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ABSTRACT
In parametric estimates, themaximum likelihood estimationmethod
is the most popular method widely used in the social sciences and
psychology, although it is biased in situationswhere sample sizes are
small or the data are heavily censored. Therefore, the main objec-
tive of this research is to improve this estimation method using
the Runge–Kutta technique. The improved method was applied to
derive the estimators of the shape scale family parameters and com-
pare them with Bayesian estimators based on the informative and
kernel priors, via Monte Carlo simulation. The simulation results
showed that the improved maximum likelihood estimation method
is highly efficient and outperforms the Bayesian method for differ-
ent sample sizes. Finally, from a future perspective, the proposed
model could be important for analyzing real data sets including data
on COVID-19 deaths in Egypt, for potential comparative studies with
other countries.

ARTICLE HISTORY
Received 4 November 2018
Accepted 25 April 2021

KEYWORDS
Bayesian estimations;
COVID-19 epidemic;
informative prior; Kernel
prior; ordinary differential
equation; Runge–Kutta
method

1. Introduction

In statistical inference, it is known that the maximum likelihood estimation method is
biased when sample sizes are small or when the data are heavily censored and ineffective
as the Bayesian method. These biases can mislead subsequent inferences and in some dis-
tributions, contain nonlinear equations that require numerical techniques. Therefore, the
challenge in this paper is to improve the maximum likelihood estimation method, using
the Runge–Kutta technique. The simulations and real data set results indicated that the
improved method was more efficient than Bayesian method, even using informative and
kernel priors. Thus, the statistical significance of this method is its efficiency compared
to most estimation methods, and it is reliable and easy to apply, especially for researchers
in social sciences and psychology. To illustrate this, we applied the proposed method to a
general lifetime distribution which contains some of the lifetime distributions most com-
monly used in reliability and survival analyzes such as Weibull and Weibull extension
models.
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These distributions have flexibility in describing the lifetime variables of constant haz-
ard rate as well as non-constant hazard rate and are useful for modeling and analyzing
lifetime data in medical, biological, and engineering sciences. Recently, we applied these
distributions to analyze actual real data sets of current significance including COVID-19
deaths observed in Egypt from December 22, 2020, to February 16, 2021.

Several authors have discussed the estimation of theWeibull model parameters, includ-
ing [31,37] who derived confidence intervals using some pivotal quantities based on
progressively censored samples [2]. Derived the estimates of the parameters of theWeibull
model based on the classical and Bayesian approaches [20] presented reliability and quan-
tile analyzes of the Weibull distribution [5] derived the maximum likelihood estimates for
the Weibull model parameters based on complete and censored data [22] presented some
methods for estimating the parameters of the Weibull model [31,38] derived the MLEs
for the Weibull model parameters based on progressive type-II censored samples, and
[26] derived the empirical Bayes estimates of the Weibull model parameters. For further
discussion of the Weibull distribution, see Zhang et al. [39,40].

The Weibull extension model proposed as a new lifetime distribution with a bathtub-
shaped hazard rate function with the ability to describe bathtub-shaped lifetime data, see
[9,13,32] the Weibull extension model presented as a practical model for numerous appli-
cations in reliability and lifetimemodeling ofmechanical and electro-mechanical products
with a bathtub-shaped failure rate function [34] the statistical analysis of this model as a
bathtub-shaped hazard rate function were discussed [35,36] derived the exact confidence
intervals for the shape parameter based on censored samples [15] theQuasi-likelihood esti-
mates of the Weibull extension parameters were derived [3] the estimates of the Weibull
extension model parameters were derived based on the generalized order statistics [33]
the Bayesian modeling of bathtub-shaped hazard rate function using various forms of this
model and some issues related to model choices were discussed [27] the confidence inter-
vals of the parameters of the Weibull extension model were derived using the conditional
inference based on the generalized order statistics. The aim of this paper is to continue
these efforts by deriving point estimates for the general lifetime model parameters that
contain theWeibull and theWeibull extension models as members of this family, based on
a generalized progressive hybrid censoring scheme (GPHCS).

A random variable X is said to have the general lifetime model, which belongs to the
shape-scale family if its probability density function (PDF) is given by

f (x) = αβgα−1(x)g′(x) exp(−βgα(x)), x > 0,α,β > 0, (1)

and its cumulative distribution function (CDF) is given by

F(x) = 1 − exp(−βgα(x)), x > 0,α,β > 0, (2)

α and β are the shape and scale parameters respectively. For convenience, we assume g(x)
to be differentiable as well as strictly increasing function of x such that, g(0+) = 0 and
g(x) → ∞ as x → ∞.

This family includes the most common lifetime distributions such as theWeibull exten-
sion, modified Weibull, Weibull, Pareto, Burr-type-XII, Lomax, and generalized Pareto
distributions according to the values of gα(x). Some of the important members of this
family are given in Table 1.
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Table 1. Some important distributions as special cases from the
shape-scale family.

No. gα(x) F(x) Distributions

1 exp(xα) − 1 1 − exp(−β(exp(xα) − 1)) Weibull Extension

2 xα exp(λx) 1 − exp(−xαβ exp(λx)) Modified Weibull

3 xα 1 − exp(−βxα) Weibull

4 ln(1 + xα) 1 − (1 + xα)−β Burr-type XII

5 ln(1 + x/α) 1 − (1 + x/α)−β Lomax

6 − ln(1 − x/α) 1 − (1 − x/α)β Generalized Pareto

7 ln(x/α) 1 − (x/α)−β Pareto-type I

In reliability analysis, experiments often terminate before all test units fail due to cost
and time considerations or may be lost or removed from testing prior to failure. Hence,
progressive censoring sampling schemes appear in these life test experiments. The gen-
eral scheme for studying such experiments is the progressive censoring scheme, which
is the most popular and useful scheme for both industrial life testing and clinical trial
applications [4,6] presented comprehensive studies on the topic of the progressive cen-
sored scheme and its applications. The progressive censoring scheme allows for some of
the experimental units remaining at various stages to be removed before the end of the test,
although the trial time may be quite long due to the presence of some very reliable units.
Thus, recently [21] proposed a progressive hybrid censoring scheme, which is a mixture
of progressive type-II and hybrid censoring scheme, see [12,14,16,19]. However, the dis-
advantage of the progressive hybrid censored scheme is those very few failures may occur
before the time point T. In order to provide a guarantee of the number of failures observed
as well as the time required to complete the test [11,12] suggested a generalized progressive
hybrid censoring scheme. This scheme modifies the progressive hybrid censoring scheme
by allowing the experiment to continue beyond the time point T if the number of failures
is less than m and this allows the experimenter to at least monitor k failures. This scheme
can be described as follows:

Consider a life-testing experiment in which n identical units X1,X2, . . . ,Xn placed on
the test. For T ∈ (0,∞) and the integers k and m are pre-fixed such that k < m with the
random removal units R1,R2, . . . ,Rm, which are fixed at the beginning of the experiment,
where n = m +∑m

i=1 Ri. Generally, at the time of the i_th failure, Ri units are randomly
removed from the remaining surviving units Si = n − i −∑i−1

j=1 Rj, i ∈ [1,m]. Continue
this process until the terminated timeT∗ = max{Xk:m, min{Xm:n,T}}, which is the time for
removing all the remaining surviving units from the experiment according to the following
cases. Let J denote the number of observed failures up to the time T. Thus, we have one of
the following types of observations:

Case I: X1:m:n ≤ . . . ≤ XJ:m:n < XJ+1:m:n < . . . < Xk:m:n If T < Xk:m:n < Xm:m:n.

