that it describes 

cells as a combination of activity programs rather than forcing cells into distinct clusters. 

Thus, samples with high expression of “dissociation-related” activity programs still contain 

biologically meaningful signals from other programs and can be retained in the analysis.

Next, we inferred modules enriched for putative direct cell-cell signaling interactions by 

identifying interactions between two nodes that depended on both the magnitude of activity 

program expression in a “sender” cell type and the proportion of that sender cell type in the 

tissue (Figure 1E, Figure 2D). We reasoned that if one cell type was signaling to another, the 

activity program representing the transcriptional response in the “receiver” cell type should 

be sensitive to the proportion of sender cells in the tissue, particularly for direct interactions 

involving short-range signaling molecules. While this simplified model does not consider 

the effects of signal amplification, cooperation between signaling pathways, or higher-order 

interactions between more than two cell types, it identifies a subset of “high-confidence” 

direct cell-cell interactions that meet a set of simple criteria. We annotated putative direct 

cell-cell signaling interactions as those where the combined effects of signaling from a 

sender cell type and its proportion in a tissue described over 50% of the variation in activity 

program expression across samples in a second “receiver” cell type, and the individual 

effects of signaling and cell proportions were not significant (Figure 2D, STAR Methods). 

As the proportion of epithelial versus stromal cells in our samples may be influenced 
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by tissue dissociation, we restricted our analysis to links between epithelial cell types as 

“sender” cells (HR+ luminal, secretory luminal, or basal cells) and all other cell types as 

“receivers”. We modeled each pairwise interaction as a linear response to three variables: 

signaling from a sender cell type (i.e. the mean expression score of an activity program in 

that cell type), the proportion of the sender cell type in the epithelium, and an interaction 

term representing the combined effects of signaling and cell proportions (Figure 2D). 

Consistent with our prediction about the nature of hormone signaling in the breast, four 

out of the five high-confidence direct cell-cell interactions (FDR < 0.01) were part of the 

same module (Module 3), and consisted of a link between HR+ luminal cells as the “sender” 

cell type and a second “receiver” cell type (Figure 2D-E).

ER/PR signaling and the downstream transcriptional response

We next performed marker and gene set enrichment analysis to define potential functions 

for activity programs within each module and identify common pathways upregulated across 

multiple activity programs in a module (STAR Methods, Table S3, Table S4). We first 

focused on Module 3 (Figure 3A, Figure S8A), as our previous analysis demonstrated that 

this module was highly enriched for putative direct cell-cell signaling interactions. Since 

estrogen and progesterone are master regulators of breast development that act via paracrine 

signaling from hormone-responsive (HR+) luminal cells to other cell types, we predicted 

that ER/PR signaling and the downstream paracrine response would represent a major 

source of direct cell-cell signaling signatures present in our dataset.

Consistent with this hypothesis, activity programs in Module 3—here annotated as the 

“ER/PR response” module—were highly enriched for genes previously found to be 

upregulated during the luteal phase of the menstrual cycle in a bulk RNA sequencing 

analysis (module enrichment p < 0.01; Figure 3B, Table S5) (Pardo et al., 2014). Activity 

program 1 in HR+ luminal cells (“ER/PR signaling”) was associated with high expression 

of the essential PR target genes WNT4 and TNFSF11 (RANKL) (Rajaram et al., 2015; 

Tanos et al., 2013), and enriched for transcripts in the Molecular Signatures Database 

Hallmark “early estrogen response” (p < 0.001) and “late estrogen response” (p < 0.01) 

gene sets (Figure 3C, Figure S8B-C) (Liberzon et al., 2015). Additional canonical hormone-

responsive genes including TFF1, AREG, PGR, and VEGFA were highly expressed across 

multiple activity programs in this module (Figure S8D) (Aupperlee et al., 2013; Hyder 

et al., 2000; LaMarca and Rosen, 2007; Ribieras et al., 1998). Consistent with previous 

work demonstrating that STAT5 acts as a cofactor to mediate signaling downstream of 

PR activation in the breast, the ER/PR response module was also enriched for genes 

involved in IL-2/STAT5 signaling (module enrichment p < 1e-4; Figure S8E). Finally, gene 

set enrichment analysis identified a rare subpopulation of proliferative secretory luminal 

cells within the ER/PR response module (Figure 3B). This “proliferation” activity program 

(Secretory program 16) was highly enriched for cell-cycle related genes previously found to 

be upregulated during the luteal phase of the menstrual cycle (Figure 3B, Table S5) (Pardo et 

al., 2014).

Our analysis also revealed that high levels of ER/PR signaling in HR+ cells (HR+ 1) 

coincided with the emergence of a second transcriptional state in a distinct subpopulation 
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of HR+ luminal cells (HR+ 18) (Figure 3C, S8F). Marker and gene set enrichment analysis 

demonstrated that HR+ program 18 was characterized by upregulation of a hypoxia gene 

signature and pro-angiogenic factors such as VEGFA and ANGPTL4 (Figure S8D, S8G). 

The identification of this “hypoxia” gene signature is consistent with a previous study using 

microdialysis of healthy human breast tissue which found that VEGF levels increased in 

the luteal phase of the menstrual cycle (Dabrosin, 2003). As estrogen response elements 

have been identified in the untranslated regions of VEGFA (Hyder et al., 2000), our results 

suggest that this increased expression may be, in part, a direct effect of hormone signaling to 

a subpopulation of HR+ cells.

To confirm these results in vivo, we performed marker analysis to identify genes specific 

to each cluster that could be used for immunostaining. We identified LRRC26 as a marker 

of the ER/PR signaling activity program HR+ 1 and P4HA1 as a marker of the hypoxia/

pro-angiogenic activity program HR+ 18 (Figure 3C). In intact human tissue sections, we 

found that LRRC26 staining marked a distinct set of luminal cells from P4HA1 (Figure 

3D). Moreover, these two subpopulations co-occurred within the same regions of the breast, 

demonstrating that they are unlikely to be an artifact of sample processing. Together, these 

results identify at least two diverging transcriptional states in HR+ cells in samples with 

high ER/PR signaling, one associated with signaling via RANK ligand and WNT4 to 

the surrounding epithelium and a second associated with a hypoxia-related/pro-angiogenic 

transcriptional signature.

We next expanded our analysis of gene activity programs to other epithelial lineages 

and stromal cell types in the “ER/PR response” module. Similar to program 18 in HR+ 

cells, multiple activity programs across other cell types in this module were enriched 

for transcripts involved in hypoxia and blood vessel remodeling including VEGFA and 

ANGPTL4 (Figure 3E, S8D, S8G). The ER/PR response module was also enriched for 

genes involved in tissue remodeling, cell migration, and ECM organization (Figure 3E, 

S8H), consistent with previously reported morphological changes in the breast epithelium 

(Ramakrishnan et al., 2002) and alterations in stromal organization and ECM composition 

(Ferguson et al., 1992; Hallberg et al., 2010) across the menstrual cycle. Stromal cell 

types in this module were characterized by upregulation of ECM and matrix remodeling 

proteins including collagens (COL3A1, COL1A2), the crosslinking enzyme LOXL2, and 

the cytokine TGFB3 (Figure S8I). Together, these results identify distinct transcriptional 

signatures for ER/PR activation in HR+ luminal cells and the downstream paracrine 

response in other cell types.

Coordinated changes in signaling states across cell types in the breast

Next, we used a similar approach to analyze the remaining five major modules—annotated 

here as “Resting state”, “Estrogen receptor (ER) activation”, “Involution-like”, “Post-

lactational involution”, and “Regulation of branching morphogenesis”—each made up of 

highly interconnected transcriptional states across cell types in the breast (Figure 4A). The 

“Resting state” module (Module 1, Figure S9A) consisted of gene expression programs 

that were negatively correlated with ER/PR signaling (HR+ program 1) in HR+ luminal 

cells (Figure 4B). Activity programs in this module were enriched for pathways involved 
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in RNA processing and transport (Figure S9B). The “ER activation” module (Module 

2, Figure S9C), consisted of activity programs linked to both the “Resting state” and 

“ER/PR response” modules (Figure 4A). This module was enriched for genes involved in 

the unfolded protein response (UPR) and endoplasmic reticulum stress (Figure 4C, Figure 

S9D-E), as well as the response to estrogen (Figure S9D). Prior work has shown that 

estrogen receptor activation leads to a rapid “anticipatory” activation of the UPR in the 

absence of accumulation of unfolded proteins (Andruska et al., 2015). In keeping with this, 

expression of canonical estrogen receptor target genes such as PGR, AREG, TFF1, and 

TFF3 was most closely associated with HR+ cell activity programs in this “ER activation” 

module as well as the “ER/PR response” module (Figure 4D).

Gene set enrichment analysis of the “Post-lactational involution” module (Module 6, Figure 

S10A) and “Involution-like” module (Module 4, Figure S10D) uncovered transcriptional 

signatures in secretory luminal cells that were similar to those that have been described 

during post-lactational involution in the mouse (Figure 4E, Figure S10E, Table S6) (Stein 

et al., 2004). Activity programs in both modules were characterized by high expression 

of death receptor ligands such as TNFSF10 (TRAIL) and TNF (Figure 4F) and of 

genes involved in the immune response, including interferon-response genes (Figure 4G). 

We annotated Module 6 as related to post-lactational involution, since activity program 

expression in secretory luminal cells within this module (secretory program 22) was highly 

associated with expression of milk proteins (Figure 4H) and genes involved in lactation 

(Figure S10B). Moreover, activity programs across all cell types in this module were 

more highly expressed in parous versus nulliparous samples (Figure S10C). This “Post-

lactational involution” module was also enriched for genes involved in the acute phase 

response, complement proteins, and defense response, consistent with pathways that have 

been previously described as upregulated during post-lactational involution in the mouse 

(Figure S10F) (Stein et al., 2004). Since prior studies in human tissue samples have shown 

that differences in lobular area and epithelial architecture between parous and nulliparous 

women persist for up to 18 months following weaning (Jindal et al., 2014), we speculate that 

activity programs in this module may be associated with the time since weaning, although 

more complete patient data would be required to formally test this hypothesis.

The “Involution-like” signature (Module 4) in secretory luminal cells was characterized 

by expression of major histocompatibility complex class II (MHC-II) molecules and the 

phagocytic receptor MARCO (Figure 4H), suggesting that these cells play a role as 

non-professional phagocytes in the clearance of apoptotic cells, similar to what has been 

described during post-lactational involution (Monks et al., 2008). As previous data have 

demonstrated that the fraction of apoptotic cells in the mammary epithelium peaks between 

the late luteal and early follicular phases of the menstrual cycle, this module may represent 

the response to falling hormone levels at the end of the menstrual cycle (Anderson et al., 

1982). TGFB3 is a major signaling molecule involved in post-lactational involution that 

enhances phagocytosis by mammary epithelial cells (Fornetti et al., 2016) suggesting that 

TGFB3 secreted by cells in response to ER/PR signaling (Figure S8I) activates a subset of 

secretory luminal cells that go on to express “involution-like” markers.
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Finally, we annotated Module 5 (Figure S10G) as associated with “Regulation of branching 

morphogenesis” based on enrichment for the gene ontology (GO) term “branching 

morphogenesis of an epithelial tube” (Figure 4I, S10H). Consistent with the critical 

role of Rac and Rho GTPases in mammary branching (Ewald, 2008), the GO term 

“regulation of GTPase activity” was also highly enriched across this module (Figure 4I). 

Activity programs in this module were also associated with genes involved in cell motility, 

mechanotransduction, and invasion—including ERBB2, PIEZO1, PLXNB2, and PLXND1 

(Figure 4J)—that have been previously described as important for epithelial remodeling 

(Gay et al., 2011; Stewart et al., 2021; Worzfeld et al., 2012).

Together, these results demonstrate how the underlying sample-to-sample variability in the 

breast can be used to infer functional connections between cell types in cell-cell interaction 

networks. Using DECIPHER-seq, we provide a comprehensive, systems-level view of the 

transcriptional changes that underlie normal breast morphogenesis.

