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Two faces of reactive oxygen species 

Reactive oxygen species (ROS) encompassing superoxide 

anion (O2
.–), hydrogen peroxide (H2O2), and hydroxyl radi-

cal (OH.) are believed to be simple by-products of aerobic 

respiration [1–3]. Uncontrolled and high concentrations of 

ROS result in oxidative stress that can lead to peroxidation 

of lipids, oxidation of proteins and nucleic acids, and ulti-

Oxidative stress can cause generation of uncontrolled reactive oxygen species (ROS) and lead to cytotoxic damage to cells and tis-
sues. Recently, it has been shown that transient ROS generation can serve as a secondary messenger in receptor-mediated cell sig-
naling. Although excessive levels of ROS are harmful, moderated levels of ROS are essential for normal physiological function. There-
fore, regulating cellular ROS levels should be an important concept for development of novel therapeutics for treating diseases. The 
overexpression and hyperactivation of NADPH oxidase (Nox) can induce high levels of ROS, which are strongly associated with diabet-
ic nephropathy. This review discusses the theoretical basis for development of the Nox inhibitor as a regulator of ROS homeostasis to 
provide emerging therapeutic opportunities for diabetic nephropathy. 
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mately cause cellular damage [1–3]. Therefore, ROS pro-

duction should be tightly regulated during physiological 

events. A growing body of evidence has indicated that ROS 

can serve as secondary messengers in signaling transduc-

tion pathways mediated by various agonists such as growth 

factors, hormones, and cytokines to regulate cell growth, 

apoptosis, and differentiation [1–5]. It has been well estab-

lished that phosphotyrosine of cellular proteins plays an 
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essential role in cellular proliferation [6– 9]. Stimulation of 

growth factor can result in increased tyrosine phosphor-

ylation, leading to cell proliferation. Tyrosine phosphory-

lation is regulated by a balance between protein tyrosine 

kinase (PTK) and protein tyrosine phosphatase (PTPase). 

The PTPase family contains the conserved sequence Cys-

X-X-X-X-X-Arg (Cys-X5-Arg, X indicates any amino acid) in 

an active center. Conserved cysteine residue in the active 

center possesses a low pKa through the positive charge of 

arginine residue and exists as a thiolate anion (-S–), which 

is easily oxidized by H2O2. Oxidation of thiolate anion in 

PTPase is converted to sulfenic acid (-SOH), which can 

then induce the loss of phosphatase activity of PTPase. Oxi-

dation of PTPase can disrupt the balance between PTK and 

PTPase. PTK activity is then relatively enhanced, resulting 

in increased tyrosine phosphorylation of target cell signal-

ing-related proteins and cell proliferation [8,9].  

Reactive oxygen species generation from 
mitochondrial respiratory chains 

It is known that sources of ROS include the electron trans-

port chain (ETC) in mitochondria and metabolic enzymes 

such as glucose oxidase, xanthine oxidase, cytochrome 

p450, and NADPH oxidase (Nox) [1–5,10–12]. This suggests 

that different complexes of cellular events are involved in 

ROS generation. Metabolic enzymes including cytochrome 

p450, glucose oxidase, and xanthine oxidase can produce 

a constant level of ROS generation, indicating that the 

ROS generation was not correlated with the pathogenesis 

of diabetic nephropathy (DN). In contrast to metabolic 

enzyme-generated ROS, mitochondrial ROS are known to 

account for a large proportion of total cellular ROS [13–15]. 

The ETC complexes are located in the mitochondrial inner 

membrane (respiratory complexes I–IV). Electron leakage 

from the mitochondrial ETC can generate superoxide, 

which is converted into H2O2 by manganese superoxide 

dismutase (Mn-SOD) in the mitochondrial matrix [16,17]. 

It has been reported that complex I and complex III of the 

mitochondrial ETC are major sites for ROS generation. 

However, kidney tissues in hyperglycemia can exhibit re-

duced expression of complex I and complex III of the ETC. 

An impaired ETC complex in diabetic conditions results in 

leaked electrons, leading to ROS generation. Many reports 

have indicated that mitochondrial Mn-SOD expression is 

decreased in DN. Reduction of mitochondrial Mn-SOD 

expression can induce the level of mitochondrial superox-

ide [18]. However, other reports have suggested that Mn-

SOD deficiency fails to induce diabetic kidney diseases [19]. 

