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ABSTRACT
The relationship between the response variable and one or more
independent variables refers to the quality characteristic in some
statistical quality control applications, which is called profile. Most
research dealt with the monitoring of profiles in single-stage pro-
cesses considering a basic assumption of normality. However, some
processes are made up of several sub-processes; thus, the effect
of cascade property in multistage processes should be considered.
Moreover, sometimes in practice, the assumption of normally dis-
tributed data does not hold. This paper first examines the effect
of non-normal data to monitor simple linear profiles in two-stage
processes in Phase II. We study non-normal distributions such as
the skewed gamma distribution and the heavy-tailed symmetric
t-distribution to measure the non-normality effect using the aver-
age run length criterion. Next, generalized linear models have been
used and a monitoring approach based on generalized likelihood
ratio (GLR) has been developed for gamma-distributed responses
as a remedial measure to reduce the detrimental effects of non-
normality. The results of simulation studies reveal that the perfor-
mance of the GLR procedure is satisfactory for the multistage non-
normal linear profiles. Finally, the simulated and real case studies
with gamma-distributed data have been provided to show the appli-
cation of the competing monitoring approaches.
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1. Introduction

Nowadays, technology development has been done due to the more complicated prod-
ucts. Besides, the need for monitoring quality characteristics and process conditions is
much more pronounced. When the products are the output of multistage processes, the
stages are usually dependent. Disrespect to the relationship between the stages (the cas-
cade effect of such processes) results in incorrect interpretation and weak performance
of the control charts with misleading outcomes [4]. Hauck et al. [12] showed one of the
basic researches to monitor multistage processes. They expanded the work by Hawkins
[13] in the multivariate quality control concept. Loredo et al. [23] provided a method to
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monitor autocorrelated observations based on the regression adjustment inmultistage pro-
cesses. Niaki and Davoodi [28] examined the monitoring of the multivariate-multistage
process using the MAR (1) model in line with artificial neural networks. Ding and Zeng
[5] investigated the effect of measurement errors in the monitoring of regression-adjusted
processes by comparing the ordinary least squares and the total least squares estimators.
Pan et al. [32] developed a new approach for detecting the process changes in multistage
systems. They provided residual control charts to monitor autocorrelated processes which
can improve the detect-ability in Phase II monitoring. Apparently, most studies on multi-
stage processes are conducted based on the normal assumption. However, in real practice,
this assumption may be violated. Applying the common methods without considering the
mentioned assumption leads to the failure in the proper results. Hence, if the quality char-
acteristic is not distributed normally, the existing procedures require some adjustments.
Jearkpaporn et al. [15] examined the situation in which the quality characteristic in a mul-
tistage process follows a gamma distribution. They used generalized linear model (GLM)
and constructed new control charts based on that. Skinner et al. [33] studied the moni-
toring of multiple discrete counts and applied GLM-based control charts for Poisson data.
Jearkpaporn et al. [14,16] considered the monitoring of response variables in a multistage
manufacturing process where the variables followed a mixture of normal and non-normal
distributions. Amiri et al. [2] studied two-stage processes with binomial data and proposed
GLM-based control charts to monitor such processes effectively. Kim et al. [22] proposed
a GLM for beta-distributed data in multistage processes. They developed two approaches
for processmonitoring calledmodel-based SPC charts and a beta regressionmodel. Suman
and Das [34] underlined the issue of monitoring multiple product portfolios via a single
process model. They proposed a new fault diagnostic approach for the early detection of
developing faults. Asadzadeh andBaghaei [3] devised somemonitoring procedures inmul-
tistage processes for Weibull-distributed data in the presence of outliers using accelerated
failure time regression models.

