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Abstract

DNA nanotechnology has yielded remarkable advances in composite materials with diverse 

applications in biomedicine. The specificity and predictability of building 3D structures at 

the nanometer scale make DNA nanotechnology a promising tool for uses in biosensing, 

drug delivery, cell modulation, and bioimag-ing. However, for successful translation of DNA 

nanostructures to real-world applications, it is crucial to understand how they interact with living 

cells, and the consequences of such interactions. In this review, we summarize the current state 

of knowledge on the interactions of DNA nanostructures with cells. We identify key challenges, 

from a cell biology perspective, that influence progress towards the clinical translation of DNA 

nanostructures. We close by providing an outlook on what questions must be addressed to 

accelerate the clinical translation of DNA nanostructures.

Statement of significance—Self-assembled DNA nanostructures (DNs) offers unique 

opportunities to overcome persistent challenges in the nanobiotechnology field. However, the 

interactions between engineered DNs and living cells are still not well defined. Critical 

systematization of current cellular models and biological responses triggered by DNs is a crucial 

foundation for the successful clinical translation of DNA nanostructures. Moreover, such an 

analysis will identify the pitfalls and challenges that are present in the field, and provide a basis for 

overcoming those challenges.
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1. Introduction

Advances in nanotechnology have enabled interesting applications and techniques in 

various fields, ranging from engineering to pharmacology and medicine [1-5]. The unique 

physicochemical properties of nanocarriers, in combination with their multifunctional 

capacity, allows these nanomaterials to be implemented in multiple biomedical applications 

[2]. In fact, distinct nanoparticles (NPs) were found to be highly useful in drug 

delivery, diagnosis, and imaging [3,6-8], thanks to improvement of the biodistribution and 

pharmacokinetics of the active pharmaceutical ingredients [9,10]. Numerous chemically 

distinct NPs (e.g. gold, metal oxides, silica, polystyrene, etc.) have been synthesized 

and are now being utilized as drug delivery vehicles, imaging enhancers, biosensing 

platform components, and other therapeutic and diagnostic uses [3,6-8,11,12]. Successful 

implementation of nanotechnology in medicine has resulted in clinical approval of 27 

nanoparticle-based medicines by the Food and Drug Administration (FDA) and European 

Medicines Agency (EMA) [13]. Although FDA approval indicates some clinical success 

of nanomedicines, thus far patients offered these nanomedicines have showed only minor 

improvement in survival rates [14-16]. Additionally, nanomedicine formulations possess the 

risk of activating the immune system, which may lead to premature clearance from the 

body, as well as toxic side effects [17]. Emerging evidence highlights the following major 

challenges that hamper the clinical success of nanoparticles: difficulties in overcoming 

various biological barriers, low targeting efficiency, and safety issues [2,5,6,15,16]. As a 

result, medical applications of NPs are often criticized for their extremely low rate of 

clinically successful outcomes, despite their long research history and large investments 

[16,18-21]. Additionally, the lack of detailed understanding of the basic biological 

foundations of NP-cell interactions have also resulted in poor clinical translation of 

nanomedicines [6,16,19,21-23].

To circumvent translational challenges, it is crucial to reproducibly form nanomaterial 

complexes, retaining high precision in the nanometer range [2,24]. Indeed, production of 

complex functionalized NPs on this scale usually lacks a tight control over size, shape, 

and surface chemistry [24-26]. Self-assembly motifs, which are based on predictable and 

specific molecular interactions, represent an important direction in nanotechnology, with 

a promising foundation to overcome the challenges with structural precision [27-29]. 

Specifically, DNA nanotechnology bears tremendous potential in constructing complex 

3D structures with nanometer precision [27,30-32]. DNA nanostructures (DNs), are being 

extensively investigated and applied in various research fields, such as chemical sensing, 

nanoelectronics, and biomedicine [27,30-34]. Their architectural diversity is exemplified by 

the variety of methods that have been developed to assemble these structures, including 

wireframe DNA structures (Fig. 1A and B) [35-37], DNA origami (Fig. 1C and D) [38-40], 

DNA brick [41] and tile [42,43] motifs (Fig. 1E and F, respectively). Dynamic, actuatable 
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DNs [44,45] have also been developed (Fig. 1G and H) in addition to larger, hierarchically 

assembled structures (Fig. 1I and J) [46,47].