More detailed molecular studies between increased mito-

chondrial ROS and DN must be performed. 

Regulation of NADPH oxidase activation 

Nox is known to contribute to ROS generation in response 

to various agonists. Since the first discovery of gp91phox/

Nox2 in phagocytic cells, an additional six homologues of 

Nox2 (Nox1, Nox3, Nox4, Nox5, dual oxidase 1 [Duox1], 

and dual oxidase 2 [Duox2]) have been identified in various 

nonphagocytic cells [4,5,12,20,21]. All seven Nox isozymes 

are composed of a single polypeptide. They can be divided 

into three types based on functional domain: 1) six trans-

membrane α-helical domains containing tandem heme 

group homologues to ferric reductase in the NH2-terminal 

region; 2) flavin adenine dinucleotide (FAD)-binding site 

in the membrane proximal region; and 3) NADPH-binding 

site homologues to ferredoxin-NADP+ reductase in the long 

COOH-terminal region. Electrons from NADPH are trans-

ferred to oxygen molecules through FAD and two hemes, 

leading to the generation of O2
.– and H2O2. Activations of 

Nox isozymes are regulated by unique regulatory mecha-

nisms [4,5,22]. The Nox2 protein is required for one inte-

gral protein p22phox; three cytosolic proteins p47phox, p40phox, 

and p67phox; and small G-protein Rac (Fig. 1A). The p47phox 

serves as a core protein in the complex. The tandem Src 

homology 3 (SH3) domains of p47phox can interact with the 

proline-rich region (PRR) in the COOH-terminal region of 

the p22phox protein, leading to membrane targeting. Mean-

while, the PRR in the COOH-terminal region of p47phox can 

recruit the SH3 domain of p67phox. Four tetratricopeptide 

repeats in the NH3 terminal region of p67phox protein pro-

vide the binding site for G-protein Rac. The phox and bem1 

(PB1) domain between the two SH3 domains of the p67phox 

protein serves as the site for the molecular interaction of 

p67phox protein with the PB1 domain of p40phox. Interactions 

among an integral protein p22phox; three cytosolic proteins 

p47phox, p40phox, and p67phox; and Rac provide a stable pro-

tein complex of Nox2 to allow electron transfer from NA-

DPH to O2 (Fig. 1A). 

Nox1 proteins need to form a complex with integral 
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protein p22phox and two cytosolic proteins Nox organizer 

1 (NoxO1) as the homologue of p47phox, Nox activator 1 

(NoxA1) as the homologue of p67phox, and small G-protein 

Rac (Fig. 1B). The activation pattern of Nox1 is similar to 

that of Nox2. The PRR of p22phox with the SH3 domain of 

NoxO1 can interact with the SH3 of the NoxO1 protein 

serving as a central scaffolding molecule in Nox1 complex 

formation. The PRR of NoxO1 provides a binding site for 

the SH3 domain of the NoxA1 protein, which contains four 

tetratricopeptide repeat domains in the NH2-terminal re-

gion for Rac binding sites [23]. Nox5 and Duox1/2 contain a 

Ca2+-binding EF hand domain in the NH3-terminus region, 

which provides an intracellular calcium binding site result-

ing in their activation (Fig. 1D, E). These isozymes do not 

require integral or cytosolic proteins.  

Since Nox4 has been identified from the kidney, many 

reports have indicated that Nox4 activation is associated 

with chronic kidney disease. In contrast to other Nox iso-

zymes, the molecular mechanism of Nox4 activation has 

remained unclear other than that it requires the integral 

protein p22phox (Fig. 1C). Although polymerase delta-in-

teracting proteins2 (Poldip2) has been identified as a 

cytosolic activator for Nox4, the molecular mechanism 

for the interaction between Nox4-p22phox and Poldip2 has 

not been suggested [24]. Recently, Yoo et al. [25] reported 

that the Ysc84p/Lsb4p, Lsb3p, and plant FYVE proteins 

region in the NH3 terminal region and the SH3 domain in 

the COOH-terminal region of SH3YL1 can interact with 

the Nox4-p22phox complex to result in Nox4-dependent 

H2O2 generation (Fig. 1C). It has been demonstrated that 

formation of a ternary complex of p22phox-SH3YL1-Nox4 

leading to H2O2 generation induces severe renal failure in 

a lipopolysaccharide-induced acute kidney injury model. 