Moreover, in some cases, there is a relationship between the response variable and one or
more independent variables, called profile, which should be thoroughly monitored. Kang
and Albin [19] conducted one of themost well-knownworks on simple linear profilemon-
itoring and proposed T2 and EWMA/R control charts in Phase I and Phase II respectively.
Kim et al. [21] provided an EWMA-3 scheme to monitor simple linear profiles in Phase II.
Zou et al. [36] presented a monitoring approach for general linear profiles and compared
its performance with Kim et al. [21] method. Mahmoud [25] illustrated a new method for
monitoring multiple linear regression profiles in Phase I to find changes in the intercept,
slope, and variance parameters. Noorossana et al. [29] examined the issue of autocorrelated
observations in simple linear profiles and provided three approaches based on time series
models to eliminate the autocorrelation effect. Noorossana et al. [31] investigated the effect
of non-normal observations in the monitoring of simple linear profiles. Mahmoud [26]
measured the statistical performance of simple linear profile monitoring methods when
the profile parameters are estimated in terms of in-control data set in Phase I. Noorossana
and Ayoubi [30] proposed a nonparametric bootstrap control chart based on T2 statis-
tic for monitoring simple linear profiles. Hadidoust et al. [10] considered the problem of
monitoring spline-modeled nonlinear profiles in Phase II in line with the estimation of
change-point. Ershadi et al. [7] studied the economic-statistical design of a control chart
with variable sampling intervals for monitoring linear profiles. Hadizadeh and Soleimani
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[11] examined simple linear profilemonitoringwith generalized autoregressive conditional
heterogeneity (GARCH) models. Amiri et al. [1] considered the simultaneous monitoring
of correlated multivariate linear and GLM regression profiles in Phase II.

Although a lot of attention has been given to control profile quality characteristics in
recent years, a few papers have been dedicated to profile monitoring in multistage pro-
cesses with cascade property. Eghbali Ghahyazi et al. [6] provided a method to monitor
simple linear profiles in two-stage processes. They used themethod proposed byHauk et al.
[12] based on theU statistic. Khedmati and Niaki [20] addressed the general linear profile
monitoring problem in multistage processes and applied T2chart and LRT-based scheme
for Phase I monitoring. Esmaeeli et al. [8] considered a two-stage process monitoring with
a normal profile quality characteristic. They proposed two methods to monitor the qual-
ity characteristic in both stages. Kalaei et al. [17, 18] examined the performance of the U
method in detecting various shifts in slope, intercept, and standard deviation parameters
in Phase I monitoring of multistage profiles.

The common point in the papers dealing with multistage profile monitoring is that
normally distributed quality variables are addressed; thus, simple linear regression can be
effectively applied formodeling purposes. However, this assumptionmay not exist in some
processes such as the ones in the semiconductor industry where a planarization scheme
consists of two stages called plasma oxide deposition and oxide etch. In this two-stage pro-
cess, the range of thickness is automaticallymeasured at the end of each process as themain
quality characteristic which follows a gammadistribution. Besides, the range of thickness is
a function of gas flow; so, a relationship called profile should be monitored. Consequently,
in this paper, we first examine the effect of non-normal data on the monitoring of simple
linear profiles for two-stage processes in Phase II. Then, we introduce a remedial measure
based on GLM and generalized likelihood ratio (GLR) methods to reduce the destruc-
tive effects of non-normal data. This modification makes the model-based control chart
more flexible with the distribution of the quality characteristics. It should be noted that the
main focus of this paper is on the use of GLM-based control charts for gamma-distributed
responses for two-stage profiles.

The rest of this paper is structured as follows. In Section 2, we introduce some existing
methods to monitor multistage profiles in Phase II. Non-normal distributions in linear
profiles have been described in Section 3. Numerical results to measure the effect of non-
normal data on monitoring two-stage linear profiles are presented in Section 4. In Section
5, a procedure based onGLMandGLRmethods has been developed as a remedialmeasure.
Section 6 investigates the performance of the GLR-based control chart. Simulated and real
case studies have been provided in Sections 7 and 8 respectively. The concluding remarks
are presented in the final section.

2. Monitoring two-stage linear profiles

The importance of monitoring simple linear profiles in multistage processes with cascade
property is prominent and critical. For example, in semiconductor industries, plasma oxide
deposition and oxide etch are the two stages of the planarization scheme. As mentioned
in the previous section, the range of thickness should be monitored at the end of each
stage. Due to the fact that this quality characteristic has different behavior based on the
value of gas flow, the relationship is advisable to be considered for the sake of optimal
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process monitoring. Moreover, the response quality characteristic in the second stage is
affected by the one related to the first stage. Thus, a two-stage profile monitoring is under
consideration:

yij1 = A0 + A1xi + εij1 (1)

yij2 = φyij1 + B1 + B2xi + εij2 (2)

where A0 and A1 are the intercept and slope parameters corresponding to the first profile.
Similarly, B1 and B2 are the intercept and slope parameters of the second profile and φ is
the correlation (cascade) parameter. Finally, in general, εij1 and εij2 are the normal random
error terms with mean zero and variance σ 2. Thus, the second-stage profile in Equation
(2) can be represented as follows:

yij2 = (A0φ + B1) + (A1φ + B2)xi + φεij1 + εij2 (3)

We suppose for the jth (j=1, 2, . . . ,m) sample collected over the time, (xi, yij1) and (xi, yij2)
are the ith (i=1, 2, . . . , n) observations of Stages 1 and 2 respectively. The next subsections
elaborate on the existing monitoring approaches for normal responses.