Biomedical DN research is progressing impressively quickly, specifically in the direction 

of diagnostics and therapeutics [2,24,27,32,34,48]. DNs possess several key advantages in 

biomedical applications over conventional NPs [2,24,27,32,34]. For example, conventional 

NPs have been shown to induce various adverse reactions [21,49,50]. By contrast, 

DNs typically exhibit great biocompatibility and thus far lack toxicity in preliminary 

studies [2,24,27,32,34]. Furthermore, the capacity of DNs for self-assembly allows their 

construction into well-defined 3D architectures of arbitrary shape and size at the nanoscale. 

This in turn enables the biological activity of DNs to be finely tuned and modified 

[2,24,27,32,34,44,51,52]. The surfaces of DNs can be functionalized accurately and 

precisely using the properties of DNA self-assembly [2,24,27,32,34,44,51,52]. These unique 

properties of DNs have opened doors to numerous biomedical applications. Thus far, 

DNs represent great nanomedical potential and are being actively studied as platforms for 

controlled release of various therapeutic compounds, as imaging modules, and as vehicles 

for targeted delivery [2,24,27,32,34,44,51,52].

Despite these promising initial results, the translation of DNs to the clinic is still in its 

infancy. There are only a handful of studies that use DNs under in vivo conditions [34], 

and the field still lacks a thorough knowledge about the precise molecular determinants that 

modulate DN-cell interactions [34]. Verifying the key principles of DN-cell interactions is 

important to understanding the molecular mechanisms underlying therapeutic approaches. 

Clear knowledge of how certain treatments work is crucial in forthcoming clinical trials, and 

represents a roadmap for successful implementation of the treatment [53]. Understanding 

the mode of action at the cellular and molecular level will aid in determining the 

therapeutic window of a treatment, enabling better dosing, stratifying clinical trials, and 

eventually helping patients [21,53-57]. Thus, in this review we present an analysis of 

current knowledge on DN-cell interactions. We discuss challenges currently limiting DNs 

translation towards real-world applications. Finally, we highlight strategies that may help to 

overcome these challenges and maximize the biomedical potential of DNs.

2. The protein corona and its impact on DNA nanostructures

Generally, it has been found that contact with physiological fluids results in the formation 

of a protein corona around many types of nanoparticles [58-60]. Proteins and other 

biomolecules interact with the surface of the particles, forming a multilayered shell 

[58-60]. The presence of the corona may shield surface modifications (e.g. chemical 

moieties, targeting ligands, antibodies, etc.) and affect their function or efficiency [58-60]. 

Not surprisingly, a protein corona has been shown to form on DNs as well [27,34,61]. 

Overall, adsorption of proteins onto a particle surface occurs rapidly, approximately one 

hour after exposure to physiological fluids [58-60]. Accumulating evidence suggests that 

multiple factors play a role in the composition of the protein corona and biomolecule 

binding efficacy [58-60,62,63]. NP physicochemical properties (i.e. chemical composition, 

size, shape, surface functionalization), physiological fluid composition, and exposure time 

determine the makeup and nature of the protein corona [58-60,62,63]. In turn, protein 
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binding to the NP surface changes the physicochemical properties of the particle itself 

(e.g. hydrodynamic diameter, zeta potential, solubility), and the protein properties are 

also altered (e.g. misfolding, aggregation, conformational changes, alteration in enzymatic 

activity) [58-60,62-65]. These structural and functional changes of proteins upon binding 

to NP surface may lead to cellular injury [58-60,62,63]; furthermore, the protein corona 

may greatly hinder the targeting capabilities of NPs by shielding surface functionalization 

[66]. On the other hand, tuning the surface modification of NPs may affect protein corona 

composition in a way to improve circulation half-time, mitigate toxic effects, and/or 

ameliorate targeting issues [60,67].