The ER/PR signaling response of HR+ luminal cells is reduced in parous women

Previous epidemiologic analyses have demonstrated that prior pregnancy is highly protective 

against ER+/PR+ breast cancer (Fortner et al., 2019), and decreased hormone responsiveness 

following pregnancy is one proposed mechanism for this effect (Britt et al., 2007). 

Supporting this, previous studies demonstrated decreased expression of the PR effector 

WNT4 following pregnancy (Meier-Abt et al., 2014; Muenst et al., 2017). Moreover, 

in an explant culture model, estrogen consistently induced expression of the ER target 

gene AREG only in nulliparous women (Dunphy et al., 2020). As our network analysis 

suggested that activity programs in the “ER/PR response” module were dependent on both 

the magnitude of signaling from HR+ luminal cells and their proportion in the tissue (Figure 

2D-E), we hypothesized that decreased hormone responsiveness could be caused by either: 

1) a change in the magnitude of paracrine signals produced by each HR+ luminal cell, 

and/or 2) a reduction in the overall proportion of HR+ luminal cells leading to a “dilution” 

of paracrine signals following ER/PR activation. It has been difficult to distinguish between 

these mechanisms using bulk tissue-level analyses. By individually probing the single-cell 

transcriptional landscape of the HR+ luminal cell population and downstream cell types, 

scRNA-seq provided a means to directly interrogate whether parity influences the per-cell 

hormone signaling response of HR+ luminal cells.

To quantify variation in ER/PR signaling in HR+ luminal cells, we first measured the 

similarity between each sample’s single-cell distribution across HR+ activity program 1 

(ER/PR signaling). Hierarchical clustering identified two sets of samples, representing those 

with high or low ER/PR signaling (Figure 5A). Based on this, we found that while the levels 

of hormone signaling in HR+ luminal cells varied between nulliparous women—likely 

reflecting differences in hormone levels across the menstrual cycle or due to hormonal 

contraceptive use—per-cell ER/PR signaling in HR+ luminal cells was significantly reduced 

in parous women (p < 0.02, Mann-Whitney test; Figure 5B) and did not depend on other 

biological variables such as age and body mass index (Figure S11A). Equal numbers 

of individuals from each cohort were using hormonal contraceptives (n = 4 out of 11 

nulliparous or parous individuals, Table S1). For women not using hormonal contraceptives 
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(n = 7 out of 11 nulliparous or parous individuals), we modeled the expected number 

of samples with high ER/PR signaling based on a binomial distribution using average 

menstrual cycle phase lengths (Bull et al., 2019). The number of nulliparous samples with 

high ER/PR signaling was consistent with the expected number of samples in the luteal 

phase (2 of 7 samples, P = 0.24), whereas the number of parous samples with high hormone 

signaling was significantly lower than expected based on the average length of the follicular 

and luteal phases of the menstrual cycle (0 of 7 samples, P = 0.02) (Figure 5C). These 

results remained consistent when we used a model accounting for previously reported 

differences in the relative lengths of the follicular versus luteal phases in parous women 

(Figure S11B) (Barrett et al., 2014). Thus, the decreased per-cell ER/PR signaling seen in 

HR+ luminal cells from parous women cannot be explained by differences in hormonal 

contraceptive use or random sampling across the menstrual cycle.

To identify differentially expressed genes between nulliparous and parous women with high 

sensitivity, we generated a “pseudo-bulk” dataset of aggregated HR+ luminal cells from each 

sample (STAR Methods) and confirmed that parous women had decreased expression of the 

canonical hormone-responsive genes AREG, WNT4, PGR, TNFSF11 (RANKL), and TFF1 

(Figure 5D, Table S7). The progesterone receptor itself is an ER target gene (Kastner et 

al., 1990). Staining for the progesterone receptor (PR) confirmed that PR expression was 

reduced in luminal cells in parous samples in both our original sequenced cohort of samples 

(“discovery” set, p < 0.005) and a second independent cohort of samples (“validation” set, 

p < 0.05) (combined p < 0.002, Mann-Whitney test; Figure 5E). This reduction in PR 

expression was not due to broad changes in the lobular architecture of parous women, as 

our results were consistent when we restricted our analysis to either lobular (terminal ductal 

lobular units, TDLUs) or ductal regions of the epithelium (Figure S11C).

Finally, we confirmed that paracrine signaling downstream of PR activation was reduced in 

parous samples by assessing the effects of one of these genes, WNT4. As WNT4 from HR+ 

luminal cells has been shown to signal to basal cells (Rajaram et al., 2015), we performed 

co-immunostaining for the WNT effector TCF7 and basal/myoepithelial cell marker p63 

and found that TCF7 expression was markedly decreased in parous samples (overall p < 

3e-6, “discovery” set p < 1e-4, “validation” set p < 0.01, Mann-Whitney test; Figure 5F). 

Again, this decrease was not due to differences in lobular architecture, as TCF7 staining 

was reduced in both ducts and TDLUs in parous samples (Figure S11D). Together, these 

data demonstrate that ER/PR signaling is a source of transcriptional variation among HR+ 

luminal cells, that transcription along this axis (HR+ activity program 1) is reduced in 

women with prior history of pregnancy, and that these transcriptional changes in HR+ cells 

coincide with a reduction in downstream paracrine signaling to basal/myoepithelial cells.

Parity and body mass index influence epithelial cell proportions

Based on our previous finding that paracrine signaling from HR+ luminal cells to other 

epithelial cell types is strongly influenced by the proportion of HR+ cells in the epithelium 

(Figure 2D-E), we next asked whether the architectural changes associated with parity 

would contribute to systematic changes in epithelial cell proportions, and thus influence 

hormone-responsiveness across samples. The breast undergoes a major expansion of the 
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mammary epithelium during pregnancy, followed by a regression back towards the pre-

pregnant state after weaning in a process called involution. Following involution, the 

epithelial architecture remains distinct from that of women without prior pregnancy, 

consisting of larger TDLUs containing greater numbers of acini. At the same time, 

individual acini are reduced in size (Russo et al., 1992).

We focused our initial analysis on the 63,583 cells in the live/singlet and epithelial sort 

gates to get an unbiased view of how the epithelial composition of the breast changes with 

pregnancy. The proportion of basal/myoepithelial cells in the epithelium was approximately 

two-fold higher in women with prior history of pregnancy (parous) relative to women 

without prior pregnancy (nulliparous) (Figure 6A and Figure S12A; FDR < 0.02, Wald 

test with post hoc multiple-comparisons test). This effect remained significant when we 

controlled for menstrual cycle stage and/or exogenous hormones (i.e hormonal contraceptive 

use) using our previously identified “ER/PR signaling” score (Table S8). We confirmed 

these results in an expanded cohort of samples using three additional methods. First, 

we measured basal cell proportions by flow cytometry analysis of EpCAM and CD49f. 

Consistent with scRNA-seq clustering results, parity was associated with an increase in 

the average proportion of EpCAM−/CD49f+ basal cells from about 15% to about 40% 

of the epithelium (Figure 6B; overall p < 3e-5, “discovery” set p < 0.008, “validation” 

set p < 0.008, Mann-Whitney test). The proportion of basal cells did not vary with 

other discriminating factors such as BMI or hormonal contraceptive use, but was weakly 

associated with age (R2 = 0.20, p < 0.04, Wald test) (Figure S12C). To determine the relative 

effect of each factor, we performed multiple linear regression analysis and found that the 

basal cell fraction positively correlated with pregnancy history (p < 2e-05, Wald test), but 

not age (p = 0.17, Wald test) (Figure S12D, Table S9; R2 = 0.77, p < 8e-6).

Dissociation of tissue for scRNA-seq or FACS may affect measurements of cell 

composition. We therefore performed two further analyses to confirm these findings in 

intact tissue. First, we reanalyzed two previously published microarray datasets of total RNA 

isolated from core needle biopsies from either premenopausal (n = 71 parous/42 nulliparous) 

or postmenopausal (n = 79 parous/30 nulliparous) women (Peri et al., 2012; Santucci-Pereira 

et al., 2019), and confirmed a significant increase in the basal/myoepithelial markers KRT5, 

KRT14, and TP63 relative to luminal markers in parous samples (Figure S12E). Second, 

we performed immunostaining and confirmed an approximately 2-fold increase in the ratio 

of p63+ basal cells to KRT7+ luminal cells in intact tissue sections (Figure 6C; overall 

p < 4e-7, “discovery” set p < 6e-4, “validation” set p < 0.001, Mann-Whitney test). 

Immunostaining demonstrated that this change in epithelial proportions was specific to 

TDLUs rather than ducts (Figure 6C, Figure S12F). We hypothesized that the increased 

frequency of basal/myoepithelial cells observed in parous women could be explained, in 

part, by changes in TDLU architecture following pregnancy. To test this, we performed 

a morphometric comparison of TDLUs between parous and nulliparous samples in our 

dataset. Consistent with previous reports (Russo et al., 1992), we observed a marked 

decrease in the average diameter of individual acini in parous women (Figure S12G; p < 

4e-5, Mann-Whitney test). Additionally, we found that the average thickness of the luminal 

cell layer increased in proportion to acinus diameter (Figure S12H; R2 = 0.75, p < 3e-16) 

and was thus higher in nulliparous women (Figure S12I; p < 7e-7, Mann-Whitney test). 
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These results were independent of ER/PR signaling, and thus cannot be explained by 

differences in menstrual cycle stage (Table S10).

To determine how these parameters influence the relative proportions of each cell type, we 

implemented a simple geometric model (Figure 6D, STAR Methods). When normalized to 

cross-sectional area (for luminal cells) or perimeter (for basal cells), there was no change 

in mean luminal cell density or basal cell coverage between parous versus nulliparous 

samples (Figure S12J). Across all samples, the number of basal or luminal cells per 

acinus was proportional to the space available for each cell type (Figure S12K). Geometric 

modeling accurately predicted the relationship between the luminal area and outer perimeter 

for individual acini (mean absolute percentage error loss = 6.6%) and demonstrated that 

as individual acini increased in size, the space available for luminal cells (luminal area) 

increased at a faster rate than the space available for basal cells (luminal perimeter) (Figure 

6D). Thus, the observed differences in epithelial cell proportions between parous and 

nulliparous samples are not due to a change in basal/myoepithelial coverage, but rather a 

change in the overall morphology of the luminal layer (e.g. thickness, diameter) and relative 

surface area of individual acini in parous women.

While parity was associated with a decreased overall proportion of luminal cells in the 

epithelium, the proportions of individual HR+ and secretory subtypes within the luminal 

compartment were highly variable. Consistent with previous work (Meier-Abt et al., 2014; 

Muenst et al., 2017), we observed reduced frequencies of HR+ luminal cells in parous 

women. However, the proportion of secretory luminal cells was not associated with parity 

(Figure 6A). Together, these data suggested that additional factors influence the relative 

proportion of HR+ versus secretory cells within the luminal compartment. Therefore, we 

performed linear regression analysis to test for the effects of parity, BMI, age, and hormonal 

contraceptive use on the proportions of HR+ versus secretory luminal cells. We found that 

the relative proportion of HR+ luminal cells versus secretory luminal cells was reduced 

in obese (BMI ≥ 30) women (Figure 6A, Figure S12B; FDR < 0.0002, Wald test with 

post hoc multiple-comparisons test) and did not vary significantly with other discriminating 

factors such as age, reproductive history, or hormonal contraceptive use (Figure S13A; Wald 

test with post hoc multiple-comparisons test). On a continuous scale, every 12 units of 

BMI was associated with a 2-fold reduction in the proportion of HR+ cells in the luminal 

compartment (Figure S13B; FDR < 0.001, Wald test with post hoc multiple-comparisons 

test). Similar to our previous results, this effect remained significant when we controlled for 

ER/PR signaling (Table S11).