2.1. T2 method

The U statistic for two-stage simple linear profiles can be expressed by the following
equations:

Uj1 = A1 (4)

Uj2 = A2 −
∑
21

−1∑
11

A1 (5)

where A1 and A2 are the vectors of intercept and slope estimators in Stage 1 and Stage 2.∑
11 is the variance-covariance matrix of the intercept and slope estimators at Stage 1 and∑
21 is the covariance matrix of intercept and slope estimators between Stages 1 and 2:

∑
21

=
⎡
⎣φσ 2

(
1
n + X̄2

Sxx

)
−φ X̄σ 2

Sxx

−φ X̄σ 2

Sxx φ σ 2

Sxx

⎤
⎦ (6)

It should be noted that Uj1 and Uj2 have a normal distribution with mean vector and
covariance matrix as follows (Eghbali Ghahyazi et al. [6]):

μUj1 = μA1 (7)∑
Uj1

=
∑
A1

=
∑
11

, (8)

μUj2 = μA2 −
∑
21

−1∑
11

μA1 (9)

∑
Uj2

=
∑
22

−
∑
21

−1∑
11

∑
12

(10)
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Subsequently, the T2 approach, proposed by Kang and Albin [19], could be applied.
Hence, for the jth collected sample in each stage, the T2 statistic for sth stage is calculated
as follows:

T2
Ujs

= (Ujs − μUjs)

−1∑
Ujs

(Ujs − μUjs)
T s = 1, 2 (11)

The upper control limit for each stage is equal to χ2
α,2, where α is the significance level

for each stage. It is notable that the significance level for each stage is derived from the
significance level for the entire stages according to the Bonferroni method.

2.2. MEWMAmethod

The MEWMA statistic is calculated based on the U statistic, defined in the previous
subsection, for each stage in the following manner [24]:

Z2
Ujs

= θ(Ujs − μUjs) + (1 − θ)ZU(j−1)s s = 1, 2 (12)

where θ(0 < θ ≤ 1) is smoothing constant. The jth statistic of the modified MEWMA
control chart is

T2
zUjs

= ZUjs

−1∑
zUjs

ZT
Ujs

(13)

in which, the covariance matrix is

∑
zUjs

=
[

θ

(2 − θ)

]∑
Ujs

(14)

As soon as the updated statistic goes beyond the upper control limit, denoted byH, the con-
trol chart shows an out-of-control signal. It is noteworthy that H is selected by simulation
in a way to obtain a pre-determined in-control average run length (ARL).

3. Non-normal data

Non-normal condition is often examined in terms of individual observations. Non-
normality is not an important problem with large size groups because due to the central
limit theorem, sample means are almost normally distributed. However, for a small size
group, that is a common situation, monitoring statistics may follow other distributions.
Many studies have been conducted to examine the effect of non-normal data, most of
which considered ‘t-distribution’ and ‘gamma distribution’ as symmetric and skewed dis-
tributions respectively [31]. As the kurtosis of t-distribution depends on the degrees of
freedom, it is a proper symmetric distribution to measure the effect of non-normal data.
We also examine the effect of a skewed distribution such as gamma distribution on the
monitoring of two-stage linear profiles. Although the mean and variance of gamma and
normal distributions could be equal in some situations, these distributions may have dif-
ferent forms which is actually due to the differences in other parameters such as third and
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Figure 1. Some normal and gamma distributions: (a) PDF’s for Gam(0.5, 1,−0.5) and N(0, 0.707); (b)
PDF’s for Gam(1, 1,−1) and N(0, 1); (c) PDF’s for Gam(2, 1,−2) and N(0, 1.414); and (d) PDF’s for Gam(4,
1,−4) and N(0, 2), [31].

fourth moments. Herein, the generalized gamma distribution, denoted by GAM (α,β , γ ),
has been used with the following probability density function:

f (x) = (x − γ )α−1

βα
(α)
exp{−(x − γ )/β} x > γ (γ > 0, α > 0, β > 0) (15)

where α is the shape parameter, β is the scale parameter, and γ is the location parameter.
Moreover, the mean and variance are calculated via the following Equations (16) and (17)
respectively:

μ = γ + αβ (16)

σ 2 = αβ2 (17)

Figure 1 shows gamma and normal distributions. The shape parameter α is equal to 0.5,
1, 2, and 4. The scale parameter β has the fixed value of one and the location parameter is
determined as γ = −αβ .