The considerations outlined above demonstrate why it is crucial to study the protein 

corona formation around DNs in detail. Although DNA nanostructures have now been 

studied for decades, research on applications in biomedicine (e.g. DNs as tools for imaging 

and vehicles for gene delivery) and therapeutics (e.g. targeted drug delivery) for DNs 

are quite recent (Fig. 2). Consequently, little attention has been given thus far to the 

analysis of DN-protein corona composition and the corona’s functional consequences 

for DNs [27,34,61]. Recently, more research has been devoted to how protein corona 

affects DN stability [27,34,61]. Indeed, the limited stability of DNs in physiological fluids 

represents a challenge for their successful biomedical application [27,34,61]. Nucleases 

are predominantly responsible for in vivo degradation of DNs [61], and to mitigate this 

problem, peptides and proteins have been used to create nuclease-protective coatings that 

give DNs a longer half-life in biological environments [61]. Synthetic protein coronae 

may also be utilized to create nuclease-resistant DNs [61,68]. For example, bovine serum 

albumin (BSA)-dendron conjugates attached to DNs protected nanostructures from exposure 

to 10 U of DNase I (Fig. 3A) [68]. The BSA corona also significantly reduced the immune 

response against DNs and improved their transfection efficacy [68]. Protein polymers 

and diblock polypeptides have also been shown to be effective for shielding DNs from 

enzymatic degradation [69,70]. Another strategy to enhance DN stability is to create stable 

and enzymatically resistant DNs that simultaneously reduce particle-protein interactions, 

such as coating the nanostructures with poly(ethylene glycol) (PEG) [2,27,34,61], while 

ensuring that DN surface functionality is not compromised. One way to achieve PEG 

passivation is via an electrostatically-adhered oligolysine–PEG coating, which was found 

not to interfere with the functionality of surface-displayed ligands on DNs [71]. While PEG 

conjugation is a widely used surface modification for various other types of NPs, some 

PEG-based nanomaterials have been shown to be immunogenic, resulting in release of anti-

drug antibodies [72,73]. PEG itself can trigger anti-PEG IgG and IgM antibody responses 

[72,73], and high titers of these antibodies may lead to severe allergic reactions such as 

anaphylaxis [72-74]. Thus, PEG-based coatings of DNs must be designed in a controlled 

and cautious manner. An additional consideration is that DN coatings (e.g. PEG, the protein 

corona) may undermine compatibility and functionality of switchable and dynamic DNs 

[34].

Importantly, studies that analyze how a protein corona would affect biological and 

therapeutic properties of DNs are rather rare [75]. However, it is critical to assess not 

only the stability of DNs in physiological fluids, but rather how those fluids may modify 

the surface, and impact or hamper the desired function of DNs. We recently showed that 
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the protein corona greatly affects the intracellular function of specifically designed DNs 

[76]. In absence of serum proteins, DNs coated with aurein 1.2 (a peptide that facilitates 

endosome escape [77]) showed marked endolysosomal escape in different cell lines (Fig. 

3B) [76]. However, upon exposure to serum-containing medium, a protein shell formed 

around the DNs, significantly hampering the efficiency of endolysosomal escape and leading 

to accumulation of DNs in lysosomal compartments (which is the usual fate for unmodified 

nanostructures) [76]. Therefore, protein corona formation over DN particles should be taken 

into account for successful and clinically relevant design and optimization of DNs.

3. Physical background on the interaction of DNA nanostructure ligands 

with cell surface proteins

In a light of above discussed, it is crucial to analyze how functionalized DNs physically 

interact with the surface receptors of cells. Generally, ligand interactions with cell surface 

proteins predispose subsequent cell entry of exogenous materials and regulate to a large 

extent the intracellular fate of various materials [78-81]. Interestingly, DNA molecules alone 

do not cross the plasma membrane of the cell. However, 3D DNA nanostructures are able 

to efficiently enter the cellular cytosol [82]. Therefore, a study of the physical parameters 

that modulate cellular interaction and processing of DN represents an important milestone 

for efficient targeting of cell surface receptors.