One limitation of this dataset derived from reduction mammoplasty tissue was that all 

samples classified as non-obese were from nulliparous women less than 24 years old, 

whereas obese samples were more likely to be from parous and older age women (Table 

S1, Figure S13C). Therefore, we performed scRNA-seq analysis on an independent set of 

breast core biopsies from healthy premenopausal women who donated tissue to the Komen 

Tissue Bank (KTB) (Figure S13D-E; Table S2). In contrast with the reduction mammoplasty 

cohort, the KTB cohort consisted of older (37-47 years) parous samples with BMI in the 

normal or overweight range (BMI 20.7-28.3) (Table S1, Figure S13C). Using the reduction 

mammoplasty cohort as a training set, we accurately predicted the proportion of HR+ 
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luminal cells in the KTB cohort as a function of BMI with a mean absolute percentage error 

of 14.8% (Figure S13F).

We next attempted to measure the relative proportion of the hormone-responsive luminal 

lineage in situ by performing immunostaining for ER and PR. As in our previous analysis, 

we included samples from both our original sequenced cohort of samples (“discovery” 

set) and a second independent cohort of samples (“validation” set). The “validation” set 

was well-balanced across age and BMI, overcoming a limitation of the “discovery” set 

(Figure S12G). There was a weak trend toward decreased expression of ER and/or PR 

with increasing BMI, but the change was not statistically significant in the “validation” 

set or the combined cohort (Figure S13H). Consistent with the heterogeneous ESR1 and 

PGR transcript expression we observed in scRNA-seq data (Figure S1H), ER and PR 

protein expression by immunostaining was variable and partly non-overlapping, ranging 

from 11-71% overlap (Figure S13H, bottom panel). We hypothesized that the variability in 

hormone receptor staining was due to changes in ER/PR expression, stability, and nuclear 

localization that have all been previously observed based on hormone receptor activation 

status (Battersby et al., 1992; Métivier et al., 2003; Petz and Nardulli, 2000). Based on this, 

we predicted that ER transcript and protein levels would co-vary across samples due to the 

overall proportion of HR+ luminal cells and their hormonal microenvironment, but would be 

stochastically expressed in individual cells at any one time due to fluctuations in mRNA and 

protein expression, localization, and stability. To test this, we performed co-immunostaining 

and RNA-FISH and confirmed that although ER transcript and protein levels correlate 

across tissue sections (R2 = 0.60, p < 0.01), they do not correlate on a per-cell basis 

(p = 0.63, Wilcoxon signed-rank test)—on average, only 31% of cells expressing ESR1 

transcript also expressed ER protein (Figure S13I). Expression of ESR1 or PGR transcript 

was highly specific for cells in the HR+ luminal cluster, although the sensitivity of each 

transcript for the HR+ cluster was low and varied across individuals (Figure S13J). Thus, 

these data demonstrate that immunostaining or RNA-FISH for nuclear hormone receptors 

underestimates the fraction of cells in the HR+ lineage and that lack of ER/PR expression 

cannot be used to reliably define a cell as part of the secretory versus HR+ luminal cell 

lineages.

On the basis of these results, we sought to identify another marker to distinguish between 

the luminal lineages, and identified keratin 23 (KRT23) as highly enriched in the secretory 

luminal cell cluster (Figure 6E), as was also reported by a previous scRNA-seq study 

(Nguyen et al., 2018). Immunohistochemistry for KRT23 and PR or ER confirmed that 

these proteins are expressed in mutually exclusive luminal populations (Figure 6F, and 

Figure S13K-L). KRT23 thus represents a discriminatory marker between the two luminal 

populations. Staining in an expanded cohort of intact tissue sections confirmed that the 

proportion of KRT23+ secretory luminal cells increased by about 20% for every 10-unit 

increase in BMI (Figure 6G; overall R2 = 0.68, p < 1e-8; “discovery” set R2 = 0.76, p < 

3e-5; “validation” set R2 = 0.70, p < 3e-5). Using multiple regression analysis, we confirmed 

that the proportion of KRT23-positive cells in the luminal compartment was significantly 

associated with BMI, but not parity or age (Figure S13M). Together, these data demonstrate 

that there are two independent effects of reproductive history and body weight on cell 
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proportions in the mammary epithelium: parity affects the ratio of basal to luminal cells 

whereas BMI affects the ratio of HR+ versus secretory luminal cells (Figure 6H).

Biological variables impact coordinated changes in signaling states across cell types in 
the breast

Finally, we used the cell-cell interaction network identified by DECIPHER-seq to better 

understand how biological variables—such as BMI, parity, and hormonal contraceptive 

use—affect cell-cell interactions in the breast. Based on the above results, we propose 

that parity and BMI affect the hormone responsiveness of the breast through two distinct 

mechanisms: parity decreases the per-cell ER/PR signaling response in HR+ luminal 

cells, whereas BMI indirectly affects hormone signaling by reducing the proportion of 

HR+ luminal cells in the mammary epithelium (Figure 7A). Consistent with this, both 

prior pregnancy and increasing body mass index were negatively associated with activity 

programs across the “ER/PR response” module and positively correlated with programs in 

the “resting state” module (Figure 7B, Figure S14A). To confirm these results in intact 

tissue sections, we performed immunostaining for PR as a measure of ER activation in 

HR+ luminal cells, and for TCF7 as a measure of the downstream paracrine response 

(WNT activation) in basal cells. As expected, we found that PR expression in the 

hormone-responsive (KRT23-) luminal cell subpopulation was not significantly different 

between non-obese and obese women (p = 0.17, Mann-Whitney test; Figure 7C), but that 

WNT signaling in basal cells was markedly reduced in obese samples (p < 3e-5, Mann-

Whitney test; Figure 7D). We confirmed these results using multiple linear regression to 

simultaneously test the effects of prior pregnancy and obesity. Whereas PR expression in 

hormone-responsive (KRT23−) cells was dependent on parity but not obesity, downstream 

WNT signaling in basal cells was dependent on both variables (Figure 7E).

Second, we took advantage of the different dynamics of serum estrogen and progestin/

progesterone in donors using combined hormonal contraceptives versus those undergoing 

natural menstrual cycles (Figure S14B) to ask whether activity program expression in the 

“Involution-like” module (Module 4) was influenced by the hormonal microenvironment. 

The natural menstrual cycle is characterized by an initial rise in estrogen levels during 

the follicular phase of the menstrual cycle followed by a combined surge of estrogen 

and progesterone during the luteal phase. In contrast, following oral contraceptive use, 

estrogen and progestin levels rise simultaneously, reach peak concentrations in the blood 

about 2 hours following ingestion, and return fairly rapidly to a steady state level over 

the following 22 hours (Figure S14B) (Hampson, 2020). We found that activity programs 

in the “involution-like” module were highly correlated with the use of combined (estrogen/

progestin) oral contraceptives (Figure S14C-D). These results suggest that the “involution-

like” phenotype is influenced by hormone levels and dynamics (since exogenous hormones 

are associated with increased expression across this module), but does not require the precise 

sequential estrogen/progesterone dynamics observed during natural menstrual cycles (since 

estrogen and progesterone rise simultaneously upon oral contraceptive ingestion). Overall, 

these results demonstrate how sample-to-sample variation in the breast can be used to 

predict how specific changes in transcriptional cell state and cell type proportions influence 
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cell-cell interactions in a tissue, and to understand some of the sources of biological 

variation (e.g. metadata factors) that control the overall state of the tissue (Figure 7F).

Discussion

In this study, we leverage inter-sample transcriptional variation in the breast to identify a 

set of highly correlated “activity programs” representing the in situ response to hormone 

receptor activation in HR+ cells and the effects of downstream paracrine signaling in other 

cell types. We uncover additional correlated programs representing the dynamic response of 

the breast to changing hormone levels (e.g. “involution-like”). Furthermore, we show that 

person-to-person heterogeneity in hormone-responsiveness in the breast is directly linked 

to two factors known to be correlated with premenopausal breast cancer risk—reproductive 

history and body mass index.

Cumulative lifetime hormone exposure is a major determinant of breast cancer risk 

(Collaborative Group on Hormonal Factors in Breast Cancer, 2012). Here, we mapped 

the coordinated changes in cell state that occur in response to paracrine signaling from 

HR+ luminal cells. Notably, many of these changes closely mimic those seen during the 

pregnancy/involution cycle that have been linked to a transient increased breast cancer 

risk following pregnancy (Lyons et al., 2011; O’Brien et al., 2010; Schedin et al., 

2007). First, we identify a proliferative gene signature in secretory luminal cells that is 

highly correlated with hormone signaling in HR+ luminal cells, consistent with previous 

studies demonstrating that TNFSF11 (RANKL) and WNT control progesterone-mediated 

epithelial proliferation (Joshi et al., 2015). Second, we identify previously uncharacterized 

subpopulations of HR+ and secretory luminal cells in the cycling premenopausal breast 

with transcriptional signatures closely matching that described for post-lactational involution 

(Clarkson et al., 2004; Stein et al., 2004), including upregulation of immune mediators, 

MHC class II molecules, and the phagocytic receptor MARCO. This idea that the menstrual 

cycle mimics a miniature pregnancy/involution cycle is consistent with studies showing 

that the fraction of apoptotic cells in the epithelium peaks between the late luteal and 

early follicular phases (Anderson et al., 1982). We also observe upregulation of hypoxic 

gene signatures in multiple epithelial and stromal cell types that are highly correlated 

with hormone signaling in HR+ cells. A previous study identified these same pathways as 

highly enriched during post-lactational involution in the mouse. More importantly from the 

perspective of breast cancer risk, this “hypoxia/pro-angiogenic” signature identified breast 

cancers with increased metastatic activity (Stein et al., 2009), suggesting that these pathways 

can be co-opted by cancer cells to support a permissive tumor microenvironment. Thus, 

we speculate that many of the same mechanisms underlie both the short-term increased 

breast cancer risk following pregnancy and the lifetime increased risk due to total number of 

menstrual cycles.

Pregnancy has two opposing effects on breast cancer risk: although breast cancer risk is 

increased for the first 5-10 years following pregnancy, it also has a pronounced long-term 

protective effect, with up to a 50% reduction in ER/PR+ breast cancer risk for women with 

multiple full-term pregnancies at a young age (Britt et al., 2007). The cellular basis for this 

long-term protective effect remains an area of active research. Our analysis revealed that 
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parity is associated with a stark increase in the proportion of basal and/or myoepithelial 

cells within the breast epithelium, as well as decreased hormone signaling in HR+ luminal 

cells. While the precise role of myoepithelial cells during cancer progression remains an 

active area of research (Risom et al., 2022), previous work has described two properties of 

myoepithelial cells consistent with a tumor-protective effect: they are resistant to malignant 

transformation (Koren et al., 2015; Proia et al., 2011) and may also act as a dynamic 

barrier to prevent tumor cell invasion (Sirka et al., 2018; Sternlicht et al., 1997). Thus, our 

data support the notion that pregnancy protects against breast cancer risk through multiple 

mechanisms: by decreasing the relative frequency of luminal cells—the tumor cell-of-origin 

for most breast cancer subtypes (Keller et al., 2012; Melchor et al., 2014; Molyneux et 

al., 2010), by reducing the overall hormone-responsiveness of HR+ cells and subsequent 

pro-tumorigenic microenvironmental changes, and by suppressing progression to invasive 

carcinoma (Sirka et al., 2018; Sternlicht et al., 1997).

Finally, we found that paracrine signaling from HR+ cells to other cell types depends on 

both the magnitude of signaling from HR+ cells and the overall proportion of HR+ cells in 

the epithelium. Prior pregnancy and obesity are specifically associated with a reduced risk 

of ER+/PR+ breast cancer in premenopausal women (Fortner et al., 2019; Premenopausal 

Breast Cancer Collaborative Group et al., 2018), and our data are consistent with a model 

that these biological variables lead to reduced paracrine signaling downstream of estrogen 

and progesterone via two distinct mechanisms. First, parity leads to a reduced per-cell 

hormone signaling response in HR+ luminal cells. Second, we identify a marked decrease in 

the ratio of HR+ cells relative to secretory luminal cells with increasing BMI. Both changes 

are associated with reduced paracrine signaling across the ER/PR response module.