According to Figure 1, when the α parameter increases, gamma distribution moves
toward normal distribution.

4. Effect of non-normal data on themonitoring of two-stage linear profiles

In this section, the ARL values are examined taking into account normal and non-normal
distributions in the described two-stage process with simple linear profiles. The first and
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second-stage profiles were elaborated in Section 2. Without loss of generality, the example
discussed inEghbaliGhahyazi et al. [6] has beenused throughout the paper. To this end, the
first and second profiles are yij1 = 3 + 2xi + εij1 and yij2 = (3φ + B1) + (2φ + B2)xi +
φεij1 + εij2, respectively such that (3φ + B1) = 2 and (2φ + B2) = 1. The values of x are
determined to be fixed as 2, 4, 6, and 8. In addition, we considered different values for φ

as the correlation parameter (cascade property) in our study. The total in-control ARL is
equal to 200 and the in-control ARL for each stage is 400. Thus, the upper control limit
(UCL) is χ2

0.0025,2 for the T
2method at each stage. Subsequently, for theMEWMAmethod,

the smoothing constant θ is selected to be 0.2 and the UCL is chosen by simulation study
as 11.185 to yield the total in-control ARL of 200.

4.1. In-control ARL

This subsection deals with investigating the effect of t and gamma distributions on the
performance of T2 and MEWMA control charts for the in-control condition. It is appar-
ent that t-distribution kurtosis is significantly different from normal distribution for small
degrees of freedom. Moreover, concentrating on gamma distribution, it is remarkable that
for a fixed scale parameter, increasing the shape parameter makes the skewness and kurto-
sis criteria closer to normal distribution. Besides, the kurtosis of gamma distribution with
the small shape parameter is significantly larger than the kurtosis of normal distribution.
Table 1 provides the non-normal data effect on the in-control ARL (ARL0) of the T2 and
MEWMA control charts considering t-distribution. It should be noted that the ARLs are
calculated with 10,000 simulation runs.

Table 1 reveals that the effect of non-normality on ARL0 values of T2 and MEWMA
schemes is significant, particularly for the degree of freedom less than about 15. In these
conditions, t-distribution has a heavier tail compared to normal distribution and the num-
ber of outlier data and the false alarm rates increase. Obviously, as the degree of freedom of
t-distribution increases, the shape of the t-distribution gets closer to normal distribution.
As a result, the ARL0, obtained for the case with 1000 degrees of freedom, is near to the
ARL0 of normal distribution.

Next, the effect of gamma-distributed data on the performance of existing control charts
has been investigated (Table 2).

The careful consideration of Table 2 reveals that for the shape parameters of less than
about 16, the performance ofT2 andMEWMAcontrol charts reduces, and theARLswill be
significantly different from the ones obtained for normal distribution. As the shape param-
eter increases, the ARL values corresponding to each stage are approximately 400 and the
total ARL reaches its expected value for normally distributed data which is 200.

4.2. Out-of-control ARLs

This subsection intends to assess the impact of non-normal data on the performance
of competing control charts in the out-of-control condition considering various shifts
in intercept and slope parameters. The following tables show the out-of-control ARLs,
denoted by ARL1, when a shift occurs in the profile parameters. It should be noted that
t-distribution with 5 degrees of freedom has been considered; thus, the variance of the
distribution is equal to 5/3. For gamma distribution, we considered the value of 5/3 for the
shape parameter (α), 1 for the scale parameter (β), and −5/3 for the location parameter
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Table 1. ARL0 values for the T2 and MEWMA control charts (t-distribution with different degrees of
freedom).