Indeed, current progress in understanding nanoparticle-cell interactions revealed several 

possibilities for the modulation of targeting efficacy and cellular uptake [83]. Those 

possibilities comprise the orientation, mobility, and surface density of ligands on the 

nanoparticle [84-88]. Furthermore, accumulating evidence revealed that particle geometry 

parameters, e.g. size, shape, and aspect ratio, affects largely their uptake and to a larger 

extend therapeutic efficacy [89-91]. For example, particles having a rod-like geometry 

showed higher cellular binding efficacy in comparison with spherically-shaped particles 

[92]. By contrast, spherically-shaped particles showed a higher uptake efficiency compared 

with rod-shaped ones [93].

However, we have to state that despite this progress, it is still not fully understood how DNs 

influence the interaction between ligands functionalizing the DN surface and cell surface 

receptors. Indeed, it was shown that DN functionalization with a protein ligand does not 

reduce the protein’s ability to bind its receptor [94,95]. Another recent study identified 

that the affinity of anti-programmed cell death protein 1 antibody (aPD1) incorporated 

onto DN remains unchanged compared with the free antibody [96]. Interestingly, this 

study further revealed that the absolute number of bound DNs was significantly lower in 

comparison with the free antibody, which in turn resulted in lower binding efficiency [96]. 

In fact, the cell surface composition plays the role of a natural barrier, resulting in limited 

receptor accessibility for functionalized DNs [96]. As a result, DN orientation and size 

represent crucial parameters for effective binding to the receptors [96]. In other words, 

the efficacy of cellular targeting by functionalized DNs is predisposed by an interplay of 

receptor affinity and accessibility of receptors [96]. Such knowledge is critical in designing 
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programmable DNs for improved applications of nanomedicines towards targeted cell 

signaling modulation.

DNs offer programmable precision for decorating their surfaces with biomolecule 

nanopatterns, enabling precise spatial separation between ligands on the nanoscale 

[36,39,51,96-98]. Furthermore, DNs have been decorated with varying nanopatterns of 

biomolecules, e.g. ephrin-A5 [94,99], immunogen eOD-GT8 [100], caspase-9 variant [101], 

antigens of human IgGs and IgMs [102], and Fas ligands [103]. Of note, regulation of the 

spatial organization of surface receptors at the nanoscale provides a route for controlling 

cellular responses [104]. A recent study revealed the use of DNs for regulated death receptor 

5 (DR5) clustering and subsequent triggering of apoptosis [105]. Furthermore, the study 

revealed that the required inter-ligand distance for initiation of apoptotic events was less than 

10 nm [105]. Interestingly, this approach of DN-mediated clustering of DR5 was effective 

even against resistant breast cancer cells [105].

Overall, nanometer precision in patterning of various DNs with specific surface ligands 

offers a significant boost to the potential of DN-based nanomedicines. We see in this 

technology an opportunity to study also fundamental cell biological questions of receptor 

function.

4. Analysis of DNA nanostructure cytotoxicity

To bolster the biomedical applicability of DNs, researchers commonly stress that DNA 

is a natural biological molecule [24,34,61,106], and is therefore readily biodegradable 

and biocompatible, with minimal toxicity [24,34,61,106]. Therefore, DNs made of DNA 

molecules are generally assumed to be biocompatible as well as nontoxic [24,34,61,106]. 

However, this is the so-called “naturalistic fallacy” [107,108]: The “natural” origin does 

not directly correspond to “safe” or “biocompatible” [107-109], as plenty of “natural” 

molecules are toxic or immunogenic [107-109]. Specifically, cell-free DNA is known to be 

present in blood plasma of healthy individuals [110], yet high levels of circulating cell-free 

DNA are also associated with multiple pathologies, including systemic lupus erythematosus, 

metastatic cancers, atherosclerosis, primary Sjögren’s syndrome, and rheumatoid arthritis 

[110-113]. Elevated levels of donor-derived cell-free DNA during transplantation may lead 

to adverse post transplantation events such as allograft rejection [113-115]. Furthermore, it 

has been proposed that cell-free DNA may possess cytotoxic properties [110,113,116]. DNA 

can be released during cellular injury as damage-associated molecular patterns (DAMPs) 

[117,118]. Injury-issued DAMPs, including extracellular DNA, can result in the activation 

of innate immunity [117]. For example, circulating cell-free mitochondrial DNA was shown 

to induce inflammasome-dependent caspase-1 activation and IL-1β and IL-18 release [119]. 