Several potential mechanisms could account for the decreased hormone signaling response 

observed in HR+ luminal cells in parous women. Previous studies have identified small 

reductions in the levels of estrogen metabolites in the urine of parous women, which may 

be indicative of lower serum levels of estradiol (Barrett et al., 2014). Since progesterone 

receptor expression is induced downstream of estrogen receptor activation, lower levels 

of serum estradiol could lead to reduced signaling through both ER and PR. A second 

possibility is that structural differences in the mammary epithelium of parous women, such 

as increased lobular density (Russo et al., 1992) or alterations in vascularization could lead 

to decreased access of hormones to HR+ luminal cells. Finally, changes in the differentiation 

state or epigenetic remodeling of HR+ luminal cells following pregnancy could lead to a 

direct change in the ability of these cells to respond to hormone. Interestingly, recent work 

has shown that matrix stiffness and/or compressive stress is required for maintenance of 

ER expression in explant cultures, via H3K27me3-dependent epigenetic regulation (Munne 

et al., 2022), and previous work has shown that parity is associated with decreased 

mammographic density (Vachon et al., 2000). Further studies are required to determine 

whether the decreased hormone response of HR+ luminal cells in parous women is a result 

of these or other processes.

A key insight of our computational approach is that a subset of “high confidence” direct 

cell-cell interactions can be inferred based on their dependence on the proportion of one 

cell type in the tissue. Because the DECIPHER-seq workflow corrects for batch effects 
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while maintaining meaningful biological variation and optimizes both the granularity and 

robustness of identified activity programs, it has the potential to be flexibly adapted to a 

broad range of preexisting single-cell datasets, or across datasets from multiple sources. 

Further, we find that the coordinated activity programs in our dataset naturally self-organize 

into a cycle, precisely as we would expect based on hormone fluctuations across menstrual 

cycles. This raises the intriguing possibility that a similar computational approach could 

reveal cyclical cellular programs in other tissue types in the body, such as circadian rhythms, 

feeding cycles, or the response to wounding. While we focus on single-cell transcriptional 

data in this study, integrative NMF has also been applied to multi-omic datasets containing 

spatial or epigenetic data together with transcriptional information (Welch et al., 2019, Gao 

et al. 2021).

In summary, using scRNA-seq of a unique cohort of 28 healthy premenopausal women, 

we provide a comprehensive, systems-level view of the cellular and transcriptional variation 

within the human breast, which profoundly affects the response to hormones and may 

impact breast cancer risk. As the human breast is one of the only human organs that 

undergoes repeated cycles of morphogenesis and involution, this study serves as a roadmap 

for deeper interrogation of the cell state changes associated with hormone dynamics. Finally, 

it provides a foundation for future systems-level studies dissecting how the paracrine 

communication networks downstream of hormone signaling are altered during ER+/PR+ 

breast cancer progression.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Zev Gartner (zev.gartner@ucsf.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Single-cell RNA-seq data (raw FASTQ files, processed 

gene expression and barcode count matrices, and de-identified patient metadata) have been 

deposited at the Gene Expression Omnibus (GSE198732) and are publicly available as of 

the date of publication. Accession numbers are listed in the key resources table. All original 

code has been deposited at Zenodo and Github and is publicly available as of the date of 

publication. DOIs are listed in the key resources table. Any additional information required 

to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissue samples—Reduction mammoplasty tissue samples were obtained from 

the Cooperative Human Tissue Network (CHTN, Vanderbilt University Medical Center, 

Nashville, TN) and Kaiser Permanente Northern California (KPNC, Oakland, CA). Core 

biopsy samples were provided by the Susan G. Komen Tissue Bank (KTB). Tissues were 

obtained as de-identified samples and all subjects provided written informed consent. When 

possible, medical reports or other patient data were obtained with personally identifiable 
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information redacted. Use of breast tissue specimens to conduct the studies described above 

were approved by the UCSF Committee on Human Research under Institutional Review 

Board protocols 16-18865 and 10-01532. Donor information for all tissue specimens and 

their use in scRNA-seq, flow cytometry, and immunostaining experiments is detailed in 

Table S1.

METHOD DETAILS

Tissue processing—A portion of each sample was fixed in formalin and paraffin-

embedded using standard procedures. The remainder was dissociated mechanically and 

enzymatically to obtain epithelial-enriched tissue fragments. Tissue was minced, followed 

by enzymatic dissociation with 200 U/mL collagenase type III (Worthington CLS-3, 

samples RM108 - RM203) or collagenase type II (Worthington CLS-2, samples RM216 - 

RM314) and 100 U/mL hyaluronidase (Sigma H3506) in RPMI 1640 with HEPES (Corning 

10-041-CV) plus 10% (v/v) dialyzed FBS, penicillin, streptomycin, amphotericin B (Lonza 

17-836E), and gentamicin (Lonza 17-518) at 37 °C for 16 h. For KTB samples, the resulting 

cell suspension containing single cells and stroma was frozen and maintained at −180 

°C until use. For reduction mammoplasty samples, the cell suspension was centrifuged 

at 400 × g for 10 min and resuspended in RPMI 1640 plus 10% FBS. Digested tissue 

fragments enriched for epithelial cells and closely-associated stroma were collected after 

serial filtration through 150 μm and 40 μm nylon mesh strainers. Following centrifugation, 

tissue fragments and filtrate were frozen and maintained at −180 °C until use.

Dissociation to single cells—The day of sorting, epithelial-enriched tissue fragments 

from the 150 μm fraction, or total banked material for the KTB samples, were thawed 

and digested to single cells by trituration in 0.05% trypsin for 2 min, followed by 

trituration in 5 U/mL dispase (Stem Cell Technologies 07913) plus 1 mg/mL DNase I 

(Stem Cell Technologies 07900) for 2 min. Single-cell suspensions were resuspended in 

HBSS supplemented with 2% FBS, filtered through a 40 μm cell strainer, and pelleted at 

400 × g for 5 min. The pellets were resuspended in 10 mL of complete mammary epithelial 

growth medium with 2% v/v FBS without GA-1000 (MEGM; Lonza CC-3150). Cells were 

incubated at 37 °C for 1 h, rotating on a hula mixer, to regenerate surface antigens.

MULTI-seq sample barcoding (Batches 3, 4, and KTB)—Single-cell suspensions 

were pelleted at 400 x g for 5 min and washed once with 10 mL mammary epithelial basal 

medium (MEBM; Lonza CC-3151). For each sample, one million cells were aliquoted, 

washed a second time with 200 μL MEBM, and resuspended in 90 μL of a 200 nM 

solution containing equimolar amounts of anchor lipid-modified oligonucleotides (LMOs) 

and sample barcode oligonucleotides in phosphate buffered saline (PBS). Following a 5-

minute incubation on ice with anchor-LMO/barcode, 10 uL of 2 μM co-anchor LMO in PBS 

was added to each sample (for a final concentration of 200 nM), and wells were mixed by 

gentle pipetting and incubated for an additional 5 min on ice. Following incubation, cells 

were washed twice in 200 μL PBS with 1% BSA and pooled together into a single 15 mL 

conical tube containing 10 mL PBS/1% BSA. All subsequent steps were performed on ice.
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Sorting for scRNA-seq—Cells were pelleted at 400 x g for 5 min and resuspended 

in PBS/1% BSA at a concentration of 1 million cells per 100 μL, and incubated with 

primary antibodies. Cells were stained with Alexa 488-conjugated anti-CD49f to isolate 

basal/myoepithelial cells, PE-conjugated anti-EpCAM to isolate luminal epithelial cells, and 

biotinylated antibodies for lineage markers CD2, CD3, CD16, CD64, CD31, and CD45 to 

remove hematopoietic (CD16/CD64-positive), endothelial (CD31-positive), and leukocytic 

(CD2/CD3/CD45-positive) lineages by negative selection (Lin−). Sequential incubation with 

primary antibodies was performed for 30 min on ice in PBS/1% BSA, and cells were 

washed with cold PBS/1% BSA. Biotinylated primary antibodies were detected with a 

streptavidin-Brilliant Violet 785 conjugate. After incubation, cells were washed once and 

resuspended in PBS/1% BSA plus 1 ug/mL DAPI for live/dead discrimination. Cell sorting 

was performed on a FACSAria II cell sorter. Live/singlet (DAPI−), luminal (DAPI−/Lin−/

CD49f−/EpCAM+), basal/myoepithelial (DAPI−/Lin−/CD49f−/EpCAM−), or total epithelial 

(pooled luminal and basal/myoepithelial) cells were collected for each sample as specified 

in table S2 and resuspended in PBS/1% BSA at a concentration of 1000 cells/μL. For Batch 

4, an aliquot of MULTI-seq barcoded cells were separately stained with biotinylated-CD45/

streptavidin-Brilliant Violet 785 to enrich for immune cells, and sorted CD45+ cells were 

pooled with the Live/singlet fraction as specified in Table S2.

Antibodies and dilutions used (μL/million cells) were as follows: FITC-EpCAM (1.5 μL, 

Stem Cell Technologies 60136FI, clone VU1D9), APC-CD49f (4 μL, BioLegend 313616, 

clone GoH3), Biotin-CD2 (8 μL; BD 555325, clone RPA-2.10), Biotin-CD3 (8 μL; BD 

55338, clone HIT3a), Biotin-CD16 (8 μL; BD 555405, clone 3G8), Biotin-CD64 (8 μL; 

BD 555526, clone 10.1), Biotin-CD31 (4 μL; Invitrogen MHCD31154, clone MBC78.2), 

Biotin-CD45 (1 μL; BioLegend 304004, clone HI30), BV785-Streptavidin (1 μL; BioLegend 

405249).

scRNA-seq library preparation—cDNA libraries were prepared using the 10X 

Genomics Single Cell V2 (CG00052 Single Cell 3’ Reagent Kit v2: User Guide Rev B) 

or Single Cell V3 (CG000183 Single Cell 3’ Reagent Kit v3: User Guide Rev B) standard 

workflows as specified in Table S2. Library concentrations were quantified using high 

sensitivity DNA Bioanalyzer chips (Agilent, 5067-4626) and Qubit dsDNA HS Assay Kit 

(Thermo Fisher Q32851). Individual libraries were sequenced on a lane of a HiSeq4500 or 

NovaSeq, as specified in table S2, for an average of ~150,000 reads/cell.

Expression library pre-processing—Cell Ranger (10x Genomics) was used to align 

sequences, filter data and count unique molecular identifiers (UMIs). Data were mapped 

to the human reference genome GRCh37 (hg19). The resulting sequencing statistics are 

summarized in Table S2. For samples run across multiple 10X lanes, the cellranger aggr 

pipeline (10X Genomics) was used to normalize read depth across droplet microfluidic lanes 

(see “sort gate” information in Table S2).

Cell calling—For V2 experiments, cell-associated barcodes were defined using Cell 

Ranger. For V3/MULTI-seq experiments, cells were defined as barcodes associated with 

≥600 total RNA UMIs and ≤20% of reads mapping to mitochondrial genes. We manually 

selected 600 RNA UMIs and 20% mitochondrial genes to exclude low-quality cell barcodes.
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MULTI-seq barcode library pre-processing—Raw barcode FASTQs were converted 

to barcode UMI count matrices as described previously (McGinnis et al., 2019b). Briefly, 

FASTQs were parsed to discard reads where: 1) the first 16 bases of read 1 did not match 

a list of cell barcodes generated as described above, and 2) the first 8 bases of read 2 did 

not align with any reference barcode with less than 1 mismatch. Duplicated UMIs, defined 

as reads with the same cell barcode where bases 17-28 (V3 chemistry) of read 2 exactly 

matched, were removed to produce a final barcode UMI count matrix.

Sample demultiplexing—Barcode UMI count matrices were used to classify cells using 

the MULTI-seq classification suite (McGinnis et al., 2019b). In Batch 3, sample RM192 

was poorly labeled for the lane of cells from the epithelial cell sort gate. Therefore, to 

reduce spurious doublet calls in this dataset, we manually set UMI counts which were <10 

for this barcode to zero. For all experiments, raw barcode reads were log2-transformed and 

mean-centered, the top and bottom 0.1% of values for each barcode were excluded, and a 

probability density function (PDF) was constructed for each barcode. Next, all local maxima 

were computed for each PDF, and the negative and positive maxima were selected. To 

define a threshold between these two maxima, we iterated across 0.02-quantile increments 

and chose the quantile maximizing the number of singlet classifications, defined as cells 

surpassing the threshold for a single barcode. Multiplets were defined as cells surpassing 

two or more thresholds, and unlabeled cells were defined as cells surpassing zero thresholds. 