ν

ARL0T2 5 8 10 15 20 30 40 50 100 1000

φ = 0
T2total 40.57 63.34 78.61 104.34 119.92 141.59 157.11 162.77 178.58 198.37
T2stage2 79.59 126.70 155.50 206.17 240.81 285.63 305.92 325.68 358.68 389.368
T2stage1 81.55 126.60 154.54 208.82 238.72 283.11 308.74 329.11 357.77 389.18
φ = 0.1
T2total 40.71 64.13 79.07 104.96 120.96 142.16 154.78 163.02 178.90 198.94
T2stage2 81.43 126.31 155.81 208.57 242.53 287.05 312.87 335.89 361.68 394.95
T2stage1 81.55 126.60 154.54 209.82 240.72 285.11 310.74 332.11 359.77 395.18
φ = 0.5
T2total 40.61 64.02 76.79 104.30 120.41 144.69 151.69 164.59 180.89 196.54
T2stage2 80.12 130.19 154.39 204.63 242.15 283.31 303.11 330.70 351.18 391.36
T2stage1 79.68 128.82 153.30 208.46 242.45 284.01 306.85 332.89 355.11 393.93
φ = 0.9
T2total 27.34 40.22 64.33 76.30 102.75 121.43 143.74 157.29 162.79 179.59
T2stage2 54.22 80.04 125.83 155.69 204.39 239.42 284.57 311.89 332.92 371.61
T2stage1 54.75 79.94 127.54 154.73 204.97 239.86 284.35 310.56 330.89 368.56

ν

ARL0 MEWMA 5 8 10 15 20 30 40 50 100 1000

φ = 0
MEWMAtotal 107.01 144.84 161.17 175.98 179.35 189.61 190.94 195.99 199.22 202.87
MEWMAstage2 213.71 290.70 314.42 345.08 360.99 380.71 381.98 381.12 389.28 397.89
MEWMAstage1 213.71 290.70 314.41 345.08 360.99 380.71 381.97 381.12 389.27 397.89
φ = 0.1
MEWMAtotal 107.01 144.84 161.17 175.98 179.35 189.61 191.93 195.993 199.22 204.87
MEWMAstage2 214.17 287.50 315.59 344.63 363.02 378.29 382.79 378.68 392.49 400.05
MEWMAstage1 213.71 290.70 314.41 345.08 360.99 380.71 381.97 381.12 389.27 397.89
φ = 0.5
MEWMAtotal 108.49 145.85 157.54 174.88 181.29 192.16 192.63 197.13 198.86 201.48
MEWMAstage2 216.33 288.82 312.00 342.65 357.86 380.20 381.85 385.88 392.52 396.11
MEWMAstage1 217.44 285.84 314.92 340.87 355.97 378.40 383.69 386.72 398.99 399.98
φ = 0.9
MEWMAtotal 108.43 144.43 157.47 173.54 179.31 188.33 193.94 194.59 198.09 201.59
MEWMAstage2 215.53 285.84 316.11 346.10 363.97 372.64 384.71 390.23 393.07 401.82
MEWMAstage1 214.17 281.50 315.58 344.62 363.02 373.29 382.79 388.67 392.48 398.82

(γ ) so that the error terms have gamma distribution with zero mean and 5/3 variance [31].
Tables 3 and 4 show the ARL values for the existing control procedures when there is a
shift, denoted by λ1 and λ2, in the intercept and the slope of the first-stage profile.

Concentrating on the performance for monitoring the second-stage profile, the existing
control charts do not signal this change. In other words, it is desirable that the control chart
for monitoring the second stage does not generate a signal when there is a shift in the inter-
cept or slope of Stage 1. This implies that the U statistic can effectively remove the effect
of cascade property, and the two stages have become independent from each other. Non-
normal distributions influence the ARL1 values seriously in a similar fashion occurred for
the ARL0; however, the cascade property does not affect the second stage, and the moni-
toring methods are roughly robust for the shifts in the slope and intercept of the first-stage
profile. In general, it is concluded that the effect of non-normality is almost similar for T2
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Table 2. ARL0 values for the T2 and MEWMA control charts (gamma distribution with different shape
parameter and β = 1).