Therefore, careful assessment of the toxicological and immunogenic potential of DNs is 

imperative for successful clinical translation of DN-based technologies.

It is worth noting that preliminary studies indicate some DN biocompatibility and 

potentially favorable clearance kinetics [120]. In light of the aforementioned DNA-related 

adverse cellular effects, it is important to systematically analyze the available literature 

regarding DN toxicity, and to our knowledge there is no systematic analysis of their toxic 
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potential [24,27,34,61,75,106]. Thus, we briefly summarize available accounts of in vitro 
toxicological responses to the DN architectures most studied thus far (Table 1).

Overall, from Table 1 it is clearly seen that in the majority of studies, DNs that have not 

been loaded with drugs show low to no cytotoxicity. However, the maximum exposure time 

used in majority of studies is only 48 h (Table 1). Indeed, designed nuclease-resistant DNs 

may withstand harsh biological environment for more than 48 h [61]. Thus, longer-term 

cytotoxic effects have yet to be fully elucidated. Of note, the U.S. Environmental Protection 

Agency (EPA) explicitly mentions that biodegradability does not guarantee low toxicity of a 

compound [121]. A number of compounds that showed rapid biodegradability were found to 

be carcinogenic, mutagenic, or toxic [121-123]. During degradation, decomposition products 

and/or adducts of initial compounds might be highly reactive and possess significant toxicity 

[121-123]. A classic example is drug-induced liver injury (DILI) triggered by products 

of acetaminophen metabolization [124,125]. Indeed, drug-protein adducts, occurring drug 

metabolism in hepatocytes, may act as neoantigens, triggering an immune response and 

resulting in cell injury [124,125]. Idiosyncratic (unpredictable) DILI pathology does not 

require high doses of the drug, and can be profound with relatively low but chronic doses 

of >50–100 mg per day [124,126]. Specifically, both short oligonucleotides and long DNA 

pieces show undesired toxic and immunogenic responses [127,128], and it is well known 

that dsDNA induces a number of autoimmune pathologies [129-131]. An increase in serum 

DNA concentration is a straightforward marker of systemic inflammatory reaction and 

sepsis [132,133]. Therefore, it is important to consider not only toxicity of entire DNs but as 

well, their degradation products and/or adducts forming upon metabolization by cells, and to 

probe potential side effects of these materials for extended exposure and circulation times.

Extrapolating experience from other nanomaterial studies, some particles may be retained in 

the human body for weeks before excretion [21,134]. In fact, emerging evidence suggests 

that many different nanomaterials may possess time-delayed toxicity [135-140], so it is 

important to carefully and systematically analyze such long-term toxicity.

Another challenge apparent from the analysis in Table 1 is that the toxicological assessments 

for the majority of studies have been primarily been carried out in only a handful number 

of standard cell lines. For example, MCF-7 cells are frequently used as a model breast 

cancer cell line, and HeLa cells are abundantly utilized as a general “cancer” cell model. 

However, a thorough investigation of different MCF-7 cell line strains revealed substantial 

genetic heterogeneity among them [141]. When those strains were challenged with 321 

anti-cancer compounds, they showed dramatic variability in response. Strikingly, 75% of 

compounds that induced marked toxicity in some strains were completely ineffective in 

others tested [141]. Another thorough study demonstrated that different strains of HeLa cells 

possess great genetic and phenotypic variability, e.g. variations were found in genome-wide 

copy numbers, mRNAs, proteins, and protein turnover rates [142]. Those studies highlighted 

an important question regarding the reproducibility of research conducted using MCF-7 

and HeLa cells. It is worth noting that cell line authentication is crucial for conducting 

reproducible and reliable research [143]. Avoiding this authentication can easily lead to 

unreliable outcomes, resulting in the loss of time, money, and trustworthy publication data 

[143]. It has been reported that over 20% of cell lines are misidentified or mislabeled, often 
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due to cross-contamination [144]; indeed, HeLa cells are the major contributors to such 

instances of cross-contaminations [144,145].