However, the regulatory mechanism by which high glu-

Figure 1. Structure and activation of Nox isozymes [22]. Regulation of Nox isozymes. (A) Nox2-p22phox dimer associates with p47phox, 
p67phox, p40phox, and Rac. (B) Nox1-p22phox complex also binds to NoxO1, NoxA1, and Rac. (C) Nox4-p22phox interacts with SH3YL1 for 
activation. (D and E) The EF hand motif of the N-terminus region in Nox5 and Duox1/2 isozymes binds to intracellular calcium for their 
activation.
Duox, dual oxidase; FAD, flavin adenine dinucleotide; Nox, NADPH oxidase; PRR, proline-rich region. 
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cose or transforming growth factor β1 regulates the ternary 

complex of p22phox-SH3YL1-Nox4 formation in fibrosis and 

DN remains to be determined. 

Uncontrolled reactive oxygen species generation is 
associated with diabetic nephropathy: water tank 
model 

A water tank has an inlet and outlet. If the amount of water 

entering from the inlet and exiting to the outlet is constant, 

a certain amount of water will always remain in the water 

tank (Fig. 2). ROS homeostasis including ROS generation 

and elimination exhibits a similar pattern to the water tank 

model. ROS can be generated from various cellular sources 

including Nox activation and mitochondrial respiratory 

chains, whereas ROS elimination is mediated by the action 

of cellular antioxidants (glutathione, uric acid, ascorbic 

acid [vitamin C], α-tocopherol [vitamin E], and ubiquinol 

[coenzyme Q]) and antioxidant enzymes (SOD, catalase, 

glutathione S-transferase, and peroxiredoxin) [26–30]. In 

a normal physiological condition, a balance between ROS 

generation and elimination is well regulated, and a certain 

amount of remaining ROS serves as secondary messengers 

in cell signaling. In a pathological stage, Nox isozymes and 

their regulating proteins are overexpressed, resulting in 

uncontrolled ROS generation [31–34]. As the balance of 

ROS homeostasis is disrupted, the level of ROS is gradually 

increased in the body, which is closely associated with the 

pathogenesis of DN [35–37]. Therefore, uncontrolled Nox 

activation should be suppressed by treatment with Nox in-

hibitor as an emerging therapy for DN (Fig. 2). 

Since uncontrolled ROS generation is involved in DN, 

many studies on antioxidant therapies for DN have been 

conducted [38,39]. Thirteen independent clinical studies 

Figure 2. Water tank model for ROS homeostasis. ROS homeostasis including ROS generation and elimination has a similar pattern 
to the water tank model, which has a water inlet and outlet. Over-activation of Nox isozymes leads to uncontrolled ROS generation that 
can disrupt the balance of ROS homeostasis. Nox activation should be suppressed by treatment with Nox inhibitors as an emerging 
therapy for diabetic nephropathy.
Nox, NADPH oxidase; ROS, reactive oxygen species.
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have shown inconsistent results, strongly indicating that 

the beneficial effects of antioxidants on DN progression 

are controversial [40–52]. Why are there so many incon-

clusive trials on antioxidant therapy? Several points in the 

clinical studies must be considered. The first point is that 

the supplement of antioxidants might not be enough to 

eliminate ROS present in the disease (Fig. 3). Since antiox-

idants can be distributed to the entire body, they cannot 

pinpoint pathogenic tissues to eliminate uncontrolled ROS. 

Therefore, antioxidant therapy is not sufficient for treating 

chronic kidney disease [38,39]. The second point is that 

the function of the antioxidant might be nonspecific for 

scavenging ROS in the entire body. This indicates that non-

specific antioxidants might eliminate appropriate ROS that 

could potentially play a role in the normal physiology of 

the human body. In contrast to antioxidants, Nox inhibitors 

might specifically regulate uncontrolled ROS inlets, result-

ing in decreasing ROS levels in the entire body to support 

the return of normal ROS balance (Fig. 3). 