Case II: X1:m:n ≤ . . . ≤ Xk:m:n < Xk+1:m:n < . . . < XJ:m:n If XK:m:n < T < Xm:m:n.

Case III: X1:m:n ≤ . . . ≤ Xk:m:n < Xk+1:m:n < . . . < Xm:m:n If Xk:m:n < Xm:m:n < T.

Note that for Case I, T < Xk:m:n < Xm:m:n. and Xk+1:m:n, . . . ,Xm:m:n are not observed. For
Case II, XJ:m:n < T < XJ+1:m:n and XJ+1:m:n, . . . ,Xm:m:n are not observed.



2828 M. MASWADAH

Thus, given a generalized progressive hybrid censored sample, the likelihood function
for the three different cases can be written in a unified form as follows:

L(x; θ) = C
D∏
i=1

f (xi,m,n)[1 − F(xi,m,n)]Ri[1 − F(T)]R
∗
Tδ . (3)

D =

⎧⎪⎨
⎪⎩
k, δ = 0 if T ≤ Xk < Xm

J, δ = 1 if Xk < T ≤ Xm

m, δ = 0 if Xk < Xm < T

, X =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(X1,X2, . . . ,XJ ,XJ+1 . . . ,Xk) if

T < Xk < Xm

(X1,X2, . . . ,XJ) if Xk ≤ T < Xm

(X1,X2, . . . ,Xm) if Xk < Xm ≤ T

and

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(R1,R2, . . . ,RJ , 0, 0, . . . 0,Rk),Rk = D − k −
k−1∑
i=1

Ri if T < Xk < Xm

(R1,R2, . . . ,RJ ,R∗
T),R∗

T = D − J −
J∑

i=1
Ri if Xk ≤ T < Xm

(R1,R2, . . . ,Rm),Rm = D − m −
m−1∑
i=1

Ri if Xk < Xm ≤ T

,

where RT∗ is the number of surviving units that are removed at the stopping time T.
Recently, GPHCS was applied to some distributions such as Weibull distribution, see

[12], inverseWeibull distribution, see [28,29], exponential distribution, see [8,11], Rayleigh
distribution, see [10].

2. An improvedMLEmethod

It is known that the likelihood function L(θ ; x) contains all the information in
the sample and depends on the unknown parameters θ = (α,β) and the data X =
(x1, x2, . . . , xn). Thus, the MLE θ̂ = θ̂ (x) of θ is the solution of the stationary equation
(∂H(θ ;X)/∂θ)|

θ=θ̂
= 0, which is a function of θ̂ (x) and X, where H(θ ;X) is the log-

likelihood function.
Applying the implicit function theorem to the stationary equation with considering all

partial derivatives, as well as the total derivatives, are assumed to be evaluated at some
known value of θ̂ (x) = θ0, say.Wemight say that for any x inX there is a value θ̂ (x) satisfy-
ing the stationary equation. Taking the x-derivative for the stationary equation, see Ramsay
et al. [30], we obtain:

d
dx

(
∂H(θ ;X)

∂θ

)
|
θ=θ̂

= ∂2H(θ ;X)

∂θ∂x
|
θ=θ̂

+ ∂2H(θ ;X)

∂θ2
|
θ=θ̂

dθ̂ (x)
dx

= 0. (4)

Solving (4), we obtain the first derivative for θ̂ with respect to x at θ = θ̂ as:

dθ̂ (x)
dx

= −
(

∂2H(θ ;X)

∂θ2
|
θ=θ̂

)−1
∂2H(θ ;X)

∂θ∂x
|
θ=θ̂

. (5)
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Thus, we can write (5) as a first-order ordinary differential equation for the maximum
likelihood estimator θ̂ (x) as:

dθ̂ (x)/dx = f (x, θ̂ ), with the initial condition θ̂ (x0) = θ0, (6)

It is clear that f (x, θ̂ ) and df (x, θ̂ )/dθ̃ are defined and continuous functions in a rectangular
region containing the point (x0, θ0), which ensures the existence of a unique solution for
(6) in the neighborhood of the point (x0, θ0). Using any numerical technique such as the
fourth-order Runge–Kutta method, we can find the approximate solution for θ̂ (x). If the
initial conditions are unavailable, then they should be appended to the parameter θ̂ as
quantities with respect to which the fit is optimized. Thismethodwas applied to the inverse
Weibull model parameters based on the generalized progressive hybrid censoring scheme,
see [28].

For the general lifetime model (1) and the likelihood function (3), the log-likelihood
function and its derivatives can be derived as follows:

H(α,β|X) = D ln(αβ) + (α − 1)
D∑
i=1

ln(g(xi)) − β

[ D∑
i=1

(Ri + 1)gα(xi) + δR∗
Tg

α(T)

]
.

∂H
∂α

= D/α +
D∑
i=1

ln(g(xi))

− β

[ D∑
i=1

(RI + 1)gα(xi) ln g(xi) + δR∗
Tg

α(T) ln g(T)

]
,

∂2H
∂α2 = −D/α2 − β

[ D∑
i=1

(Ri + 1)gα(xi)(ln (g(xi))2 + δR∗
Tg

α(T)(ln (g(T))2

]
,

∂2H
∂x∂α

=
D∑
i=1

g′(xi)
g(xi)

− β

[
α

D∑
i=1

(Ri + 1)gα−1(xi)g′(xi) ln(g(xi)) + gα−1(xi)g′(xi)

]
,

∂H
∂β

= D/β −
[ D∑
i=1

(Ri + 1)gα(xi) + δR∗
Tg

α(T)

]
,
∂2H
∂β2 = −D/β2,

∂2H
∂x∂β

= −α

D∑
i=1

(Ri + 1)gα−1(xi)g′(xi).

Thus, using (6) with the corresponding derivatives above, we can find the point esti-
mates for each α and β , using the Runge–Kutta method. Programs for the simulation with
Fortran codes are provided in the ‘Supplemental Material’.