Another key challenge in the assessment of DNs toxicology is the scarcity of studies 

implementing primary cell cultures (Table 1). Although cell lines are very powerful 

for initial screening, they do not fully recapitulate tissue-specific functions and have 

limited predictive value towards in vivo applications [146,147]. In this regard, primary 

cell cultures could mitigate these problems and provide results more closely related to 

in vivo conditions [146-148]. Even cell lines phenotypically related to primary cells can 

possess substantial gene expression differences and be functionally distinct by comparison 

[149-151]. Additionally, highly proliferating tumor-derived cell lines such as HeLa cells 

tend to redistribute the nanomaterial among daughter cells, resulting in a lower particle load 

per cell and thus overlooked toxic effects [21,152,153]. By contrast, primary cell cultures 

with limited proliferative activity may provide more reliable results on nanomaterial toxicity 

[21,152,153]. Therefore, there is an unmet need to boost research on DN toxic effects 

utilizing primary cell culture models.

5. Analysis of DNA nanostructures interactions with cells

Aside from toxicological assessments of DNs, a deep analysis of DN-cell interactions and 

identification of target proteins and/or pathways mediating the cellular effects of DNs is 

necessary for successful translation of DN technology into any biomedical application. To 

help meet this end, we summarize the currently most studied DN-induced cellular effects 

and interactions (Table 2).

It is evident from Table 2 that a deep analysis of signaling pathways involved in cell-DN 

interactions is underrepresented in the current literature. Current research has been primarily 

focused on revealing DN uptake and subcellular localization with minimal attention towards 

functional changes that DNs may elicit in cells (Table 2). This is likely because research 

efforts towards biomedical applications for DNs are still relatively new [27,34,61]. Despite 

this, there has already been substantial progress in understanding how the size and shape 

of DNs affect cellular uptake and subcellular distribution (Table 2 and Fig. 4). However, it 

has yet to be seen whether signaling is biased in cells upon DN treatment. We may take 

lessons from NP studies in which it has been suggested that NPs trigger substantial cellular 

responses that bias lysosomal function without triggering a cytotoxic response [21,154]. 

Additionally, current studies on DN-cell interactions suffer from same problems described in 

the previous section, i.e. lack of primary culture use in research, usage of spurious cell lines, 

and a lack of studies on their long-term effects.

We would like to stress that the current developments in the field of DNA nanotechnology 

are considerable, intriguing, and provide great perspective. Specifically, in biomedically 

driven studies, DNs have shown promising results in biosensing, drug delivery, cell 

modulation, and bioimaging [24,27,34,61]. For instance, DN-based biosensors proved 

advantageous in precise design, specificity, and low-cost synthesis [155,156]. DNs can 

be designed and functionalized to bear various drug cargos, which opens a route 

for improved drug delivery applications [24,27,34,61]. Cell behavior and activity can 
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also be altered in a controlled manner using smartly designed DNs [157]. DNs are 

indispensable for super-resolution DNA-PAINT (DNA-based point accumulation for 

imaging in nanoscale topography) imaging applications [158]. However, for advanced and 

successful implementation of these various functional DNs, an understanding the detailed 

mechanisms of DN-cell interactions and their consequences is vital. Knowledge of the 

long-term effects, signaling mechanisms, immunogenicity, and excretion of DNs (Table 2) 

has yet to be fully elucidated.

It is worth noting here, that in addition to nanoparticles, DNA nanotechnology has been 

applied to tunable hydrogel systems [159,160]. Such systems represent 3-D hydrophilic 

networks featuring DNA as a part of the system [159-161]. DNA hydrogels are 

scalable from bulk hydrogels to nanogels [159,160,162]. As DNA hydrogels contain 

programmable and complementary DNA strands as part of the network, this feature 

allows resultant hydrogels to be easily manipulated to create different DNA building block 

with precise geometries, leading to a predictable and controlled resultant DNA networks 

[159,160,162,163]. Due to the structural programmability of DNA hydrogels, these systems 

allow to exert various interaction with cells in controlled manner [159,160,162,164]. For 

example, immunostimulatory CpG DNA hydrogels may be potent in enhancing the antigen-

specific antitumor immunity [165]. Additionally, DNA-based hydrogels allow for control of 

interactions between cells and the extracellular matrix interactions with nanoscale precision 

[166]. This possibility makes DNA hydrogels a promising platform for programmed tissue 

engineering [159,160,162]. However, there are still considerable challenges needed to 

be addressed in the development of DNA-based hydrogels, e.g. cost-effective upscaling, 

potential for degradation by secreted nucleases, and possible toxic or immunogenic effects 

[159,160,162].