Oxidative stress in diabetic nephropathy 

DN is one of the complications of diabetes and is the lead-

ing cause of renal failure resulting in end-stage renal disease 

[53–55]. In the early stages of DN, increasing albuminuria 

secretion and reduction of the glomerular filtration rate are 

common. Glomerular basement membrane thickening, 

mesangial expansion, overexpression of extracellular matrix 

(ECM) proteins, tubulointerstitial fibrosis, and glomerulo-

sclerosis can contribute to the progression of DN [56–58]. 

Several lines of evidence suggest that oxidative stress me-

diated by uncontrolled ROS generation is associated with 

the pathogenesis of DN [37,53]. Renal oxidative stress is 

involved in the activation or overexpression of various Nox 

isozymes [37]. Previous reports have indicated that various 

Nox isozymes and their accessory proteins such as p22phox, 

p47phox, and p67phox are expressed in kidney tissues [22]. 

Mesangial cells express Nox1, Nox2, and Nox4. Podocytes 

contain Nox2, Nox4, and Nox5. The upregulation of Nox4 

and Nox5 plays a role in mesangial cell hypertrophy, tissue 

expansion, ECM protein accumulation, and apoptosis of 

podocytes [37]. Blood vessels in kidney tissues are com-

posed of vascular smooth muscle cells and endothelial cells 

expressing Nox1, Nox4, and Nox5 known to be responsible 

for ROS generation in response to angiotensin II [59]. Prox-

imal tubule cells express Nox1, Nox4, and Nox5 isozymes 

[34,60,61]. Most Nox isozymes are expressed in different 

kidney tissues and cells [34]. Nox4 is predominantly ex-

Figure 3. Antioxidant therapies for chronic kidney disease. Many clinical studies have shown that the beneficial effects of antioxi-
dants on chronic kidney disease progression are controversial. Antioxidants are insufficient for removing excessive ROS. However, Nox 
inhibitors can control ROS levels to support return to normal ROS balance.
ROS, reactive oxygen species.
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pressed in all kidney cells [62–65]. Its expression is upregu-

lated in diabetic conditions. Deletion of Nox4 can attenuate 

mesangial hypertrophy and ECM accumulation in diabetic 

conditions [66]. Moreover, inflammatory cytokine pro-

duction and macrophage infiltration are reduced in Nox4 

KO mice [31,67]. In contrast to Nox4, the function of Nox1 

and Nox2 in DN is controversial [31,68,69]. Although Nox1 

is associated with ROS generation and renal oxidation in 

diabetic conditions, the molecular function of Nox1 in the 

pathogenesis of DN remains unclear. 

Development of Nox inhibitors for treatment of 
diabetic nephropathy 

Many studies have demonstrated that oxidative stress plays 

an important role in DN. Therefore, various clinical trials 

for therapeutic agents regulating oxidative stress are con-

tinuously being conducted (Table 1) [70–89]. Although no 

effective therapy exists for treatment of DN, clinical trials 

for therapeutic Nox inhibitors are ongoing [88,89]. A dual 

Nox1/4 inhibitor GKT137831 (brand name: Setanaxib), a 

pyrazolopyridine compound, was developed by Genkyo-

texn (Stockholm, Sweden) [90]. In streptozotocin-induced 

diabetic ApoE–/– mice, GKT137831 attenuated diabetic-in-

duced glomerular damage including ECM accumulation 

and glomerular structural changes [31]. Moreover, it has 

been reported that GKT137831 regulates the reduction of 

mesangial matrix expansion and podocyte loss in a type I 

diabetes model [33]. GKT137831 is now enrolled in a phase 

2 clinical trial for type I DN in Australia. The Ewha-18278 

Table 1. Therapeutics including Nox inhibitors in diabetic nephropathy
Compound Effect Target Clinical trials
Nox inhibitor
  GKT137831 Nox1/4 inhibitor Diabetic nephropathy [31,33,37,38,53,70] Phase 2 trial completed (NCT0 2010242) [71]

Atherosclerosis [70]
Diabetic retinopathy [88]