3. Bayesian estimation based on the informative prior

We suggest using independent priors for each of the parameters α and β such as gamma
distributions. Hence, the joint prior density is given by

g(α,β) ∝ αa−1βc−1e−bα−dβ , a, b ≥ 0, c, d ≥ 0. (7)
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Using the informative prior (7) and the likelihood function (3) based on (1) and (2), the
joint posterior density can be derived as follows:

f (α,β|X) = KαD+a−1βD+c−1 exp

[
−α

(
b −

D∑
i=1

ln(g(xi)

)
−

D∑
i=1

ln(g(xi)

]

× exp

[
−β(d +

D∑
i=1

(Ri + 1)gα(xi) + δR∗
Tg

α(T))

]

The marginal posterior densities of the parameters α and β can be derived as

g1(α|X) = K�(D + c)αD+a−1

[
d +

D∑
i=1

(Ri + 1)gα(xi) + δR∗
Tg

α(T)

]−(n+c)

× exp

[
−α

(
b −

D∑
i=1

ln(g(xi)) −
D∑
i=1

ln(g(xi))

)]

g2(β|X) = K
∫ ∞

0
αD+a−1βD+c−1 exp

[
−α

(
b −

D∑
i=1

ln(g(xi)) −
D∑
i=1

ln(g(xi)

)]

× exp

[
−β

(
d +

D∑
i=1

(Ri + 1)gα(xi) + δR∗
Tg

α(T)

)]
dα

K is the normalization constant that can be derived as:

K−1 = �(D + c)
∫ ∞

0
αD+a−1

[
d +

D∑
i=1

(Ri + 1)gα(xi) + δR∗
Tg

α(T)

]−(D+c)

× exp

[
−α

(
b −

D∑
i=1

ln(g(xi)) −
D∑
i=1

ln(g(xi))

)]
dα.

4. Bayesian estimation based on the Kernel prior

For deriving the kernel prior, we present the bivariate kernel density estimator for
the unknown probability density function g(α,β) with support on (0,∞), which is
defined as

ĝ(α,β) = 1
Dh1h2

D∑
i=1

K

(
α − α̂i

h1
,
β − β̂i

h2

)
, (8)

hi, i = 1, 2 are called the bandwidths or smoothing parameters, which chosen such that
hi → 0 andDhi → ∞ asD → ∞, whereD is the sample size. The influence of the smooth-
ing parameter h is critical because it determines the amount of smoothing. A small value of
h leads to the estimator having insignificant details while a large value of h causes exceed-
ers of the information contained in the sample, which in consequence, may mask some
of the important characteristics. Hence, a certain compromise is needed. However, the
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optimal choice for h, which minimizes the mean squared errors is hi = γ


σ iD−0.2 where

0.3 ≤ γ ≤ 1.06 and the estimated value of the population standard deviations 

σ i could

be used as Si the sample standard deviation. The optimal choice for the kernel function
K(., .) can be used as the bivariate standard normal distribution. The basic elements asso-
ciated with the kernel density estimation function have been extensively studied in [17,18].
Based on the properties of the MLEs of the parameters, which converge in probability
to the original parameters, the kernel prior estimate can be derived using the following
algorithm:

(i) Generate a random sample X = (x1 , x2 , x3 , . . . , xn) from the parent distribution
f (x;α,β) with given specified values for the unknown parameters α and β .

(ii) Bootstrapping with replacement n samples x∗
1, x

∗
2, x

∗
3, . . . , x

∗
n, with size n each, where

x∗
i = (x∗

i1, x
∗
i2, . . . , x

∗
in) for i ∈ [1, n] from the given random sample in step (i).

(iii) For each sample in step (ii) calculate theMLEs for the parameters α and β , we get the
random variables Y = (α̂1, α̂2, . . . , α̂n) and Z = (β̂1, β̂2, . . . , β̂n) for their MLEs.

(iv) Finally, based on the random variables Y and Z, the kernel density estimation (8) can
be used to derive the kernel prior density estimator ĝ(α,β).

Using the kernel prior (8) and (3) the joint posterior density for α and β is given by

f (α,β|X) = Kĝ(α,β)(αβ)D exp

[
(α − 1)

D∑
i=1

ln(g(xi))

]

× exp

[
−β

( D∑
i=1

(Ri + 1)gα(xi) + δR∗
Tg

α(T)

)]
.

It is worthwhile to mention that, this kernel prior has been used for some distributions, see
[1,23–26].

5. Simulation study

We study the performance of the IMLE and Bayes methods, based on the root mean
squared errors (RMSEs). The RMSEs were computed by generating 1000 replications for
sample sizes, n= 20,40, and 60 to represent small, moderate, and large sizes fromWeibull
and Weibull extension models with α = (0.59, 1.11) and β = (1.11, 1.97). In the simula-
tion study, Bayesian estimates based on the squared error loss function were driving using
the informative gamma prior and the kernel prior distributions using different combina-
tions for the hyper-parameter of the gamma prior for α and β as a = (2, 4), b = (8, 7),
c = (4, 7), and d = (7, 6).

Generation of the generalized progressive hybrid censored order statistics can be
performed according to the following procedure:

Let X = {X1,X2, . . . ,Xn} be a random sample with size n from the parent distribution.
Thus, based on the random sample the generalized progressive hybrid censored sample
with sizem(< n): X1:m:n,X2:m:n, . . . ,Xm:m:n, can be generated as follows:
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(i) Let T ∈ (0,∞) and the integers k and m are pre-fixed such that k < m with

 = (R1,R2, . . . ,Rm) be the predetermined number of uniform random removal
observations, which can be generated as Ri = Anint[2 ∗ (mm −∑i−1

j=1 Rj + 1) ∗
U/mm], i = 1(1)(m − 1), where U ≈ Uniform(0, 1) and Rm = mm −∑m−1

i=1 Ri,
mm = n − m.

(ii) From i = 1, choose the minimum observation of the random sample say Xi,m:n,
which is the i_th observation that can be selected for the generalized progressive
hybrid censored random sample.

(iii) If i <= m, remove Ri uniform random observations that is Ri = {r1,i, r2,i, . . . rc,i},
i = 1(1)m and c is the number of censored observations. The removed units without
replacement from the subset X∗

i = X\{Ai
⋃
Bi} are rj,i = An int

[
(n −∑i−1

l=1 Rl + 1)

∗U
]
, j = 1(1)c is the subscript of the removed units where Ai = ⋃i

j=1Xj:m:n and

Bi = ⋃i−1
j=1Rj with noting that r0,i = 0 it means Ri = 0.

(iv) If T < Xk:m:n < Xm:m:n, let RK = D − k −∑k−1
j=1 Rj,m = k and stop.

(v) If Xk:m:n < T < Xm:m:n, let R∗
T = D − J −∑J

j=1 Rj,m = J and stop.
(vi) If Xk:m:n < Xm:m:n < T, let Rm = D − m −∑m−1

j=1 Rj, and stop.
(vii) If i < m, set i = i + 1 and go to step 2 or else stop.

From the simulation results in Tables 2–5, some points are quite clear based on these
estimates, and others are summarized in the following key points:

(i) Obviously, in general for the parameters α and β the IMLE method has smaller
RMSEs compared to those based on the Bayesian method.

(ii) The Bayesian estimates for both models based on the kernel prior are more effi-
cient than the ones based on the gamma prior and they are relatively close to IMLE
estimates.

(iii) The estimated RMSEs values increase as the value of α increases and decrease as the
value of β increases.

(iv) The estimated RMSEs values decrease as the scale parameter increases and the shape
parameter decreases for the prior’s hyper-parameter for α and vice versa for β .

(v) The estimated RMSE values decrease with increasing the values of k, m, and n as
expected.

(vi) In general, the estimated RMSE values for small values of n increase with increasing
the termination time T and vice versa for large values of the sample size n as expected
for both models.