α

ARL0T2 0.5 1 2 3 4 8 16 64 256 1024

φ = 0
T2total 19.12 25.21 36.29 45.12 52.64 76.99 105.966 162.86 187.58 198.50
T2stage2 37.38 50.45 71.62 90.16 104.42 154.60 209.03 326.85 374.62 395.45
T2stage1 37.17 49.83 70.24 89.12 104.32 152.61 214.97 321.56 377.11 388.78
φ = 0.1
T2total 18.76 25.89 35.25 44.98 52.23 77.03 106.43 161.83 188.61 197.65
T2stage2 37.19 50.57 70.91 90.25 106.11 156.22 214.58 327.33 377.65 389.17
T2stage1 37.17 49.73 71.74 90.28 106.46 153.97 215.25 323.97 378.60 395.03
φ = 0.5
T2total 18.96 25.19 35.64 45.03 52.88 78.06 107.12 162.38 188.39 197.95
T2stage2 37.55 49.89 71.47 88.48 104.91 155.30 211.32 324.49 371.37 391.19
T2stage1 38.01 50.06 72.96 90.53 105.48 152.23 213.18 326.98 382.84 391.93
φ = 0.9
T2total 18.71 25.09 35.960 45.45 53.34 76.63 107.87 161.11 190.23 200.23
T2stage2 36.59 49.68 70.24 88.36 106.83 154.32 215.42 321.60 384.99 397.39
T2stage1 37.55 50.26 71.74 90.81 105.95 153.67 211.11 326.80 372.92 391.53

α

ARL0 MEWMA 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

φ = 0
MEWMAtotal 61.09 82.43 108.86 125.95 136.59 162.21 182.07 193.86 200.86 201.35
MEWMAstage2 120.94 164.06 219.33 252.82 273.67 320.81 355.48 388.38 392.37 402.21
MEWMAstage1 118.77 160.45 216.21 251.24 274.82 324.34 354.44 382.30 397.93 398.51
φ = 0.1
MEWMAtotal 61.21 80.35 108.9798 127.53 139.09 162.76 178.55 202.66 201.48 202.28
MEWMAstage2 122.09 161.81 213.05 249.11 271.53 324.39 358.51 385.49 399.16 402.04
MEWMAstage1 122.79 163.09 217.62 251.60 275.54 322.13 354.92 386.23 398.21 399.37
φ = 0.5
MEWMAtotal 60.89 80.52 109.83 125.22 135.47 160.92 183.06 199.99 203.14 200.98
MEWMAstage2 119.44 161.83 212.66 247.26 274.49 328.05 355.83 386.66 398.29 400.51
MEWMAstage1 118.77 160.45 216.21 251.24 274.82 324.34 354.44 382.30 397.93 398.51
φ = 0.9
MEWMAtotal 60.79 82.43 109.82 125.59 137.46 164.08 183.10 195.99 204.29 201.49
MEWMAstage2 122.03 164.38 216.24 247.53 274.83 326.17 355.53 391.86 399.78 402.52
MEWMAstage1 119.70 160.57 213.38 249.06 272.14 323.72 355.88 390.71 398.27 401.63

and MEWMA charts since the ARL values for a specified control chart are approximately
close together especially for the large shifts. Moreover, it indicates that gamma distribution
hasmore deleterious effects on the ARL values; hence, in the following section, we examine
the performance of GLR-based control scheme in the presence of gamma distribution.

5. A remedial measure for monitoring simple linear profiles in two-stage
processes with non-normal responses

In this section, a remedial measure is proposed for monitoring simple linear profiles in
multistage processes with non-normal data. The monitoring procedure is based on GLR
to guard against the detrimental effect of non-normality.
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Table 3. ARL values of Stage 2 under the shifts in intercept of Stage 1 from A0 to A0 + λ1σ in T2 and
MEWMA control charts.

λ1

ARL T2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

φ = 0
Normal 403.41 401.72 398.81 397.69 405.88 404.98 403.89 405.20 397.45 404.14 408.79
Gamma 63.88 65.84 64.02 64.94 64.16 65.36 63.33 64.92 65.09 65.10 65.06
t 79.59 81.43 80.18 80.12 80.86 80.04 80.88 80.30 80.00 79.99 80.34
φ = 0.1
Normal 400.94 403.00 397.49 404.14 405.58 400.66 401.67 404.17 399.68 399.85 401.57
Gamma 63.88 65.83 64.02 64.95 64.16 65.35 63.32 64.92 65.09 65.09 65.06
t 79.58 81.42 80.17 80.12 80.86 80.04 80.88 80.30 80.00 79.99 80.34
φ = 0.9
Normal 400.94 403.00 397.49 404.14 403.58 400.66 401.67 404.17 399.68 399.85 401.56
Gamma 63.88 65.83 64.03 64.95 64.16 65.35 63.32 64.93 65.09 65.09 65.06
t 79.19 80.68 80.32 79.52 81.03 80.61 81.57 81.62 80.59 80.30 80.64