Unclassified cells were removed and the procedure was repeated until all remaining cells 

were classified.

To classify cells that were identified as unlabeled by MULTI-seq, we used the SoupOrCell 

pipeline (Heaton et al., 2020) to assign cells to different individuals based on single 

nucleotide polymorphisms (SNPs). For each dataset, we set the number of clusters (k) 

to the total number of samples in that experiment. To avoid local minima, SoupOrCell 

restarts clustering multiple times and takes the solution that minimizes the loss function. For 

Batch 3, we chose the number of restarts that produced less than a 1.5% misclassification 

rate between MULTI-seq and SoupOrCell singlet sample classifications (Live/singlet: 

30 restarts/1.2% mismatch rate; Epithelial: 75 restarts/1.5% mismatch rate). SoupOrCell 

classification performed more poorly across parameters for Batch 4 (Live/singlet plus 

CD45+: 50 restarts/8.1 % mismatch rate, 75 restarts/4.8% mismatch rate; Epithelial: 50 

restarts/8.6% mismatch rate, 75 restarts/14.9% mismatch rate, 100 restarts/4.1% mismatch 

rate). Therefore, for these datasets we used sample classifications that were consistent across 

two restarts (Live/singlet plus CD45+: consistent calls across 50 and 75 restarts/0.4% overall 

mismatch rate; Epithelial: consistent calls across 50 and 100 restarts/1% overall mismatch 

rate) to identify high-confidence singlets.

Dataset integration and cell type identification—Cell type identification was 

performed using the Seurat package (version 3.1.5) in R (Stuart et al., 2019). To identify 

and remove doublets formed from cells from the same sample that would not be identified 

by MULTI-seq or SoupOrCell, we filtered each lane to remove cells with greater than 

20% of reads mapping to mitochondrial genes and ran DoubletFinder (version 2.0) on each 

data subset (McGinnis et al., 2019a), using parameters identified by the ‘paramSweep_v3’ 
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function. Aggregated data for singlet cells for each batch was filtered to remove cells that 

had fewer than 200 genes and genes that appeared in fewer than 3 cells. Cells with a Z score 

of 4 or greater for the total number of genes expressed were presumed to be doublets and 

removed from analysis. The remaining cells were log transformed and scaled to a total of 

1e4 molecules per cell, and the top 2000 most variable genes based on variance stabilizing 

transformation were identified for each batch (Hafemeister and Satija, 2019). Data from 

all four batches were integrated using the standard workflow and default parameters 

from Seurat v3 (Stuart et al., 2019). This data integration workflow identifies pairwise 

correspondences between cells across datasets and uses these anchors to transform datasets 

into a shared expression space. Following dataset integration, the resulting batch-corrected 

expression matrix was scaled, and principal component (PC) analysis was performed using 

the identified integration genes. The top 28 statistically significant PCs as determined by 

visual inspection of elbow plots were used as an input for UMAP visualization and k-nearest 

neighbor (KNN) modularity optimization-based clustering using Seurat’s ‘FindNeighbors’ 

and ‘FindClusters’ functions.

PC analysis of individual cell types—To perform principal component analysis on 

individual cell types, we subset out each cluster from the integrated dataset and repeated the 

standard workflow from Seurat v3 to identify integration genes specific to this cell type. The 

resulting batch-corrected expression matrices were scaled, and PC analysis was performed 

using the identified integration genes.

Activity program identification in each cell type—To identify gene expression 

signatures, or “activity programs”, within individual cell types, we subset raw counts data 

from each of the five most abundant cell type clusters (HR+ luminal cells, secretory luminal 

cells, basal/myoepithelial cells, fibroblasts, and endothelial cells) and performed matrix 

factorization. We chose to perform matrix factorization independently on each cell type 

rather than on the combined dataset, as preliminary analyses demonstrated that the number 

of gene programs identified for each cell type was highly dependent on the relative sizes of 

each cluster in the combined dataset. To correct for batch differences between samples run 

on different days, we used the LIGER package in R to perform integrative NMF (iNMF) 

(Gao et al., 2021; Welch et al., 2019), and performed subsequent gene set enrichment 

analyses on shared, rather than batch-specific, gene loadings for each activity program. 

Activity program expression in cells from the same sample run across different batches 

was more similar than program expression in cells from different samples processed in the 

same batch, demonstrating that this approach successfully corrected for batch differences 

while retaining sample-to-sample transcriptional variability (Figures S4A-B). To avoid 

identification of gene signatures dominated by highly-expressed transcripts, we normalized 

the raw counts matrix for each cell based on its total expression, multiplied by a scale 

factor of 1e4, and log-transformed and scaled the result without centering. The resulting 

datasets (one for each cell type) were decomposed using the ‘online_iNMF’ function from 

LIGER (Gao et al., 2021). Online iNMF uses an online learning algorithm to iteratively 

cycle through the data in small mini-batches, greatly increasing convergence times for large 

datasets. We performed 10 complete passes (‘max.epochs’ parameter) through each dataset, 

and chose the mini-batch size (‘miniBatch_size’) by rounding down to the nearest 500 from 
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the smallest batch size in that cell type (HR+ luminal cells: 1000, Secretory luminal cells: 

2000, Basal cells: 500, Fibroblasts: 500, Endothelial cells: 500).

Since solutions to NMF are non-unique, we adapted a consensus matrix factorization 

approach from (Kotliar et al., 2019) to identify activity programs that were consistent across 

multiple replicates. For each cell type, we ran 20 replicates of iNMF on the same normalized 

dataset with the same choice of rank K, starting from different random seeds. We row 

normalized the resulting 20 shared gene loading matrices (W, each of dimension Kprograms 

X Ngenes) to have an L2 norm of one. Following normalization, we combined the shared 

gene loading matrices from each matrix into a 20Kprograms X Ngenes dimensional matrix, 

where each row represents the gene loading from one activity program in one replicate. 

Next, we filtered out programs with a high mean Euclidean distance from their 6 nearest 

neighbors (30% of replicates), using the third quartile plus 1.5 times the interquartile range 

(q0.75 + 1.5·IQR) as an outlier threshold. After filtering outlier programs, we grouped the 

rows of the resulting matrix using k-means clustering, with the number of clusters set to the 

chosen iNMF rank K. Next, we collapsed each group of shared gene loadings to a single 

consensus vector by taking the median value for each gene across activity programs in that 

cluster, to produce a final KPrograms X Ncells consensus program matrix, W. We performed 

the same row normalization on the batch-specific gene loading matrices, filtered programs 

identified as outliers in the shared gene loading matrix, and collapsed groups of batch gene 

loadings into a consensus vector by taking the median value for each gene across programs 

in that cluster to produce consensus batch matrices Vbatch, each of dimension KPrograms 

X Ngenes. Finally, we solve for the consensus cell expression score matrix H (Xcells X 

Kprograms), by using non-negative least squares initialized with the consensus shared (W) 

and batch-specific (Vbatch) gene loading matrices.

A key parameter in matrix factorization is the choice of rank K. This parameter determines 

the granularity of identified activity programs. Three commonly used heuristics for guiding 

the optimum choice of K are: 1) minimizing the Frobenius reconstruction error of the final 

solution (Kotliar et al., 2019), 2) maximizing the median Kullback-Leibler (KL) divergence 

of activity program loadings across cells relative to a uniform distribution (Welch et al., 

2019), and 3) estimating the “dimensionality” of the dataset via elbow plot of the proportion 

of variance explained across principal components (Kotliar et al., 2019). We propose a 

metric for choosing an optimum K, based on the goal of identifying the greatest number 

of activity programs that are robust (i.e. consistent across multiple choices of K) and 

unique (i.e. distinct from other programs at a particular choice of K). First, we perform 

consensus iNMF as described above over a range of ranks, with the sweep range guided 

by the heuristics described above. Here, we chose a range of 2 to 40 for all cell types. 

Next, we use the ‘fastme.bal’ function in the ‘ape’ R package to build a balanced minimum 

evolution phylogenetic tree based on the correlation matrix of the gene loadings for activity 

programs across all ranks (Desper and Gascuel, 2002). For each cell type, we partitioned 

the resulting phylogenetic tree into clusters using an empirical distance threshold to define 

distinct groups of activity programs (Prosperi et al., 2011) (Figure S5A-B). To identify 

partitions, we first artificially rooted each tree by taking the median of the activity programs 

at K = 2. Next, we identified clusters by performing a depth-first search starting from this 
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artificial root, stopping at sub-trees where the median value of the pairwise patristic distance 

between all programs in that sub-tree was below an empirically determined threshold of 

0.3 (see Figure S5B). To filter out “outlier” activity programs that are expressed in only 

rare contaminating cells (e.g. a “fibroblast-like” gene signature in HR+ luminal cells), we 

calculated the maximum expression score for each activity program divided by the mean 

expression score for the next 50 highest-scoring cells, and removed programs where this 

ratio was greater than 5 (Figure S5C). We also removed subtrees with fewer than 5 total 

activity programs. Finally, we plotted the number of subtrees identified at each K (excluding 

outlier programs), weighted by the total number of programs in each subtree. We choose 

the optimum K (Kopt) as the saturation point in this curve, representing the point at which 

increasing the granularity of matrix factorization does not identify activity programs that 

comprise major new subtrees (Figure S5D).

Network clustering of correlated activity programs—To identify sets of activity 

programs that co-varied across samples, we first decomposed each cell type into a set 

of distinct gene expression signatures, or “activity programs”, using consensus iNMF 

with Kopt chosen for each cell type as described above. We then quantified the average 

expression of each gene program in each sample and constructed a weighted network of 

coordinated gene expression programs based on the pair-wise Pearson correlations between 

gene programs. To account for correlations driven by outlier samples, we used bias-corrected 

and accelerated bootstrap resampling to estimate confidence intervals associated with each 

correlation coefficient. The resulting Pearson correlation matrix was transformed into a 

weighted adjacency matrix by setting all Pearson correlation coefficients with p-values 

greater than 0.05 (based on the null hypothesis r = 0) to zero (Figure S6A-B). We identified 

modules of highly correlated gene expression programs using a Constant Potts Model for 

community detection in signed graphs in the ‘leidenalg’ package in python (Figure S6B) 

(Traag et al., 2011). We ran this algorithm at a range of resolutions from 0.001 to 0.4 

and chose the resolution that maximized overall modularity. To filter out isolated links and 

modules, we calculated the signed weighted topological overlap (wTO) between activity 

programs in each module (Gysi et al., 2018) and filtered nodes with low wTO and modules 

containing fewer than four nodes (Figure S6C). In contrast to Pearson correlation values 

which consider each pair of nodes in isolation, wTO is based on the similarity of two activity 

programs’ correlation values with all other programs in the network. We calculated the mean 

wTO between each node and all other nodes in the same module, and compared this to 

the value calculated for nodes in randomly selected modules of equal size. We determined 

p-values for each node’s mean wTO by determining the fraction of permutation trials where 

the mean wTO of nodes from “random” modules was greater than the mean wTO of nodes 

from tested modules, and removed nodes where p > 0.01. Community detection results 

remained unchanged after this filtering step (Figure S6B, S6D). For visualization, we use 

positive edges to create a force-directed layout. Consistent with our goal of choosing the 

rank K that captured the greatest number of unique activity programs (see above), the overall 

organization of modules into cell-cell interaction networks remained highly robust to the 

choice of rank at values of K ≥ Kopt, whereas the network structure at K ≤ Kopt had much 

sparser connections between modules (Figure S6E).
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Fluorescent Immunohistochemistry—For immunofluorescent staining, formalin-fixed 

paraffin-embedded tissue sections were deparaffinized and rehydrated using standard 

methods. Endogenous peroxides were blocked using 3% hydrogen peroxide in PBS, and 

antigen retrieval was performed in 0.1 M citrate buffer pH 6.0. Sections were blocked for 5 

min at room temperature using Lab Vision Ultra-V block (Thermo TA-125-UB) and rinsed 

with TNT wash buffer (1X Tris-buffered saline with 5 mM Tris-HCI and 0.5% TWEEN-20). 