6. Real data analysis

In this section, we studied three real datasets to study the performance of the proposed
methods on Weibull and Weibull extension models, which are the most desirable and
widely used lifetime distributions. These distributions have been used in many applica-
tions in various fields and in new areas such as biomedical sciences and survival analysis
to describe the lifetime of specific mortality and failure rates. Hence, we have fitted
these datasets using some goodness of fit tests such as the Kolmogorov–Smirnov (K-S),
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Table 2. The root mean square errors (RMSEs) for the Weibull parameter α using the IMLE and Bayes
methods at T = 0.75 and T = 1.5 withm = (n/2 and 3n/4) and k = (m/2 and 3m/4).

IMLE Gamma prior Kernel prior

n m k α β T = 0.75 T = 1.5 T = 0.75 T = 1.5 T = 0.75 T = 1.5

20 10 5 0.59 1.11 0.0642 0.0553 0.1773 0.1677 0.1322 0.1372
1.97 0.0676 0.0707 0.1613 0.1643 0.1068 0.1104

1.11 1.11 0.0799 0.0715 0.3452 0.3237 0.1481 0.1515
1.97 0.0844 0.0759 0.3149 0.3105 0.1410 0.1386

8 0.59 1.11 0.0501 0.0472 0.1510 0.1439 0.1312 0.1338
1.97 0.0548 0.0552 0.1529 0.1521 0.1015 0.1058

1.11 1.11 0.0663 0.0667 0.2884 0.2960 0.1479 0.1444
1.97 0.0630 0.0661 0.2863 0.2913 0.1370 0.1355

15 8 0.59 1.11 0.0518 0.0557 0.1518 0.1532 0.1339 0.1317
1.97 0.0566 0.0555 0.1535 0.1502 0.1051 0.1023

1.11 1.11 0.0657 0.0623 0.2872 0.2877 0.1438 0.1396
1.97 0.0656 0.0622 0.2878 0.2846 0.1389 0.1374

11 0.59 1.11 0.0430 0.0422 0.1268 0.1283 0.1287 0.1227
1.97 0.0478 0.0459 0.1311 0.1279 0.1016 0.1043

1.11 1.11 0.0538 0.0554 0.2361 0.2395 0.1415 0.1432
1.97 0.0549 0.0544 0.2512 0.2454 0.1334 0.1364

40 20 10 0.59 1.11 0.0452 0.0420 0.1298 0.1135 0.0972 0.0966
1.97 0.0544 0.0487 0.1283 0.1188 0.0766 0.0776

1.11 1.11 0.0572 0.0470 0.2721 0.2213 0.1321 0.1274
1.97 0.0690 0.0521 0.2610 0.2287 0.1201 0.1134

15 0.59 1.11 0.0418 0.0421 0.1152 0.1142 0.0979 0.0962
1.97 0.0488 0.0482 0.1190 0.1187 0.0785 0.0763

1.11 1.11 0.0494 0.0491 0.2298 0.2263 0.1248 0.1268
1.97 0.0511 0.0538 0.2262 0.2306 0.1140 0.1127

30 15 0.59 1.11 0.0414 0.0413 0.1134 0.1098 0.0981 0.0993
1.97 0.0482 0.0468 0.1197 0.1134 0.0749 0.0773

1.11 1.11 0.0492 0.0464 0.2264 0.2174 0.1235 0.1236
1.97 0.0544 0.0523 0.2349 0.2275 0.1095 0.1103

23 0.59 1.11 0.0275 0.0269 0.0901 0.0927 0.0930 0.0971
1.97 0.0390 0.0401 0.0901 0.0931 0.0766 0.0753

1.11 1.11 0.0375 0.0401 0.1634 0.1676 0.1171 0.1223
1.97 0.0417 0.0386 0.1775 0.1730 0.1116 0.1087

60 30 15 0.59 1.11 0.0412 0.0382 0.1044 0.0948 0.0841 0.0834
1.97 0.0484 0.0456 0.1076 0.1009 0.0632 0.0664

1.11 1.11 0.0513 0.0386 0.2408 0.1765 0.1123 0.1140
1.97 0.0621 0.0474 0.2309 0.1889 0.1011 0.0993

23 0.59 1.11 0.0391 0.0380 0.0965 0.0932 0.0854 0.0820
1.97 0.0448 0.0436 0.0991 0.0954 0.0635 0.0681

1.11 1.11 0.0420 0.0372 0.1918 0.1727 0.1117 0.1069
1.97 0.0471 0.0472 0.1908 0.1872 0.1007 0.0973

45 23 0.59 1.11 0.0399 0.0358 0.0979 0.0874 0.0853 0.0814
1.97 0.0447 0.0438 0.0986 0.0938 0.0628 0.0632

1.11 1.11 0.0393 0.0378 0.1812 0.1754 0.1099 0.1115
1.97 0.0504 0.0475 0.2007 0.1881 0.1038 0.1012

34 0.59 1.11 0.0239 0.0233 0.0768 0.0763 0.0787 0.0779
1.97 0.0373 0.0369 0.0762 0.0774 0.0622 0.063

1.11 1.11 0.0318 0.0320 0.1405 0.1432 0.1052 0.1079
1.97 0.0373 0.0351 0.1523 0.1434 0.0955 0.0916

Anderson–darling (A-D), and Chi-Square (CH2) tests for a significance level equals to
0.05 [13,14] provided a comprehensive study of these tests.

6.1. Vinyl chloride data application

Vinyl chloride is a known human carcinogen, exposure to this compound should be
avoided as much as possible, and its level should be kept as low as technically possible.
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Table 3. The root mean square errors (RMSEs) for the Weibull parameter β using the IMLE and Bayes
methods at T = 0.75 and T = 1.5 withm = (n/2 and 3n/4) and k = (m/2 and 3m/4).

IMLE Gamma prior Kernel prior

n m k α β T = 0.75 T = 1.5 T = 0.75 T = 1.5 T = 0.75 T = 1.5

20 10 5 0.59 1.11 0.2584 0.2490 0.4092 0.4013 0.1124 0.1191
1.97 0.6268 0.6288 0.7699 0.7590 0.2072 0.1981

1.11 1.11 0.2533 0.2382 0.4497 0.4212 0.1233 0.1265
1.97 0.5719 0.5335 0.8083 0.7646 0.1573 0.1424

8 0.59 1.11 0.2201 0.2151 0.3481 0.3318 0.1239 0.1296
1.97 0.5437 0.5442 0.6871 0.6798 0.1750 0.1658

1.11 1.11 0.2129 0.2129 0.3507 0.3545 0.1310 0.1326
1.97 0.4764 0.4763 0.6873 0.6914 0.1381 0.1417

15 8 0.59 1.11 0.2198 0.2198 0.3470 0.3436 0.1304 0.1269
1.97 0.5442 0.5443 0.6831 0.6782 0.1694 0.1634

1.11 1.11 0.2129 0.2129 0.3535 0.3515 0.1310 0.1265
1.97 0.4766 0.4767 0.6982 0.6968 0.1478 0.1434