  GKT136901 Nox1/4 inhibitor Diabetic nephropathy [37,38]
  APX-115 Pan-Nox inhibitor Diabetic nephropathy [38,53,72,88] Phase 2 trial completed (NCT04534439)
  GLX7013114 Nox4 inhibitor Islet cell death [53]
  Probucol Nox2 inhibitor Diabetic nephropathy [37] Phase 2 trial completed (NCT0 1726816) [73]
  Plumbagin Nox4 inhibitor Diabetic nephropathy [37]
  ROCK inhibitor Nox4 inhibitor Diabetic nephropathy [37,74,75]
  Statin Rac1 inhibitor Diabetic nephropathy [37]
  PKC inhibitor P47phox inhibitor Diabetic nephropathy [37] Phase 1 trial completed (NCT0 0552227)
  Apocynin P47phox inhibitor Diabetic nephropathy [37]
XO inhibitor
  Allopurinol XO inhibitor Diabetic nephropathy [38,89] Phase 4 trial completed (NCT02829177) [76]
  Febuxostat XO inhibitor Diabetic nephropathy [38]
NHE3 inhibitor
  HOE-642 NHE3 inhibitor Type 1 diabetes [77]
  Dimethyl amiloride NHE3 inhibitor Type 2 diabetes [78,79]
SGLT2 inhibitor
  Dapagliflozin SGLT2 inhibitor Type 2 diabetes [38] Phase 3 trial completed (NCT0 3036150) [80,81]
  Canagliflozin SGLT2 inhibitor Diabetic nephropathy [38] Phase 3 trial completed (NCT0 3436693) [82]
  Empagliflozin SGLT2 inhibitor Type 2 diabetes [38] Phase 3 trial completed (NCT0 1131676) [83]
Antioxidant
  Bardoxolone Nrf2 activator Type 2 diabetes [38,89] Phase 2 trial completed (NCT0 0811889) [84,85]
  Vitamin E Antioxidant Diabetic nephropathy [37,86] Phase 3 trial terminated (NCT0 0220831) [43,87]
  Coenzyme Q10 Antioxidant Type 2 diabetes [37,86]

NHE3, N+/H+ exchanger isoform 3; Nox, NADPH oxidase; PKC, protein kinase C; ROCK, rho-associated coiled-coil-containing protein kinase; SGLT2, sodium 
glucose cotransporter 2; XO, xanthine oxidase.
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compound was first developed for osteoporosis treatment 

by Joo et al. [91]. The compound was transferred to AptaBio 

Corp. (Suwon, Korea) and is now referred to as APX-115 (Ta-

ble 1). In db/db mice as a type II diabetes model, APX-115 

suppressed mesangial expansion and urinary albumin ex-

cretion [72]. Renal Nox5 expression was highly increased in 

renal podocyte-specific Nox5 transgenic mice (Nox5 pod+). 

Moreover, APX-115 inhibited Nox5 expression and levels of 

urinary albumin and creatinine in Nox5 pod+ mice, indicat-

ing APX-115 as a potentially therapeutic agent for treatment 

of DN through inhibition of macrophage infiltration to the 

glomerulus, a renal inflammatory signal related to tumor ne-

crosis factor receptor-associated factor and Nox5 expression. 

APX-115 is now in a phase 2 clinical trial for DN in the Euro-

pean Union. Rho-associated coiled-coil-containing protein 

kinase (ROCK) and sodium glucose cotransporter (SGLT) 2 

are novel treatments for DN [74,75]. Fasudil, a ROCK inhib-

itor, reduced albuminuria in db/db mice. Canagliflozin, an 

SGLT inhibitor, is a compound under development by Mit-

subishi Tanabe Pharma Corp. and has completed phase III 

clinical trials in Japan. The novel compound improved renal 

outcomes in patients with type 2 diabetes [82]. Xanthine ox-

idase inhibitors and antioxidants regulating oxidative stress 

are summarized in Table 1. 

Conclusion 

Homeostasis between ROS generation and elimination 

plays an important role in normal physiological functions. 

Uncontrolled ROS generation through over-activation of 

Nox activity is closely associated with the pathogenesis of 

DN. Uncontrolled Nox activation should be suppressed by 

treatment with Nox inhibitors as an emerging therapy for 

DN. Recently, two Nox inhibitors (GKT137831 from Gen-

kyotex and APX-115 from AptaBio) have been subjected to 

clinical phase II trials for DN patients. We believe that these 

Nox inhibitors provide new hope for DN patients. 
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