Primary antibody incubations were performed for 1 hour at room temperature or overnight at 

4°C. Sections were washed three times for 5 min each with TNT wash buffer, incubated with 

Lab Vision UltraVision LP Detection System HRP Polymer (Thermo Fisher TL-060-HL) for 

15 min at room temperature, washed, and incubated with one of three colors of tyramide 

signal amplification amplification (TSA) reagent at a 1:50 dilution. After TSA, antibody 

complexes were removed by boiling in citrate buffer, followed by blocking and incubation 

with additional primary antibodies as above. Finally, sections were rinsed with deionized 

water and mounted using Vectashield HardSet Mounting Media with DAPI (Vector H-1400). 

Immunofluorescence was analyzed by spinning disk confocal microscopy using a Zeiss Cell 

Observer Z1 equipped with a Yokagawa spinning disk and running Zeiss Zen Software.

Antibodies, TSA reagents, and dilutions used are as follows: p63 (1:2000; CST 13109, 

clone D2K8X), KRT7 (1:4000; Abcam AB68459, clone EPR1619Y), KRT23 (1:2000; 

Abcam AB156569, clone EPR10943), ER (1:4000; Thermo Scientific RMM-9101-S, clone 

SP1), PR (1:3000; CST 8757, clone D8Q2J), TCF7 (1:2000; CST 2203, clone C63D9), 

P4HA1 (1:9000; Thermo PA5-55353), LRRC26 (1:2000; Thermo PA5-63285), FITC-TSA 

(2 min; Akoya Biosciences NEL701A001KT), Cy3-TSA (3 min; Akoya Biosciences 

NEL744001KT), Cy5-TSA (7 min; Akoya Biosciences NEL745E001KT).

Morphometric analysis and geometric modeling—Formalin-fixed paraffin-

embedded tissue sections were immunostained for the pan-luminal marker KRT7, 

counterstained with DAPI and imaged as described above. Images containing lobular tissue 

were acquired randomly, and the area and perimeter of the KRT7-positive luminal layer 

of each acinus was analyzed in ImageJ. To reduce noise and remove small gaps in KRT7 

fluorescence, we applied a closing filter from the MorphoLibJ plugin with a 2-pixel (1.33 

μm) radius disk (Legland et al., 2016). The resulting image was smoothed by applying a 

Gaussian filter with sigma 5 pixels (3.33 μm), and binarized using the default thresholding 

algorithm in ImageJ. Finally, individual acini with visible lumens were manually selected 

and the area (A), perimeter (P), and circularity of the KRT7-positive region was measured 

for each structure. To estimate the average diameter (d) and luminal thickness (w) of each 

acinus, we used area and perimeter measurements to fit a circle containing a hollow lumen 

to each structure. Based on these results, we implemented a geometric model in which each 

acinus was represented as a hollow circle with shell thickness that was linearly related to 

diameter (d). Since basal cells form a monolayer along the luminal surface, we represented 

the space available for basal cells as the outer perimeter of the luminal layer, and the space 

available for luminal cells as the area of the luminal layer. To estimate the linear relationship 

between w and d, we performed linear regression analysis using measurements from all 

structures.
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RNA FISH analysis of ESR1 transcripts—Combined RNA FISH and 

immunofluorescence analysis of estrogen receptor transcript (RNAscope Probe Hs-ESR1; 

ACD 310301) and protein (anti-ER; Thermo RMM-9101-S, clone SP1) was performed 

using the RNAscope in situ hybridization kit (RNAscope Multiplex Fluorescent Reagent 

Kit V2, ACD 323100) according to the manufacturer’s instructions and fluorescent 

immunohistochemistry protocol outlined above with the following modifications. 

Immunostaining for ER was performed prior to in situ hybridization, using the hydrogen 

peroxide and antigen retrieval solutions supplied with the RNAscope kit and the mildest 

recommended conditions. After ER immunostaining and tyramide signal amplification, in 
situ hybridization for ESR1 was performed according to the manufacturer’s instructions, 

followed by immunostaining for KRT7 as described above. For all RNA FISH experiments, 

we used positive (PPIB) and negative controls (DAPB) to verify staining conditions and 

probe specificity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of sample-to-sample heterogeneity—Cluster entropy: To measure 

how well-mixed cells from different samples were across cell type clusters, we quantified 

the normalized relative cluster entropy for our dataset, weighted by cluster size (Barkas et 

al., 2019). A cluster entropy value of 1 represents complete intermixing of samples across 

clusters.

Similarity scores/alignment: To measure transcriptional variation in cell state within cell 

types between cells from the same versus different batches and/or samples, we measured 

the pairwise alignment between each sample/batch (Butler et al., 2018), where batches 

consisted of sets of samples processed on the same day (Table S2). This “similarity score” 

examines the local neighborhood of each cell in a particular sample/batch, asks how many 

of its k nearest neighbors (in PC or iNMF space) belong to a second sample/batch, and 

averages this over all cells. We chose k to be 1% of the total number of cells within a 

cluster. The result was normalized by the expected number of cells from each sample/batch. 

For repeat measurements, samples run across multiple batches were highly similar. For 

Figure S2E, we calculated the pairwise similarity score between each sample/batch using 

the first 14 principal components for each cell type (See also figure S4E depicting the 

standard deviation of each principal component). For Figures S4A and S4B, we calculated 

the pairwise similarity score between each sample/batch using all iNMF components for 

each cell type (at Kopt, see text below for optimization of K).

Testing for changes in cell type proportions—We modeled the detected number of 

each cell type in each sample as a random count variable using a quasi-Poisson process 

to allow for overdispersion, with the condition being tested (e.g. parity, BMI, obesity) as a 

predictor and the total number of detected epithelial or luminal cells in each sample as an 

offset variable (Haber et al., 2017). To account for uncertainty due to variable numbers of 

profiled cells in each sample, we used bootstrap resampling to estimate confidence intervals 

associated with detection of each cell type (Cao et al., 2019). Results from 1000 bootstrap 

replicates were pooled using the ‘mice::pool’ function in R, and the model was fit using 

a quasi-Poisson generalized linear model from the ‘stats’ R package. Tests for statistical 
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significance were performed using a Wald test on the regression coefficient. Multiple 

hypothesis correction was controlled using the false discovery rate. For the Komen Tissue 

Bank (KTB) data set, a quasi-Poisson model was trained on the reduction mammoplasty 

cohort as described above, and the ‘predict’ function in the ‘stats’ R package was used to 

predict the proportion of HR+ luminal cells in the KTB samples based on BMI.

Identification of non-cell-type specific programs—To identify transcriptionally 

similar activity programs representing non-cell-type specific responses, we calculated the 

Pearson correlation of gene loadings between activity programs using pairwise complete 

observations (i.e. excluding genes that are not expressed in either cell type). We defined each 

node’s “mean gene loading similarity” as the mean correlation between the tested node and 

all other nodes in the same module. To determine p-values for each node’s gene loading 

similarity, we compared this value to that calculated for nodes in randomly selected modules 

of equal size. The reported p-values represent the fraction of permutation trials where the 

mean gene loading similarity for nodes from “random” modules was greater than the mean 

gene loading similarity for nodes in tested modules.

Inferring direct cell-cell interactions—To infer modules enriched for putative direct 

cell-cell signaling interactions, we identified links between nodes that depended on both the 

magnitude of activity program expression in a “sender” cell type and the proportion of that 

“sender” cell type in the tissue. Since the proportion of epithelial versus stromal cells in our 

samples was highly dependent on tissue dissociation conditions, we restricted this analysis 

to links between epithelial cell types as “sender” cells (HR+ luminal, secretory luminal, or 

basal cells) and other cell types as “receivers”. We modeled activity program expression in 

the “receiver” cell type as a linear response to three predictors: activity program expression 

Y in the “sender” cell type (i.e. “signaling” from that cell type), the proportion Psender of 

the “sender” cell type in the epithelium, and an interaction term representing the combined 

effects of signaling and cell proportions (Signaling × Proportions). For links between two 

epithelial cell types, we tested both directions as “sender” versus “receiver” nodes. To infer 

high-confidence direct cell-cell signaling interactions, we identified pairwise combinations 

of activity programs where a) the individual effects of Y and Psender were not significant 

(p > 0.05), b) there was a positive interaction effect between Y and Psender (Signaling × 

Proportions; p < 0.01 and β > 0), c) the adjusted R-squared for the overall model was at least 

0.5, and d) the false discovery rate-corrected p-value for the overall model was less than 

0.05.

Gene set enrichment analysis—To identify marker genes statistically associated with 

each gene program, we used ordinary least squares regression of each gene’s normalized 

(z-scored) expression against the activity program expression score for each program in each 

cell type, after filtering genes not expressed in that cell type (Kotliar et al., 2019). This 

results in a vector of regression coefficients representing the strength of the relationship 

between a cell’s expression score for a particular activity program and its scaled expression 

of each gene (e.g. see Figure 4F). The resulting ranked gene lists (Table S3) were analyzed 

by gene set enrichment analysis, using the ‘fgsea’ package in R (Korotkevich et al., 2019).
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Enrichment of gene sets within modules—To identify gene sets enriched across 

activity programs in a module, we first calculated the false discovery rate (FDR) for each 

gene set in each node. We performed false discovery rate correction for Hallmark and GO 

Biological Process gene sets separately, as many of the pathways in each database are highly 

related. For all gene sets enriched across at least 5 activity programs in our network, we 

calculated the number of activity programs in each module that were significantly enriched 

for each gene set (FDR < 0.01), and compared this value to randomly selected modules 

of equal size. We determined p-values for enrichment of gene sets in each module by 

determining the fraction of permutation trials where the number of significantly enriched 

nodes from “random” modules was greater than number of significantly enriched nodes 

from tested modules.

Sample-to-sample variability in ER/PR signaling—To quantify variation in 

expression of the “ER/PR signaling” gene program in HR+ luminal cells (HR+ gene 

program 1), we performed the following workflow. First, we used the cell loadings across 

HR+ gene program 1 for each sample to compute kernel density estimations using the 

‘density’ function in the ‘stats’ R package. We excluded sample RM172 from this analysis 

as it had fewer than 50 HR+ luminal cells; thus, the resulting kernel density estimation 

was highly sensitive to individual outliers. Second, we used the ‘JSD’ function in the 

‘philentropy’ R package (Drost, H.G., 2018) to measure the pairwise Jensen-Shannon 

divergence between samples. Third, we converted this to a distance metric (Jensen-Shannon 

Distance, JSD) by taking the square root and performed hierarchical clustering using the 

‘hclust’ function in the ‘stats’ R package, using ‘ward.D2’ linkage. The similarity between 

samples was plotted on a heatmap as (1-JSD).

Pseudo-bulk differential gene expression analysis—To identify genes differentially 

expressed between samples from parous and nulliparous individuals in specific cell types, 

we constructed pseudo-bulk datasets consisting of the summed raw read counts across all 

single HR+ luminal cells for each batch and sample. We restricted our analysis to samples/

batches that had at least 100 HR+ luminal cells. Each dataset was then randomly down-

sampled to the lowest library size, and differential expression analysis was performed using 

DESeq2 (version 1.18.1) to test for genes differentially expressed between samples from 

parous and nulliparous individuals, using batch as a covariate (Love et al., 2014). As certain 

samples were sequenced across more than one batch (table S2), replicates of the same 

sample from different batches were combined using the ‘collapseReplicates’ function. False 

discovery rate corrected p-values were calculated using the Benjamini-Hochberg procedure 

(Benjamini and Hochberg, 1995).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell analysis of the human breast maps the tissue-level response to 

hormones

• DECIPHER-seq identifies gene programs that co-vary across individuals

• Dependency on cell-type proportions predicts direct cell-cell interactions

• Prior pregnancy and obesity modify hormone-responsiveness through distinct 

mechanisms
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Figure 1. Sample-to-sample variability in transcriptional cell state in the premenopausal human 
breast
(A) Single-cell transcriptional analysis links biological variables with person-to-person 

heterogeneity in transcriptional cell state. scRNA-seq workflow: Reduction mammoplasty 

samples were processed to epithelial-enriched tissue fragments, then to single cells, followed 

by MULTI-seq sample barcoding, library preparation using the 10X Chromium system, and 

sequencing.
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(B) The major epithelial and stromal cell types in the breast were identified and visualized 

by UMAP dimensionality reduction and unsupervised clustering of twenty-eight samples 

reduction mammoplasty samples (GSE198732, Table S1).