11 0.59 1.11 0.1896 0.1890 0.2601 0.2737 0.1380 0.1362
1.97 0.4596 0.4594 0.5709 0.5622 0.1477 0.1426

1.11 1.11 0.1894 0.1894 0.2747 0.2741 0.1320 0.1373
1.97 0.4193 0.4194 0.5835 0.5756 0.1465 0.1364

40 20 10 0.59 1.11 0.2510 0.2253 0.3126 0.2630 0.1165 0.1193
1.97 0.6301 0.5647 0.6557 0.5768 0.1981 0.1723

1.11 1.11 0.2523 0.2184 0.3697 0.2773 0.1189 0.1174
1.97 0.5723 0.4892 0.7252 0.5992 0.1485 0.1416

15 0.59 1.11 0.2296 0.2228 0.2673 0.2617 0.1260 0.1222
1.97 0.5647 0.5647 0.5764 0.5797 0.1699 0.1722

1.11 1.11 0.2183 0.2184 0.2817 0.2842 0.1279 0.1208
1.97 0.4891 0.4888 0.5950 0.5835 0.1402 0.1335

30 15 0.59 1.11 0.2293 0.2210 0.2701 0.2527 0.1217 0.1213
1.97 0.5645 0.5465 0.5843 0.5482 0.1748 0.1633

1.11 1.11 0.2184 0.2130 0.2825 0.2643 0.1205 0.1205
1.97 0.4889 0.4763 0.6002 0.5665 0.1426 0.1355

23 0.59 1.11 0.1882 0.1879 0.1935 0.2022 0.1244 0.1322
1.97 0.4547 0.4557 0.4032 0.3913 0.1405 0.1331

1.11 1.11 0.1864 0.1864 0.1904 0.1972 0.1243 0.1287
1.97 0.4117 0.4119 0.4067 0.4223 0.1283 0.1368

60 30 15 0.59 1.11 0.2424 0.2184 0.2476 0.2091 0.1139 0.1189
1.97 0.6134 0.5464 0.5695 0.4815 0.1906 0.1661

1.11 1.11 0.2521 0.2132 0.3225 0.2229 0.1103 0.1133
1.97 0.5725 0.4765 0.6653 0.4813 0.1457 0.1292

23 0.59 1.11 0.2270 0.2158 0.2198 0.2046 0.1163 0.1153
1.97 0.5582 0.5347 0.4917 0.4570 0.1659 0.1577

1.11 1.11 0.2166 0.2098 0.2328 0.2083 0.1134 0.1106
1.97 0.4849 0.4687 0.5067 0.4750 0.1326 0.1325

45 23 0.59 1.11 0.2266 0.2164 0.2193 0.1985 0.1160 0.1188
1.97 0.5583 0.5353 0.4889 0.4543 0.1648 0.1559

1.11 1.11 0.2167 0.2098 0.2313 0.2094 0.1148 0.1159
1.97 0.4847 0.4688 0.5128 0.4737 0.1381 0.1326

34 0.59 1.11 0.1890 0.1892 0.1717 0.1657 0.1189 0.1151
1.97 0.4580 0.4577 0.3456 0.3467 0.1390 0.1382

1.11 1.11 0.1875 0.1875 0.1680 0.1628 0.1155 0.1117
1.97 0.4142 0.4143 0.3498 0.3445 0.1258 0.1232

It is known that the concentration of vinyl chloride in drinking water of 0.5mg/liter is
being associated with an increased risk of liver and Brain tumors for exposure beginning
at adulthood and will double cancer risk for continuous exposure from birth. Therefore,
we consider the dataset used by [7] which represents 34 data points in mg/L from the vinyl
chloride obtained from clean upgrade monitoring wells as:
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Table 4. The rootmean square errors (RMSEs) for theWeibull extension parameterα using the IMLE and
Bayes methods at T = 0.75 and T = 1.5 withm = (n/2 and 3n/4) and k = (m/2 and 3m/4).

IMLE Gamma prior Kernel prior

n m K α β T = 0.75 T = 1.5 T = 0.75 T = 1.5 T = 0.75 T = 1.5

20 10 5 0.59 1.11 0.0597 0.0545 0.1726 0.1576 0.1148 0.1146
1.97 0.0866 0.0675 0.1649 0.1573 0.0964 0.0901

1.11 1.11 0.0763 0.0607 0.3469 0.2914 0.1331 0.1302
1.97 0.0888 0.0688 0.3151 0.2948 0.1369 0.1317

8 0.59 1.11 0.0621 0.0519 0.1759 0.1549 0.1130 0.1064
1.97 0.0753 0.0635 0.1622 0.1526 0.0935 0.0894

1.11 1.11 0.0678 0.0654 0.3336 0.3023 0.1295 0.1333
1.97 0.0743 0.0643 0.3013 0.2877 0.1304 0.1244

15 8 0.59 1.11 0.0586 0.0474 0.1721 0.1388 0.1118 0.1072
1.97 0.0739 0.0592 0.1598 0.1438 0.0947 0.0931

1.11 1.11 0.0697 0.0576 0.3282 0.2632 0.1342 0.1255
1.97 0.0736 0.0645 0.3065 0.2789 0.1311 0.1292

11 0.59 1.11 0.0520 0.0496 0.1482 0.1412 0.1137 0.1111
1.97 0.0587 0.0579 0.1453 0.1449 0.0931 0.0937

1.11 1.11 0.0579 0.0563 0.2829 0.2661 0.1266 0.1273
1.97 0.0623 0.0608 0.2804 0.2720 0.1256 0.1228

40 20 10 0.59 1.11 0.0490 0.0448 0.1301 0.1140 0.0857 0.0866
1.97 0.0626 0.0554 0.1245 0.1149 0.0697 0.0689

1.11 1.11 0.0555 0.0465 0.2730 0.2226 0.1141 0.1177
1.97 0.0733 0.0560 0.2608 0.2234 0.1140 0.1088

15 0.59 1.11 0.0491 0.0445 0.1305 0.1133 0.0844 0.0881
1.97 0.0634 0.0558 0.1262 0.1159 0.0702 0.0735

1.11 1.11 0.0521 0.0502 0.2520 0.2232 0.1146 0.1166
1.97 0.0675 0.0555 0.2545 0.2211 0.1130 0.1066

30 15 0.59 1.11 0.0488 0.0416 0.1283 0.1056 0.0874 0.0901
1.97 0.0653 0.0536 0.1302 0.1103 0.0712 0.0692

1.11 1.11 0.0516 0.0454 0.2545 0.2117 0.1153 0.1145
1.97 0.0662 0.0561 0.2525 0.2203 0.1118 0.1089

23 0.59 1.11 0.0406 0.0387 0.1033 0.1005 0.0848 0.0844
1.97 0.0523 0.0513 0.1078 0.1050 0.0702 0.0687

1.11 1.11 0.0402 0.0420 0.1904 0.1962 0.1077 0.1121
1.97 0.0534 0.0512 0.2092 0.2045 0.1114 0.1081

60 30 15 0.59 1.11 0.0450 0.0431 0.1055 0.0983 0.0750 0.0733
1.97 0.0592 0.0541 0.1096 0.0987 0.0623 0.0598