λ1

ARL MEWMA 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

φ = 0
Normal 403.12 398.29 404.72 402.59 400.29 406.53 404.42 402.85 396.48 393.93 403.37
Gamma 198.18 195.81 200.64 205.68 198.68 201.55 198.86 197.97 199.51 201.11 201.36
t 212.92 216.67 214.03 214.93 215.93 216.87 214.59 213.48 211.56 215.21 214.28
φ = 0.1
Normal 401.58 404.88 401.34 407.24 400.27 400.17 399.03 407.34 406.89 398.28 404.24
Gamma 202.73 203.84 201.46 201.69 200.01 200.67 201.64 204.06 200.66 200.34 201.02
t 213.19 214.76 215.98 215.61 215.66 212.90 213.85 212.34 214.42 215.99 212.82
φ = 0.9
Normal 401.59 404.88 401.34 404.24 400.27 400.17 399.03 403.34 401.59 404.88 401.34
Gamma 201.54 193.42 197.05 199.28 201.79 201.62 202.69 201.98 201.98 202.43 201.58
t 213.75 216.09 215.41 213.84 214.47 214.92 214.39 214.43 214.42 216.72 215.48

The GLM is a flexible generalization of the ordinary linear regression that enables the
response variable to have an error distribution model other than normal distribution. The
use of GLM allows to consider non-normal data and to relax the assumption of constant
variance. Consider the following response variable for amultistage process to illustrate this
method as discussed in [14]:

ycs ∼ F(0) with mean μycs (18)

where the response variable ycs has the cumulative distribution F(0) and μycs is the mean
of the cth output at stage s. The mean μycs is a function of the quality characteristic of prior
stages (yt) and the input variable at the present stage (Xs). It can be calculated as follows:

μycs = g−1

(
fcs(Xs) +

s−1∑
t=1

fc,s.t(yt)

)
(19)

where g−1 denotes the inverse function and fcs(Xs) represents a function of Xs that affects
the output ycs at the sth stage of the process. fc,s.t(yt) explains a function of yt which has an
effect on the cth output at stage s of the process.

Subsequently, the GLR approach for monitoring linear profiles with non-normal
response in two-stage processes is applied. Without loss of generality, the number of
response output is considered to be one at each stage and the index c has been eliminated.
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Table 4. ARLvalues of Stage2under the shifts in slopeof Stage1 fromA1 toA1 + λ2σ in T2 andMEWMA
control charts.

λ2

ARL T2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

φ = 0
Normal 400.95 403.01 397.49 405.14 405.59 400.66 401.67 405.17 399.68 399.85 401.57
Gamma 63.88 65.83 64.03 64.95 64.16 65.36 63.32 64.93 65.09 65.09 65.06
t 79.59 81.43 80.18 80.12 80.86 80.04 80.88 80.30 80.00 79.99 80.34
φ = 0.1
Normal 404.60 401.25 400.07 405.76 403.17 405.69 399.68 397.57 399.29 404.99 405.84
Gamma 65.84 64.54 65.40 64.74 65.33 64.74 64.79 65.70 65.55 64.75 64.66
t 79.19 80.68 80.33 79.52 81.03 80.61 81.58 81.62 80.59 80.30 80.64
φ = 0.9
Normal 403.07 402.99 402.17 402.96 393.51 401.13 404.41 398.95 402.45 400.75 405.19
Gamma 63.88 65.83 64.03 64.95 64.16 65.36 63.32 64.93 65.09 65.09 65.06
t 80.42 81.14 80.54 80.83 81.28 80.56 79.81 81.16 80.61 80.77 81.13