(C) Density plots (arbitrary units, linear scale) highlighting the transcriptional cell state of 

hormone-responsive (HR+) luminal cells and basal/myoepthelial cells from each sample.

(D) Overview of conceptual approach: We hypothesized that hormone receptor activation 

would represent a major source of transcriptional variability in our dataset, and that 

hormone receptor activation in hormone-responsive (HR+) luminal cells would correlate 

with transcriptional changes in other cell types—representing the downstream paracrine 

response. Based on differences in hormone levels due to menstrual cycling (depicted, left) 
or hormonal contraceptive use, we predicted that gene expression programs representing 

ER/PR signaling in HR+ luminal cells and the downstream signaling response in other cell 

types would co-vary across samples (right).
(E) Using individual pairwise correlations between cell activities, DECIPHER-seq builds 

a tissue-level map of the cell-cell interactions present in the healthy human breast and 

identifies modules of transcriptional states that co-occur across the same sets of samples. 

In downstream analyses, we exclude modules driven by non-cell-type specific responses 

to shared signals, and uncover modules enriched for putative direct cell-cell signaling 

interactions. We define activity programs using gene set enrichment analysis, identify 

common pathways enriched across activity programs in a module, and uncover potential 

sources of biological variation by testing association with annotated metadata features.
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Figure 2. Inferring non-cell-type-specific transcriptional responses and direct cell-to-cell 
signaling interactions in the human breast
(A) Left: Heatmap depicting Pearson correlation coefficients between activity programs in 

the eight major modules identified by DECIPHER-seq. Right: Network graph of correlated 

activity programs in the human breast. Nodes represent distinct activity programs in 

the indicated cell types, and edges connect significantly correlated programs (Pearson 

correlation coefficient > 0, p < 0.05). Modules of correlated programs were identified using 

a Constant Potts Model for community detection.
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(B) Left: Violin plot of the mean Pearson correlation between gene loadings for each activity 

program and all other activity programs in the same module (“gene loading similarity”). 

The horizontal dashed line represents the 99% confidence interval for permuted module 

labels. Right: Network graph of activity programs in the human breast, colored by the 

p-value for gene loading similarity for each program (log scale). P-values were calculated by 

permutation testing.

(C) Heatmap depicting Pearson correlation coefficients between gene loadings for the 

indicated activity programs. The colored boxes list the top-loading genes shared by all 

programs in the indicated modules.

(D) Network graph of activity programs in the human breast, with arrows highlighting 

inferred direct cell-cell interactions. We modeled each pairwise combination of activity 

programs as a linear response to the mean expression score of an activity program in 

a “sender” cell type (β1Y), the proportion of the “sender” cell type in the epithelium 

(β2 Psender), and an interaction term representing the combined effect of both terms (β3 

PsenderY). Arrows highlight pairs where only the interaction term is significant, the model 

describes over 50% of the variation in the response variable, and the FDR-corrected p-value 

for the overall model is less than 0.01.

(E) Results from multiple linear regression analysis, depicting the four most significant 

(FDR < 0.01) inferred direct cell-cell interactions. For each pairwise combination, the 

response variable was modeled in response to three predictors: the expression score in a 

“sender” cell type (signaling), the proportion of the “sender” cell type, and an interaction 

term between both predictors. Points represent the regression coefficient for each predictor, 

error bars depict the standard error.
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Figure 3. ER/PR signaling and the downstream response
(A) Diagram highlighting activity programs in the “ER/PR response” module.

(B) Left: Gene set enrichment analysis of the indicated activity programs in the “ER/PR 

response” module, showing enrichment of genes upregulated during the luteal phase of 

the menstrual cycle (Pardo et al., 2014). The top five leading edge genes for each activity 

program are listed. Right: Network graph of activity programs, colored by the FDR for 

gene set enrichment of genes upregulated during the luteal phase of the menstrual cycle 

(log scale; Pardo et al., 2014). Overall enrichment of this gene set in the “ER/PR response” 

module was determined by permutation analysis.

(C) Heatmap of the top 10 marker genes for HR+ 1 and HR+ 8. Results depict the 

Pearson correlation between the expression score of the indicated activity programs and 

the normalized expression of the indicated genes across cells.

(D) Representative immunostaining for LRRC26, P4HA1, and KRT7 and quantification of 

the relative mean intensity of P4HA1 signal in LRRC26-/KRT7+ and LRRC26+/KRT7+ 

regions of interest. Data are represented as individual points, error bars indicate mean ± 
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SEM of 8 regions from 3 samples with high ER/PR signaling. Scale bars 20 μm. Inset scale 

bar 10 μm.

(E) Network graph of activity programs, colored by the FDR for enrichment of the indicated 

gene sets in each activity program (log scale). Overall enrichment of gene sets within 

module 1 was determined by permutation analysis.
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Figure 4. Coordinated changes in signaling states across cell types in the breast
(A) Network diagram highlighting Modules 1-6.

(B) Network graph of activity programs in the human breast, colored by the Pearson 

correlation of each program’s mean expression score across samples with ER/PR signaling 

(HR+ activity program 1). Significant positive and negative correlations as identified by 

bootstrap resampling are represented by larger nodes.

(C) Network graph of activity programs, colored by the FDR for enrichment of genes in 

the GO Biological Process set “Endoplasmic Reticulum Unfolded Protein Response” (log 
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scale). Overall enrichment of this gene set within module 2 was determined by permutation 

analysis.

(D) Heatmap of selected estrogen receptor (ER) target genes. Results depict the Pearson 

correlation between the expression score of the indicated activity programs and the 

normalized expression of ER target genes across cells.

(E) Left: Gene set enrichment analysis of the indicated activity programs in the “Involution-

associated” and “Post-lactational involution” modules, showing enrichment of genes 

previously shown to be upregulated during the post-lactational involution in the mouse 

(Stein et al., 2004). The top five leading edge genes for each activity program are listed. 

Right: Network graph of activity programs, colored by the FDR for enrichment of genes 

upregulated in the Stein gene set (log scale). Overall enrichment of this gene set in each of 

the indicated modules was determined by permutation analysis.

(F) Network graph of activity programs, depicting the relative association of the indicated 

marker genes with each activity program (arbitrary units, linear scale).

(G) Network graph of activity programs, colored by the FDR for enrichment of the indicated 

gene sets in each activity program (log scale). Overall enrichment of gene sets within the 

indicated modules was determined by permutation analysis.

(H) Heatmap of selected genes including milk proteins, MHC Class II molecules, and the 

phagocytic receptor MARCO. Results depict the Pearson correlation between the expression 

score of the indicated activity programs and the normalized expression of the indicated 

genes across cells.

(I) Network graph of activity programs, colored by the FDR for enrichment of the indicated 

gene sets in each activity program (log scale). Overall enrichment of gene sets within 

module 5 was determined by permutation analysis.

(J) Network graph of activity programs, depicting the relative association of the indicated 

marker genes with each activity program (arbitrary units, linear scale).
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Figure 5. The ER/PR signaling response of HR+ luminal cells is reduced in parous women
(A) Heatmap showing the similarity between each sample’s single-cell expression score 

distribution across HR+ activity program 1 (ER/PR signaling), measured as (1 - Jensen-

Shannon distance). Hierarchical clustering (complete linkage) identifies two sets of samples 

representing high or low expression of the “ER/PR signaling” gene program. The mean 

expression score for HR+ activity program 1 is annotated at the bottom of the heatmap 

(arbitrary units, linear scale).

(B) Ridge plots depicting the distribution of HR+ program 1 (ER/PR signaling) expression 

in HR+ luminal cells across nulliparous (NP) versus parous (P) samples, and quantification 

of the average expression score for HR+ program 1 (n = 22 samples, p < 0.02, Mann-

Whitney test). Data are represented as individual points; box indicates the median and 

interquartile range (IQR) for 11 nulliparous and 11 parous samples; whiskers extend from 

Q1 - 1.5IQR to Q3 + 1.5IQR.

(C) Binomial probability distribution for the expected number of samples with high ER/PR 

signaling. The binomial probability of high ER/PR signaling is modeled as the average 

length of the luteal phase of the menstrual cycle, in days, divided by the average total length 

of the menstrual cycle (p = 0.42) (Bull et al., 2019).
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(D) Volcano plot highlighting the differential expression of canonical hormone-responsive 

genes between parous and nulliparous “pseudo-bulk” samples in HR+ luminal cells. Dots 

represent individual genes.

(E) Immunostaining for PR and KRT7, and quantification of the percentage of PR+ cells 

within the KRT7+ luminal compartment for nulliparous (NP) versus parous (P) samples (n 

= 34 samples, p < 0.002, Mann-Whitney test). Results are shown for a subset of the original 

cohort of sequenced samples (“discovery set”, n=19 samples, p < 0.005) and a second 

independent cohort of samples (“validation” set, n = 15 samples, p < 0.05). Scale bars 100 

μm. Data are represented as individual points; box indicates the median and interquartile 

range (IQR) for the combined dataset (N = 17 nulliparous samples and 17 parous samples); 

whiskers extend from Q1 - 1.5IQR to Q3 + 1.5IQR.

(F) Immunostaining for TCF7, p63, and KRT7, and quantification of the percentage of 

TCF7+ cells within the p63+ basal/myoepithelial cell compartment for nulliparous (NP) 

versus parous (P) samples (n = 33 samples, p < 3e-6, Mann-Whitney test). Results are shown 

for a subset of the original cohort of sequenced samples (“discovery set”, n=18 samples, p 

< 1e-4) and a second independent cohort of samples (“validation” set, n = 15 samples, p < 

0.01). Scale bars 50 μm. Data are represented as individual points; box indicates the median 

and interquartile range (IQR) for the combined dataset (N = 17 nulliparous samples and 16 

parous samples); whiskers extend from Q1 − 1.5IQR to Q3 + 1.5IQR.
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Figure 6. Reproductive history and body mass index are associated with epithelial cell 
proportions
(A) Quantification of the proportion of the indicated cell types by scRNA-seq for nulliparous 

versus parous samples (n = 22 samples, Wald test) and obese versus non-obese samples (n = 

16 samples, Wald test). Data are represented as individual points; box indicates the median 

and interquartile range (IQR) (Left: N = 11 nulliparous and 11 parous samples. Right: N = 6 

samples with BMI < 30 and 10 samples with BMI ≥ 30); whiskers extend from Q1 − 1.5IQR 

to Q3 + 1.5IQR.
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(B) Representative flow cytometry analysis of the percentage of EpCAM−/CD49f+ basal 

cells within the Lin- epithelial population, and quantification of the percentage of basal cells 

in nulliparous (NP) versus parous (P) women (n = 18 samples; p < 3e-5, Mann-Whitney 

test). Results are shown for a subset of the original cohort of sequenced samples (“discovery 

set”, n=9 samples, p < 0.008) and a second independent cohort of samples (“validation” 

set, n = 9 samples, p < 0.008). Data are represented as individual points; box indicates the 

median and interquartile range (IQR) for the combined dataset (N = 9 nulliparous and 9 

parous samples); whiskers extend from Q1 − 1.5IQR to Q3 + 1.5IQR.

(C) Immunostaining for the basal/myoepithelial marker p63 and pan-luminal marker KRT7 

in terminal ductal lobular units (TDLUs), and quantification of the ratio of p63+ basal cells 

to KRT7+ luminal cells in nulliparous (NP) versus parous (P) women (n = 32 samples; p < 

4e-7, Mann-Whitney test). Results are shown for a subset of the original cohort of sequenced 

samples (“discovery set”, n=17 samples, p < 6e-4) and a second independent cohort of 

samples (“validation” set, n = 15 samples, p < 0.001). Data are represented as individual 

points; box indicates the median and interquartile range (IQR) for the combined dataset (N = 

16 nulliparous and 16 parous samples); whiskers extend from Q1 − 1.5IQR to Q3 + 1.5IQR. 