1.11 1.11 0.0479 0.0410 0.2175 0.1825 0.1055 0.1017
1.97 0.0626 0.0549 0.2188 0.1952 0.1031 0.1012

23 0.59 1.11 0.0478 0.0421 0.1126 0.0964 0.0742 0.0744
1.97 0.0619 0.0536 0.1111 0.0984 0.0632 0.0614

1.11 1.11 0.0471 0.0414 0.2137 0.1846 0.1056 0.1047
1.97 0.0580 0.0512 0.2087 0.1845 0.0990 0.0958

45 23 0.59 1.11 0.0452 0.0357 0.1046 0.0851 0.0745 0.0731
1.97 0.0603 0.0493 0.1090 0.0868 0.0634 0.0580

1.11 1.11 0.0478 0.0347 0.2131 0.1629 0.1084 0.1036
1.97 0.0625 0.0472 0.2194 0.1695 0.1023 0.0950

34 0.59 1.11 0.0355 0.0358 0.0806 0.0872 0.0708 0.0735
1.97 0.0510 0.0495 0.0914 0.0886 0.0610 0.0601

1.11 1.11 0.0329 0.0323 0.1548 0.1591 0.0964 0.1007
1.97 0.0497 0.0492 0.1770 0.1735 0.0992 0.1005

5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3,
1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2.

We found theWeibull extension andWeibull models are a good fit for this dataset as shown
in Table 6 and Figures 1(a) and 2(a) respectively. To study the concentration of the vinyl
chloride in the water of these wells based on this data set, we find the estimates of the
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Table 5. The rootmean square errors (RMSEs) for theWeibull Extension parameterβ using the IMLE and
Bayes methods at T = 0.75 and T = 1.5 withm = (n/2 and 3n/4) and k = (m/2 and 3m/4).

IMLE Gamma prior Kernel prior

n m k α β T = 0.75 T = 1.5 T = 0.75 T = 1.5 T = 0.75 T = 1.5

20 10 5 0.59 1.11 0.2665 0.2424 0.4013 0.3534 0.1181 0.1183
1.97 0.6555 0.5664 0.7834 0.6820 0.2839 0.2362

1.11 1.11 0.2643 0.2389 0.4417 0.3543 0.1234 0.1242
1.97 0.5631 0.5033 0.7938 0.7020 0.2366 0.2198

8 0.59 1.11 0.2626 0.2425 0.3987 0.3476 0.1219 0.1137
1.97 0.6218 0.5661 0.7486 0.6825 0.2618 0.2353

1.11 1.11 0.2535 0.2386 0.4080 0.3569 0.1212 0.1243
1.97 0.5406 0.5032 0.7617 0.6938 0.2285 0.2141

15 8 0.59 1.11 0.2646 0.2233 0.4010 0.2986 0.1174 0.1257
1.97 0.6214 0.5230 0.7487 0.6123 0.2633 0.2161

1.11 1.11 0.2543 0.2277 0.4124 0.3083 0.1295 0.1261
1.97 0.5408 0.4755 0.7690 0.6354 0.2320 0.2113

11 0.59 1.11 0.2326 0.2243 0.3298 0.2970 0.1235 0.1233
1.97 0.5426 0.5230 0.6531 0.6226 0.2275 0.2231

1.11 1.11 0.2331 0.2279 0.3354 0.3117 0.1324 0.1336
1.97 0.4890 0.4765 0.6665 0.6394 0.2141 0.2142

40 20 10 0.59 1.11 0.2653 0.2444 0.3090 0.2587 0.1180 0.1198
1.97 0.6236 0.5689 0.6320 0.5517 0.2571 0.2313

1.11 1.11 0.2658 0.2388 0.3633 0.2634 0.1239 0.1166
1.97 0.5760 0.5038 0.7101 0.5694 0.2269 0.2118

15 0.59 1.11 0.2672 0.2444 0.3099 0.2549 0.1173 0.1143
1.97 0.6237 0.5688 0.6368 0.5539 0.2597 0.2324

1.11 1.11 0.2561 0.2384 0.3289 0.2612 0.1154 0.1165
1.97 0.5512 0.5033 0.6786 0.5619 0.2266 0.2076

30 15 0.59 1.11 0.2653 0.2366 0.3025 0.2301 0.1177 0.1129
1.97 0.6240 0.5574 0.6390 0.5238 0.2613 0.2227

1.11 1.11 0.2565 0.2358 0.3327 0.2522 0.1213 0.1191
1.97 0.5509 0.4957 0.6737 0.5475 0.2229 0.2089

23 0.59 1.11 0.2308 0.2293 0.2222 0.2170 0.1159 0.1146
1.97 0.5365 0.5364 0.4938 0.4868 0.2181 0.2144

1.11 1.11 0.2301 0.2303 0.2251 0.2309 0.1161 0.1208
1.97 0.4816 0.4830 0.4987 0.5122 0.1999 0.2081

60 30 15 0.59 1.11 0.2580 0.2445 0.2456 0.2159 0.1131 0.1092
1.97 0.6039 0.5690 0.5430 0.4759 0.2501 0.2265

1.11 1.11 0.2567 0.2388 0.2827 0.2202 0.1168 0.1111
1.97 0.5469 0.5031 0.5909 0.4940 0.2148 0.2049

23 0.59 1.11 0.2674 0.2444 0.2692 0.2165 0.1160 0.1133
1.97 0.6238 0.5689 0.5624 0.4702 0.2541 0.2236

1.11 1.11 0.2544 0.2389 0.2766 0.2240 0.1136 0.1139
1.97 0.5407 0.5037 0.5796 0.4850 0.2150 0.2015

45 23 0.59 1.11 0.2612 0.2274 0.2475 0.1778 0.1138 0.1075
1.97 0.6135 0.5330 0.5465 0.4075 0.2490 0.2063

1.11 1.11 0.2530 0.2291 0.2726 0.1838 0.1121 0.1064
1.97 0.5469 0.4801 0.5942 0.4203 0.2166 0.1921

34 0.59 1.11 0.2319 0.2274 0.1866 0.1850 0.1087 0.1127
1.97 0.5396 0.5331 0.4180 0.4060 0.2074 0.2057

1.11 1.11 0.2313 0.2294 0.1933 0.1871 0.1105 0.1059
1.97 0.4841 0.4794 0.4336 0.4118 0.1953 0.1890

parameters, which represent the scale and shape of the concentration using both mod-
els, to determine the average concentration in the water. We observed that the estimates
based on the IMLE and Bayes methods for α to both models fall in the interval [0.47, 1.2],
indicating that the above dataset is moderately right-skewed and this means that the con-
centration decreases with increasing time, see Figures 1(b) and 2(b). Also, the IMLE and
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Figure 1. (a) The Empirical CDF and theCDF for theWeibull extensionmodel basedon theVinyl Chloride
Data. (b) The Histogram and the PDF for the Weibull extension model based on the Vinyl Chloride Data.

