Skip to main content
. 2022 Oct 24;23:225. doi: 10.1186/s13059-022-02793-w

Table 1.

Overview of predictor consistency and best performing data processing pipelines

Predictor information Reliability (ICC statistics)
Name Phenotype Array Probes Median Min Max Best analytical pipeline
GrimAge [15] Mortality EPIC/450 K 1030 0.990 0.921 0.994 ENmix: bg = oob, dye = mean, norm = q3, probe = rcp
ZhangAge [8] Chronological age EPIC/450 K 514 0.991 0.987 0.992 ENmix: bg = neg, dye = mean, norm = q2, probe = rcp
TIMP_1 [15] TIMP-1 serum protein EPIC/450 K 42 0.988 0.973 0.992 ENmix: bg = oob, dye = relic, norm = q2, probe = rcp
Bcell [5] B-lymphocyte cell fraction EPIC 50 0.980 0.881 0.988 Minfi: no bg correction with control normalization
Neu [5] Neutrophil cell fraction EPIC 50 0.984 0.973 0.987 ENmix: bg = oob, dye = mean, norm = q2, probe = rcp
B2M [15] B2M serum protein EPIC/450 K 91 0.973 0.759 0.985 ENmix: bg = oob, dye = relic, norm = q1, probe = rcp
SkinBloodAge [9] Chronological age EPIC/450 K 391 0.979 0.908 0.982 ENmix: bg = neg, dye = relic, norm = q1, probe = rcp
Smoking_Lu [15] Smoking pack years EPIC/450 K 172 0.971 0.889 0.981 ENmix: bg = oob, dye = no, norm = no, probe = rcp
Smoking_McCartney [20] Smoking pack years EPIC 233 0.975 0.942 0.979 Minfi: noob with dye correction
HannumAge [7] Chronological age 450 K 71 0.972 0.834 0.978 ENmix: bg = est, dye = relic, norm = no, probe = rcp
CD8T [5] CD8 + T-cell fraction EPIC 50 0.969 0.881 0.978 ENmix: bg = neg, dye = mean, norm = q1, probe = rcp
NK [5] Natural killer cell fraction EPIC 50 0.952 0.883 0.977 ENmix: bg = neg, dye = relic, norm = q3, probe = rcp
BioAge4HAStatic [17] Chronological age 450 K - 0.966 0.826 0.975 ENmix: bg = oob, dye = relic, norm = no, probe = rcp
Cystatin_C [15] Cystatin-C serum protein EPIC/450 K 87 0.954 0.829 0.973 ENmix: bg = oob, dye = no, norm = q2, probe = rcp
PhenoAge [14] Mortality EPIC/450 K/27 K 513 0.954 0.926 0.97 ENmix: bg = neg, dye = relic, norm = q1, probe = rcp
Mono [5] Monocyte cell fraction EPIC 50 0.953 0.865 0.968 Minfi: illumine bg correction with control normalization
DNAmTL [12] Telomere length EPIC/450 K 140 0.952 0.912 0.965 ENmix: bg = oob, dye = relic, norm = q1, probe = rcp
HorvathAge [6] Chronological age 450 K/27 K 353 0.950 0.867 0.964 WateRmelon: naten
CD4T [5] CD4 + T-cell fraction EPIC 50 0.959 0.951 0.964 ENmix: bg = neg, dye = no, norm = no, probe = rcp
epiTOC [18] Mitotic divisions 450 K 385 0.911 0.498 0.962 ENmix: bg = oob, dye = mean, norm = q2, probe = rcp
Leptin [15] Leptin serum protein EPIC/450 K 187 0.896 0.447 0.953 ENmix: bg = oob, dye = relic, norm = q3, probe = rcp
VidalBraloAge [13] Chronological age 27 K 8 0.945 0.922 0.952 ENmix: bg = neg, dye = mean, norm = no, probe = rcp
MiAge [19] Mitotic divisions 450 K 268 0.884 0.348 0.947 WateRmelon: nanes
LinAge [10] Chronological age 450 K 99 0.930 0.878 0.939 ENmix: bg = est, dye = relic, norm = no, probe = no_rcp
ADM [15] ADM serum protein EPIC/450 K 186 0.900 0.756 0.938 ENmix: bg = neg, dye = mean, norm = q3, probe = rcp
WHR [20] Waist-to-hip ratio EPIC 226 0.878 0.634 0.925 ENmix: bg = oob, dye = relic, norm = q2, probe = rcp
ZhangMortality [16] Mortality 450 K 10 0.877 0.807 0.92 Minfi: no bg correction with control normalization
BodyFat [20] Body fat EPIC 968 0.893 0.843 0.918 ENmix: bg = est, dye = relic, norm = no, probe = rcp
Cholesterol [20] Total cholesterol EPIC 204 0.888 0.762 0.917 ENmix: bg = oob, dye = no, norm = q2, probe = rcp
BMI [20] BMI EPIC 1109 0.904 0.877 0.914 ENmix: bg = neg, dye = mean, norm = no, probe = rcp
GDF_15 [20] GDF-15 serum protein EPIC/450 K 137 0.819 0.502 0.903 ENmix: bg = est, dye = mean, norm = q1, probe = rcp
LDL [20] LDL EPIC 233 0.846 0.732 0.901 ENmix: bg = oob, dye = relic, norm = no, probe = rcp
HDLratio [20] Total to HDL cholesterol ratio EPIC 412 0.848 0.643 0.890 ENmix: bg = oob, dye = relic, norm = q1, probe = rcp
Alcohol [20] Alcohol EPIC 450 0.807 0.551 0.878 ENmix: bg = neg, dye = relic, norm = no, probe = rcp
WeidnerAge [11] Chronological age 27 K 3 0.826 0.583 0.865 ENmix: bg = neg, dye = relic, norm = no, probe = rcp
Education [20] Educational attainment EPIC 373 0.774 0.506 0.865 Cross: noob with dye correction + BMIQ
HDL [20] HDL cholesterol EPIC 737 0.835 0.694 0.853 ENmix: bg = est, dye = relic, norm = q1, probe = rcp
CD8pCD28nCD45Ran [6] Specific T-cell fraction 27 K - 0.814 0.756 0.845 ENmix: bg = oob, dye = relic, norm = no, probe = rcp
PlasmaBlast [6] Plasma B cell fraction 27 K - 0.718 0.638 0.840 Cross: noob with dye correction + BMIQ
PAI_1 [15] PAI-1 serum protein EPIC/450 K 211 0.744 0.22 0.838 ENmix: bg = neg, dye = relic, norm = q3, probe = rcp
CD8naive [6] CD8 T-cell fraction 27 K - 0.777 0.659 0.830 WateRmelon: danen

Shown is general information on each DNAm-based predictor alongside their corresponding ICC statistics. The name of the predictor, the phenotype it is trained on, the array platform it can be applied on, and the number of predictor probes (if available) are listed on the left side of the table. ICC statistics are listed on the right side of the table. The ICC quantifies the degree of absolute agreement between estimator values of a pair of technical replicates. For each predictor, across 101 pipelines, the median, minimum, and maximum ICC are listed. Predictors are ranked by the maximum ICC. The final column reports methodological details of the best performing data processing pipelines (i.e., the pipeline with the highest consistency). Bg background correction, dye dye-bias correction, norm normalization method, probe probe-type bias correction. Full details on analytical pipelines and how they were implemented are available in Additional file 4.