Scale bars 50 μm.

(D) Two-dimensional geometric model of the relative space available for basal cells (luminal 

perimeter, P) and luminal cells (luminal area, A) within individual acini. Acini were 

modeled as hollow circles with a shell thickness (w) proportional to their diameter (d). 

Dots represent measurements of individual acini from TDLUs in parous (n=158 acini from 

15 samples) or nulliparous (n=164 acini from 16 samples) specimens as indicated. Line 

represents results from geometric model (mean absolute percentage error = 6.6%). Scale 

bars 15 μm.

(E) Left: UMAP depicting log normalized expression of KRT23 in reduction mammoplasty 

samples (GSE198732). Right: Dot plot depicting the log normalized mean and frequency of 

KRT23, ESR1, and PGR expression across luminal cell types.

(F) Co-immunostaining of PR, KRT23, and the pan-luminal marker KRT7, and 

quantification of the percentage of PR+ cells within the KRT23− and KRT23+ luminal 

cell populations (n = 41 samples; p < 5e-13, Mann-Whitney test). Data are represented as 

individual points; box indicates the median and interquartile range (IQR) for 41 samples; 

whiskers extend from Q1 − 1.5IQR to Q3 + 1.5IQR. Scale bar 50 μm.

(G) Co-immunostaining of KRT23 and KRT7 and linear regression analysis of the 

percentage of KRT23+ luminal cells versus BMI (n = 30 samples; R2 =0.68, p < 1e-8, 

Wald test). Scale bars 50 μm. Results are shown for a subset of the original cohort of 

sequenced samples (“discovery set”, n=14 samples; R2 =0.76, p < 3e-5) and a second 

independent cohort of samples (“validation” set, n = 16 samples; R2 =0.70, p < 3e-5). Data 

are represented as individual points; dotted lines represent the best-fit lines for the discovery 

cohort (light grey), validation cohort (blue), and combined cohort (dark grey).

(H) Summary of changes in epithelial cell proportions with prior pregnancy and obesity 

(BMI ≥ 30).
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Figure 7. Biological variables are linked to predicted tissue states
(A) Schematic depicting the model for how parity and obesity impact hormone signaling 

in the breast through distinct mechanisms. Parity affects per-cell ER/PR signaling in HR+ 

luminal cells, and obesity (BMI ≥ 30) leads to a reduction in the proportion of hormone-

responsive (HR+) luminal cells in the epithelium.

(B) Network graph of activity programs in the human breast, colored by the effect size of 

prior pregnancy (Wilcoxon effect size) or body mass index (Pearson correlation coefficient) 

on each activity program (linear scale). Significant positive and negative associations are 

represented by larger nodes (prior pregnancy: Mann-Whitney test; BMI: Wald test).

(C) Co-immunostaining of the estrogen receptor target gene PR, KRT23, and the pan-

luminal marker KRT7, and quantification of the percentage of PR+ cells in the KRT23−/

KRT7+ luminal cell population for nulliparous (NP) versus parous (P) samples (n = 34 

samples, p < 0.002, Mann-Whitney test) or non-obese (BMI <30) versus obese (BMI ≥ 30) 

samples (n = 31 samples, p = 0.17, Mann-Whitney test). Results are shown for a subset of 

the original cohort of sequenced samples (“discovery” set) and a second independent cohort 

of samples (“validation” set). Data are represented as individual points; boxes indicate the 
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median and interquartile range (IQR) for the combined datasets (Left: N = 17 nulliparous 

and 17 parous samples. Right: N = 12 samples with BMI < 30 and 19 samples with BMI ≥ 

30); whiskers extend from Q1 − 1.5IQR to Q3 + 1.5IQR. Scale bar 50 μm.

(D) Immunostaining forTCF7, p63, and KRT7, and quantification of the percentage of 

TCF7+ cells within the p63+ basal/myoepithelial cell compartment for non-obese (BMI 

<30) versus obese (BMI ≥ 30) samples (n = 30 samples, p < 3e-5, Mann-Whitney test). 

Results are shown for a subset of the original cohort of sequenced samples (“discovery set”, 

n=14 samples, p < 4e-4) and a second independent cohort of samples (“validation” set, n = 

16 samples, p < 0.04). Data are represented as individual points; box indicates the median 

and interquartile range (IQR) for the combined dataset (N = 12 samples with BMI < 30 and 

18 samples with BMI ≥ 30); whiskers extend from Q1 − 1.5IQR to Q3 + 1.5IQR. Scale bar 

50 μm.

(E) Results from multiple linear regression analysis, with prior pregnancy (parity) and 

obesity (BMI ≥ 30) as predictors and the percentage of PR+ cells in the KRT23−/KRT7+ 

luminal cell population or of TCF7+ cells in the p63+ basal cell compartment as response 

variables. Points represent the regression coefficient for each predictor, error bars depict the 

standard error.

(F) Summary of results. DECIPHER-seq predicts how specific changes in transcriptional 

cell state and cell type proportions influence cell-cell interactions in the human breast, and 

links specific sources of biological variation (e.g. Parity, BMI) to the overall signaling state 

of the tissue.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FITC-EpCAM Stem Cell Technologies 60136FI

APC-CD49f BioLegend 313616

Biotin-CD2 BD Biosciences 555325

Biotin-CD3 BD Biosciences 55338

Biotin-CD16 BD Biosciences 555405

Biotin-CD64 BD Biosciences 555526

Biotin-CD31 Invitrogen MHCD31154

Biotin-CD45 BioLegend 304004

p63 Cell Signaling Technology 13109

KRT7 Abcam AB68459

KRT23 Abcam AB156569

ER Fisher Scientific RM9101S

PR Cell Signaling Technology 8757

TCF7 Cell Signaling Technology 2203

P4HA1 Thermo Fisher PA5-55353

LRRC26 Thermo Fisher PA5-63285

Biological samples

Human breast specimens from reduction 
mammoplasty surgeries

CHTN and Kaiser Permanente Northern 
California

Table S1

Human breast specimens from core biopsies Komen Tissue Bank Table S1

Chemicals, peptides, and recombinant proteins

BV785-Streptavidin BioLegend 405249

Collagenase Type 3 Worthington CLS-3

Collagenase Type 2 Worthington CLS-2

Hyaluronidase Sigma Aldrich H3506

RPMI with HEPES Corning 10-041-CV

Amphotericin B Lonza 17-836E

Gentamicin Lonza 17-518

Dispase Stem Cell Technologies 07913

DNase I Stem Cell Technologies 07900

MEGM Lonza CC-3150

MEBM Lonza CC-3151

Lab Vision Ultra-V Block Thermo Fisher TA-125-UB

UltraVision LP Detection System Thermo Fisher TL-060-HL

Vectashield HardSet Mounting Media with DAPI Vector Labs H-1400

FITC-TSA Akoya Biosciences NEL701A001KT

Cy3-TSA Akoya Biosciences NEL744001KT
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cy5-TSA Akoya Biosciences NEL745E001KT

Probe Hs-ESR1 ACD Bio 310301

Critical commercial assays

Chromium Single Cell 3’ Library & Gel Bead Kit 
v2

10X Genomics PN-120237

Chromium Single Cell 3’ GEM, Library & Gel 
Bead Kit v3

10X Genomics PN-1000075

Chromium Single Cell A Chip Kit 10X Genomics PN-120236

Chromium Single Cell B Chip Kit 10X Genomics PN-1000153

Chromium i7 Multiplex Kit 10X Genomics PN-120262

MULTI-seq Lipid-Modified Oligos Millipore Sigma LMO001-100RXN

Bioanalyzer High Sensitivity DNA Kit Agilent 5067-4626

Qubit dsDNA HS Assay Kit Thermo Fisher Q32851

RNAscope Multiplex Fluorescent Reagent Kit V2 ACD Bio 323100

Deposited data

Raw data and processed scRNA-seq UMI counts 
and barcode matrices of reduction mammoplasty 
breast specimens

This study GEO: GSE198732

Raw data and processed scRNA-seq UMI counts 
and barcode matrices of Komen Tissue Bank breast 
specimens

This study GEO: GSE198732

Software and algorithms

CellRanger v3.0.2 10x Genomics Github: https://github.com/10XGenomics/
cellranger

MULTI-seq McGinnis et al., 2019b Github: https://github.com/chris-mcginnis-
ucsf/MULTI-seq

SoupOrCell Heaton et al., 2020 Github: https://github.com/wheaton5/
souporcell

Seurat v3.1.5 Stuart et al., 2019; Hafemeister and 
Satija, 2019

Github: https://github.com/satijalab/seurat

DoubletFinder McGinnis et al., 2019a Github: https://github.com/chris-mcginnis-
ucsf/DoubletFinder

LIGER Gao et al., 2021; Welch et al., 2019 Github: https://github.com/welch-lab/liger

DECIPHER-seq computational workflow This study Github: https://github.com/lmurrow/
DECIPHER-seq and https://doi.org/
10.5281/zenodo.6596414

ape Desper and Gascuel, 2002 Github: https://github.com/
emmanuelparadis/ape

Leidenalg Traag et al., 2011 Github: https://github.com/vtraag/leidenalg

wTO Gysi et al., 2018 Github: https://github.com/cran/wTO

fgsea Korotkevich et al., 2019 Github: https://github.com/ctlab/fgsea

DESeq2 Love et al., 2014 Github: https://github.com/mikelove/
DESeq2

Cell Syst. Author manuscript; available in PMC 2023 August 17.

https://github.com/10XGenomics/cellranger
https://github.com/10XGenomics/cellranger
https://github.com/chris-mcginnis-ucsf/MULTI-seq
https://github.com/chris-mcginnis-ucsf/MULTI-seq
https://github.com/wheaton5/souporcell
https://github.com/wheaton5/souporcell
https://github.com/satijalab/seurat
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/welch-lab/liger
https://github.com/lmurrow/DECIPHER-seq
https://github.com/lmurrow/DECIPHER-seq
https://doi.org/10.5281/zenodo.6596414
https://doi.org/10.5281/zenodo.6596414
https://github.com/emmanuelparadis/ape
https://github.com/emmanuelparadis/ape
https://github.com/vtraag/leidenalg
https://github.com/cran/wTO
https://github.com/ctlab/fgsea
https://github.com/mikelove/DESeq2
https://github.com/mikelove/DESeq2

	Summary
	Graphical Abstract
	eTOC Summary
	Introduction
	Results
	Person-to-person variability in transcriptional cell state in the premenopausal human breast
	Inferring shared transcriptional responses and direct cell-to-cell signaling interactions in the human breast
	ER/PR signaling and the downstream transcriptional response
	Coordinated changes in signaling states across cell types in the breast
	The ER/PR signaling response of HR+ luminal cells is reduced in parous women
	Parity and body mass index influence epithelial cell proportions
	Biological variables impact coordinated changes in signaling states across cell types in the breast

	Discussion
	STAR METHODS
	RESOURCE AVAILABILITY
	Lead Contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Human tissue samples

	METHOD DETAILS
	Tissue processing
	Dissociation to single cells
	MULTI-seq sample barcoding (Batches 3, 4, and KTB)
	Sorting for scRNA-seq
	scRNA-seq library preparation
	Expression library pre-processing
	Cell calling
	MULTI-seq barcode library pre-processing
	Sample demultiplexing
	Dataset integration and cell type identification
	PC analysis of individual cell types
	Activity program identification in each cell type
	Network clustering of correlated activity programs
	Fluorescent Immunohistochemistry
	Morphometric analysis and geometric modeling
	RNA FISH analysis of ESR1 transcripts

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Quantification of sample-to-sample heterogeneity
	Testing for changes in cell type proportions
	Identification of non-cell-type specific programs
	Inferring direct cell-cell interactions
	Gene set enrichment analysis
	Enrichment of gene sets within modules
	Sample-to-sample variability in ER/PR signaling
	Pseudo-bulk differential gene expression analysis


	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