Figure 2. (a) The Empirical and the CDF for theWeibull model based on the Vinyl Chloride Data. (b) The
Histogram and the PDF for the Weibull model based on the Vinyl Chloride Data.

Bayes estimates for β to both models fall in the interval [0.28, 0.6], which ensures that the
dataset is right-skewed and the vinyl chloride concentration will decrease with increasing
time, therefore monitoring these wells is very important.

6.2. Leukemia data application

In the health care field, Leukemia affects the blood status that can be detected with the
Blood Cell Count (CBC), andmostly leukemia patients undergo chemotherapy. Therefore,
we study the effect of this treatment on leukemia patients based on a dataset collected
and used by the Ministry of Health Hospital in the Kingdom of Saudi Arabia [2], which
indicated the lifetimes in days for forty-three patients with leukemia after given them the
chemotherapy treatment:
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Table 6. The critical and calculated values for the K-S, A-D and CH2 tests and their powers (p-values) for
the models.

Models Data The tests
Critical
value

Calculated
value The P-values α̂ β̂

WeibullModel Chloride N = 34 K-S 0.8624 0.5355 0.6525 1.0102 0.5263
A-D 0.7504 0.2826 0.6708
CH2 15.428 4.9912 0.4474

Leukemia N = 43 K-S 0.8699 0.7285 0.1915 2.5533 1.04E-08
A-D 0.7598 0.9159 0.0206
CH2 15.399 12.409 0.0528

Covid-19 N = 57 K-S 0.8705 0.8314 0.7660 11.6306 6.4E-21
A-D 0.7563 0.5064 0.2030
CH2 15.416 3.6758 0.5500

Weibull
Extension
Model

Chloride N = 34 K-S 0.8621 0.6731 0.2629 0.5056 0.3029

A-D 0.7732 0.6886 0.0814
CH2 8.6539 7.5479 0.2409

Leukemia N = 43 K-S 0.8689 0.5681 0.5572 0.3086 9.2E-05
A-D 0.7800 0.5051 0.2086
CH2 10.119 10.783 0.3776

COVID-19 N = 57 K-S 0.8708 0.7739 0.1290 0.7031 5.9E-08
A-D 0.7798 0.4779 0.2337
CH2 8.6616 2.8097 0.6774

The MLE’s for the parameters for these datasets have been calculated.

115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 983, 1025, 1062, 1063, 1165,
1191, 1222, 1222, 1251, 1277, 1290, 1357, 1369, 1408, 1455, 1478, 1549, 1578, 1578, 1599,
1603, 1605, 1696, 1735, 1799, 1815, 1852, 1899, 1925, 1965.

We found the Weibull extension model is more fitting for this dataset than the Weibull
model as shown in Table 6 and Figures 3(a) and 4(a) respectively. To study the effect of
chemotherapy on patients based on this dataset, we find that the IML and Bayes esti-
mates for α to both models fall in the interval [0.25, 2.4] and for β lying in the interval
[1E−03, 1E−010], which is approximately zero. This means that the curves that repre-
sent this dataset are approximately symmetric, see Figures 3(b) and 4(b). Also, theWeibull
extension model is more fitting than the Weibull model, where the parameter estimate for
α is less than one (0.25 ≤ α∗ ≤ 0.3), but the estimate for α to theWeibull model is greater
than one (1.2 ≤ α∗ ≤ 2.4), indicating that the curve will be right oblique, see Figures 3(b)
and 4(b). As a result, the hazard rate will decrease with increasing time for patients and this
means that they are more likely to reach their maximum normal lifespan. So in general,
based on the two models, this dataset indicates that the patient’s lifespan is more stable
and lives longer due to the chemotherapy dose, and is highly effective in giving patients
more hope of survival.

6.3. COVID-19 data application

Here, we propose a concrete application with an actual dataset to assess interest inWeibull
and Weibull extension models. The considered data set is the deaths from COVID-
19 in Egypt, which are related to Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2). Unfortunately, this epidemic spread rapidly at the beginning of the year
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Figure 3. (a) The Empirical CDF and the CDF for the Weibull extension based on the Leukemia Data. (b)
The Histogram and the PDF for the for the Weibull extension based on the Leukemia Data.

Figure 4. (a) The Empirical and the CDF for the Weibull model based on the Leukemia Data. (b) The
Histogram and the PDF for the Weibull model based on the Leukemia Data.

2020, killing thousands of victims, and forcing governments to take exceptional mea-
sures to protect their people. Naturally, the general understanding of the COVID-19
pandemic is a challenge for all scientists, but it is essential for the sake of future gener-
ations. In this section, we contribute modestly to the subject by applying these models
to analyze the daily data set of confirmed deaths for COVID-19 in Egypt from Decem-
ber 22, 2020, to February 16, 2021, as shown below, to provide an estimate for some
important measures such as the average cases, the standard deviation of cases, and the
probability to have a certain number of cases in the near future to make more efforts
to confront these epidemics. This dataset obtained from the following email address:
http://covid.gov.Eg/Coronatracker.com/Country/Egypt.

http://covid.gov.Eg/Coronatracker.com/Country/Egypt
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Figure 5. (a) The Empirical CDF and the CDF for the Weibull extension based on the COVID-19 Death
Data. (b) The Histogram and the PDF for the for the Weibull extension based on the COVID-19 Death
Data.

Figure 6. (a) The Empirical and the CDF for the Weibull model based on the COVID-19 Death Data. (b)
The Histogram and the PDF for the Weibull model based on the COVID-19 Death Data.

It is given as follows:

37, 42, 51, 49, 43, 53, 61, 54, 56, 55, 56, 54, 64, 58, 55, 57, 54, 56, 57, 55, 52, 55, 58, 59, 52, 54,
56, 55, 58, 51, 54, 52, 49, 57, 53, 55, 48, 54, 48, 46, 53, 44, 47, 53, 52, 48, 44, 47, 48, 52, 53, 53,
42, 36, 59, 56, 51.

For the COVID-19 data set, the results of both distributions are a good fit for this dataset as
shown in Figures 5(a) and 6(a). From the information in Table 2, the MLEs for the model
parameters are derived to estimate the PDFs for theWeibull andWeibull extensionmodels
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Table 7. The estimates and the (RMSEs) in parentheses for Weibull extension andWeibull parameters α
and β based on the IMLE and Bayes method at the hyper parameters (A = 2, B = 3, C = 4, D = 2): for
m = n/2, k = m/2.