In fact, DNA assembly into complex customized 3D structures with desired functions has 

seen great advancements in recent years [24,27,34,61]. It is now possible to produce more 

stable DNs at a faster rate, while precisely varying the size and shape with higher production 

yields [24,27,34,61]. However, for successful clinical adaptation of DNA nanotechnology 

we need to overcome several challenges arising from a biological point of view. We describe 

and discuss those challenges in the following section.

6. Challenges and future perspectives

DNs as biomolecule-based nanoparticles possess advantages over standard nanomaterials in 

terms of controllable size, shape, and surface functionality [2,24,27,34,61]. Undoubtedly, 

those advantages will enable even more therapeutic and diagnostic use of these 

nanostructures, but as DNs become increasingly complex, more efforts must be taken 

to overcome hurdles to clinical translation. In this regard, thorough studies of DN-cell 

interactions are of paramount importance. Below, we summarize current studies of DNs in 

biological contexts, then identify challenges and pitfalls in their biomedical implementation 

in order to provide a roadmap for overcoming them.

The first major challenge is the stability of DNs under physiological conditions. Substantial 

progress in this direction has been already achieved [2,24,27,34,61], but often these 
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approaches are reported as stand-alone studies. It will be critical to integrate these stabilizing 

approaches with specific applications of nanoparticles for biomedical applications, in 

conjunction with primary cells or in vivo models. For example, most of the coatings 

reported were not tested for how they may change bare DN immunogenicity, biodistribution, 

or pharmacokinetics; probing these factors will aid in more sophisticated, real-world 

applications of functionalized DNs.

Drug delivery, specifically of cancer therapeutics, is certainly the most investigated 

and notable DN application [2,24,27,34,61]. Thus, DN-cancer cell interactions must be 

more thoroughly interrogated to reach the greatest potential of anticancer DN use. For 

example, both toxicological assessments and analyses of DN interactions with cells are still 

fragmented and unstandardized (Tables 1 and 2). There are very few studies employing 

primary cell cultures to investigate these two parameters, and a substantial number of 

studies still use potentially problematic cell lines, like HeLa and MCF-7 (Tables 1 and 

2), that could affect the reproducibility of their results. We also draw attention on the 

importance of cell line authentication [143]. Apart from these concerns, we propose that 

a thorough justification of the choice of biological model should be provided, especially 

when DN research is directed toward therapeutic use. Guidelines for selecting and justifying 

cancer models already exist [167-169], since human tumor cell lines that are routinely 

used may possess considerable differences in comparison with primary tumors [168,170]. 

Misidentification, contamination with mycoplasma, genetic drift, and phenotypic instability 

in frequently used cell lines are often neglected by many researchers [146]. In order to 

reliably compare results of DN function within cells, guidelines of cell line selection, 

authentication, and maintenance must be applied in future studies [146].

Recently, it has been noted that there is substantial variability in the field regarding DN 

characterization techniques and experimental design [2,24,27,34,61]. Thus, we propose 

that the biomedical research of DNs adopt a “minimal reporting standard” derived 

from an already existing one from the field of bionanotechnology [171]. This minimal 

reporting standard combines guidelines for nanomaterial characterization, biological model 

justification, and standardized experimental protocols [171]. Implementation of such 

standards will improve reproducibility and significantly boost quantitative comparisons of 

results on DN-cell interactions.