Weibull extension model Weibull model

Bayes Bayes

Data T Par. IMLE Gamma Kernel IMLE Gamma Kernel

Vinyl. data
N = 34

Complete
sample

α 0.4817 0.4791 0.5019 0.9494 0.9426 1.1971

(0.0238) (0.0264) (0.0037) (0.0609) (0.0678) (0.1869)
β 0.2817 0.3564 0.3086 0.4891 0.6126 0.3011

(0.0212) (0.0535) (0.0057) (0.0371) (0.0864) (0.2251)
0.75 α 1.0238 0.7741 0.9339 1.3448 1.1102 1.2873

(0.0280) (0.2217) (0.0619) (0.0119) (0.2268) (0.0455)
β 0.1297 0.0122 0.2017 0.2328 0.3579 0.3741

(0.0137) (0.1313) (0.0582) (0.0251) (0.0999) (0.1162)
1.5 α 0.7757 1.5575 0.7530 1.1071 0.9899 1.1377

(0.0209) (0.7608) (0.0437) (0.0805) (0.1977) (0.0499)
β 0.12066 0.0892 0.1225 0.2158 0.1865 0.2097

(0.0092) (0.0407) (0.0074) (0.0212) (0.0505) (0.0273)
3.5 α 0.5930 0.6706 0.5659 1.1001 0.9709 1.1643

(0.0342) (0.0433) (0.0613) (0.0251) (0.1264) (0.0391)
β 0.1084 0.0013 0.0501 0.2059 0.3315 0.3857

(0.0121) (0.1193) (0.0705) (0.0158) (0.1091) (0.1640)
Leuk. data
N = 43

Complete
sample

α 0.2934 0.2532 0.3001 2.4087 1.8020 1.2941

(0.0154) (0.0556) (0.0088) (0.1268) (0.7335) (0.9501)
β 8.6E−05 2.64E−03 1.0E−04 1.1E−08 2.1E−03 1.0E−04

(4.5E−06) (2.55E−03) (9.2E−06) (5.9E−10) (2.1E−04) (9.9E−05)
850 α 0.2741 0.1980 0.3001 1.5374 1.2896 1.2792

(0.0144) (0.0905) (0.0116) (0.1708) (0.4186) (0.4290)
β 2.8E−04 0.0125 1.0E−04 2.8E−06 0.0293 1.0E−04

(1.5E−05) (0.0122) (1.9E−04) (3.1E−07) (0.0293) (9.7E−05)
1250 α 0.2571 0.1812 0.2999 1.4147 1.1118 1.2498

(0.0135) (0.0894) (0.0293) (0.1572) (0.4601) (0.3221)
β 5.4E−04 0.0187 1.8E−04 6.6E−06 0.0266 1.0E−04

2.8E−05 (0.0181) (3.8E−04) (7.3E−07) (0.0266) (9.3E−05)
1700 α 0.2739 0.2527 0.3001 1.7539 1.2083 1.3603

(0.0144) (0.0356) (0.0118) (0.1949) (0.7405) (0.5885)
β 2.5E−04 0.0031 1.0E−04 5.7E−07 0.0069 1.0E−04

(1.3E−05) (0.0028) (1.9E−04) (6.3E−08) (0.0069) (9.9E−05)
Covid-19 data
N = 57

Complete
sample

α 0.6682 0.5896 0.5501 5.9183 5.5325 5.2679

(0.0352) (0.1137) (0.1533) (0.1566) (0.2435) (0.2899)
β 5.5E−08 5.0E−05 1.0E−04 0.89231 0.9542 0.7671

(2.9E−09) (5.0E−05) (9.9E−05) (0.1523) (0.2421) (0.0146)
40 α 0.5706 0.3530 0.5001 5.9178 6.1374 5.5213

(0.0301) (0.2476) (0.1005) (0.3123) (0.0931) (0.5402)
β 3.9E−06 7.0E−03 1.0E−04 3.7E−12 9.3E−08 1.0−E04

(2.1E−07) (7.0E−03) (9.6E−05) (2.0E−13) (9.3E−08) (9.9E−05)
50 α 0.5803 0.3604 0.5101 6.2578 6.4811 6.3450

(0.0306) (0.2506) (0.1108) (0.3306) (0.1107) (0.4251)
β 2.8E−06 6.5E−03 1.0E−04 1.0E−12 4.4E−08 1.0−04

(1.4E−07) (6.5E−03) (9.7E−05) (5.4E−14) (4.4E08) (1.0E−04)
55 α 0.5842 0.3618 0.5002 6.3911 6.6143 6.4210

(0.0308) (0.2533) (0.1149) (0.3377) (0.1145) (0.3552)
β 2.3E−06 6.4E−03 1.0E−04 5.9E−13 3.4E−08 4.2E−10

(1.3E−07) (6.4E−03) (9.8E−05) (3.2E−14) (3.4E−08) (3.2E−10)
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as given respectively by:

f̂1(x) = f̂ (x; α̂, β̂) = α̂β̂xα̂−1e−β̂xα̂

,

and f̂2(x) = f̂ (x; α̂, β̂) = α̂β̂xα̂−1e−xα̂exp(−β̂(exα̂ − 1)).
Thus, f̂1(x) and f̂2(x) are the estimated functions of the unobservable underlying PDFs

of the number of COVID-19 deaths in Egypt. Using these functions, one can estimate some
interesting measures. By denoting X the random variable modeling the daily COVID-19
confirmed death cases in Egypt during the epidemic, the probability that X belongs to a
chosen interval, say [a, b], can be estimated by P̂A,B = P(a < x < b) = ∫ b

a f̂i(x)dx, i =
1, 2. More generally, the estimation of the mean of a certain function of X, say T(X) can be
estimated as μ̂ = E(T(x)) = ∫∞

0 T(x)f̂i(x)dx, i = 1, 2.
For instance, the average number of COVID-19 deaths in Egypt can be approximated

with precision by taking T(x) = x, and so on. Thus, based on this dataset, the average num-
ber of COVID-19 deaths in Egypt based on theWeibull model is 52 confirmed deaths with
a standard deviation of 6 death, while the average number of deaths based on the Weibull
extension model is 52 with a standard deviation of 5 deaths. From Table 7, the IML and
Bayes estimates for β to both models are nearly zero, ensuring that the standard devia-
tion is small and the distributions are bell-shaped with a thin tail as shown in Figures 5(b)
and 6(b)which indicate theCOVID-19 deathswill decrease rapidly in the next fewmonths.
Thus, these results indicate that bothmodels are very efficient formodeling the COVID-19
datasets.

Finally, the results in Table 6, based on the Weibull extension and Weibull models, are
a good fit for the vinyl chloride data where the power of the tests is greater than the signif-
icance level of the tests, but the Weibull extension model is more fitting for the Leukemia
data than the Weibull model as shown in Figures 3(a) and 4(a). The results in Table 7 for
these datasets indicate that the estimated RMSEs values based on the IMLE method are
smaller than those based on the Bayesian method for large values of T with considering
the MLEs are the true values of the parameters. Hence, the results of these datasets ensure
the simulation results

7. Conclusions

We conclude that the improved MLE method is more efficient than the Bayesian method
using the informative and kernel priors, based on the generalized progressive hybrid cen-
sored scheme. However, the estimates based on the kernel prior are more efficient than the
ones based on the informative prior and are relatively close to the IML estimates. Thus, the
IMLEmethod is a viable estimationmethod for effectively any lifetimemodel and is reliable
and easy to apply especially formedical, biological, and engineering researchers.Moreover,
we applied the proposed methods to analyze real data applications including the COVID-
19 pandemic, which concluded that the number of COVID-19 deaths in Egypt is declining
in the next fewmonths. Hence, the proposedmodels provide a better understanding of the
COVID-19 epidemic and may provide insights for researchers and potential users with
models that can be broadly applicable to real-life situations.
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