Another opportunity to boost biomedical research of DNs lies in the implementation of more 

sophisticated in vivo models than conventional rodent models. Current research shows that 

animal model systems currently abundantly used in the biomedical field poorly recapitulate 

human counterparts, often leading to unreliable results [172-174]. Some researchers suggest 

that “more complex human conditions” should be used in biomedical research in place of 

rodent models [172]. For this reason, the U.S. Environmental Protection Agency has plans 

to dramatically reduce or even eliminate the use of animal models for testing research by 

2035 [175]. Organoids—complex multicellular systems that recapitulate in vivo structure 

and functions of the selected tissue—may help to overcome those challenges and provide 

systems that are more relevant for use in humans [176-178]. Organoids have already been 

implemented in biomedical nanoparticle research, showing reliable and progressive results 

[179,180]. The use of organoids in DN research is still quite fragmented [2,24,27,34,61], 
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so using them for screening toxicity and performing studies on the interactions of DNs 

with cells would provide important foundation for future clinical translation of DNA 

nanotechnologies.

A final challenge that must be addressed prior to DN use in the clinic is that of 

liver sequestration. Cumulative evidence suggests that the liver sequesters up to 99% 

of intravenously injected nanoparticles [21,23,181,182]. Long-term accumulation in the 

liver results in adverse effects and greatly limits the clinical efficacy of nanoparticles 

[21,23,181,182]. Generally, drug-induced liver injury (DILI) is described as a harmful 

and unexpected impact of drugs on the liver [124]. In fact, DILI represents a serious 

problem, being one of major causes of acute liver failure in Western countries [124,125]. 

Moreover, many nanoparticles have been shown to possess hepatotoxicity and display DILI 

properties that were initially overlooked [21,183-186]. Indeed, studies carefully addressing 

the hepatotoxic potential of DNs remain unaddressed in current literature. Examining the 

hepatotoxic properties of DNs will help optimize the design and synthesis of clinically 

suitable DNs to avoid off-target effects of DNs.

In summary, we would like to emphasize that DNs possess great biomedical potential. 

We expect to see more diverse applications of DNs capable of translating towards clinical 

use, but understanding the hurdles and limitations of therapeutic DNA nanotechnology is 

crucial for its clinical success. Consequently, the critical analysis provided herein will help 

researchers to establish a roadmap for overcoming these challenges.
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Fig. 1. 
Key examples of various DNA nanostructure designs. (A) DNA tetrahedron [35]. (B) 

Three-dimensional wireframe rabbit-shaped DNA structure designed from a polygonal 

mesh architecture [36]. (C) Two-dimensional DNA origami in the shape of a smiley face 

[38]. (D) Three-dimensional DNA origami vase structure featuring complex curvature [39]. 

(E) Modular DNA structures composed of 32-nucleotide “brick” motifs [41]. (F) Single-

stranded DNA “tiles” acts as pixels in a two-dimensional array [187]. (G) A DNA box 

designed to be opened via toehold strand displacement to release a cargo of interest [44]. 

(H) pH-sensitive DNA i-motifs allow the assembly and disassembly of a DNA tetrahedral 

structure [45]. (I) Heteromultimeric assembly of complex DNA architectures via shape 

complementarity [46]. J) Homomultimeric assembly of DNA barrel structures into a hollow 

DNA tube via sticky end adhesion [47].
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Fig. 2. 
Historical timeline of the advancements in DNA nanotechnology research [2,24,27,34,61].
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Fig. 3. 
DNA nanostructures for biological applications. (A) BSA modified with positively charged 

dendrimers to adhere to a 60-helix bundle (60HB) nanostructure enables enhanced 

nanostructure stability, uptake, and immunoquiescence [68]. (B) Oligolysine-based peptide 

coating featuring two functional aurein 1.2 sequences that exhibits endosomal escape of the 

coated DNA nanostructure (EE-DN) in the absence of serum proteins [76]. (C) Cholesterol-

bearing 6-helix bundle DNA nanostructures facilitate targeted uptake in white blood cells 

compared to red blood cells [188]. (D) A DNA origami sheet bearing MUC1-targeted 

aptamers capable of targeted intracellular delivery of active RNase A [189].
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Fig. 4. 
Schematic brief summary of DNA nanostructures interaction with living cells.
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