λ2

ARL MEWMA 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

φ = 0
Normal 401.59 404.88 401.34 405.24 400.27 400.17 399.03 405.34 404.89 398.28 403.25
Gamma 200.67 197.87 198.74 202.60 200.93 199.27 200.10 197.31 200.03 199.22 199.29
t 211.49 212.49 213.76 215.21 214.56 214.32 214.27 213.35 215.49 212.30 213.95
φ = 0.1
Normal 400.39 402.65 404.32 403.22 401.57 400.84 399.66 402.92 399.13 404.84 394.99
Gamma 203.58 202.51 202.38 202.95 197.98 198.53 203.31 200.75 199.92 199.57 200.52
t 215.40 210.67 216.45 212.83 214.29 213.06 215.76 212.13 213.26 212.51 215.59
φ = 0.9
Normal 401.59 404.88 401.34 405.24 400.27 400.17 399.031 404.34 402.89 398.28 405.24
Gamma 197.38 198.41 201.45 200.16 199.52 199.64 200.41 202.06 199.17 201.19 202.04
t 214.64 215.49 213.06 212.80 212.76 214.69 216.12 214.78 215.29 215.21 212.97

Hence, the null hypothesis of H0 : μys = μys0 can be considered against H1 : μys �= μys0
where μys0 is the in-control value of the mean, irrespective of the data distribution. This
hypothesis can be tested with GLR statistics. First, consider the modified GLR for testing
the mentioned hypothesis for the ith observation of the jth sample of two-stage profiles:

GLRijs = −2ln
(
l1
l0

)
= −2(lnl1 − lnl0) s = 1, 2 (20)

where l0 and l1 represent the in-control and out-of-control likelihood functions respec-
tively. Concentrating on the gamma-distributed data, the likelihood function is the gamma
probability density function introduced via Equation (15). Without loss of generality, the
location parameter of the gamma distribution is considered to be zero; thus, μ = αβ .
Subsequently, the likelihood function can be rewritten in terms of μ as follows:

l = 1

(α)y

(
yα
μ

)α

exp{−yα/μ} (21)

Under the null hypothesis H0 : μy = μy0 , the maximum likelihood function for the ith

observation of the jth sample of two-stage profiles is given by

l0(yijs) = 1

(α)yijs

(
yijsα
μyis0

)α

exp{−yijsα/μyis0} s = 1, 2 (22)
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whereμyis0 is the maximum likelihood estimator ofμyis under the null hypothesis (herein,
the in-control parameter). Similarly, the maximum likelihood function is expressed as
follows under the alternative hypothesis:

l1(yijs) = 1

(α)yijs

(
yijsα
μyis1

)α

exp{−yijsα/μyis1} s = 1, 2 (23)

inwhich μ̂yis1 is themaximum likelihood estimator ofμyis under the alternative hypothesis.
Thus, the GLR is derived by the following formula:

GLRijs = −2(lnl1 − lnl0) = −2
(
ln
(

1

(α)yijs

(
yijsα
μ̂yis1

)α

exp
{
−yijsα

μ̂yis1

} )

− ln
(

1

(α)yijs

(
yijsα
μyis0

)α

exp
{
−yijsα

μyis0

} ))

= −2
(
ln
(

μyis0
μ̂yis1

)α

–
yijsα
μ̂yis1

+ yijsα
μyis0

)

= −2α
(

− ln
(

μ̂yis1
μyis0

)
− yijs

μ̂yis1
+ yijs

μyis0

)
s = 1, 2 (24)

It should be noted that under the alternative hypothesis, μ̂yis1 is simply the observation
yijs. Therefore,

GLRijs = −2α
(

− ln
(

yijs
μyis0

)
–1 + yijs

μyis0

)
s = 1, 2 (25)

In general, the GLR statistic can be defined for the jth sample (with n observations) of
two-stage profiles with a gamma distribution as follows:

GLRjs = −2α
n∑

i=1

(
− ln

(
yijs
μyis0

)
− 1 + yijs

μyis0

)
s = 1, 2 (26)

For a normal distribution, the GLR is calculated in a similar fashion discussed for gamma
distribution taking into account the normal probability density function:

GLRjs =
(yjs−µys0

σ

)
∗
(yjs−µys0

σ

)T
s = 1, 2 (27)

where T shows the transpose of a matrix or vector.
Subsequently, the upper control limits (H) of the corresponding statistics have been

calculated for gamma and normal distributions to reach the in-control ARL of total stages
nearly 200, and for each stage about 400 using the simulation method.

6. The performance of the GLR-basedmonitoring scheme

This section evaluates the performance of the proposed GRL-based monitoring approach
while the data follow a gamma distribution. First, the total ARL of the GLR-based control
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Table 5. ARL values of the GRL-based control chart for total stages under the shifts in intercept (λ1) and
slope (λ2) of Stage 1.

λ1

ARLTotal 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ϕ = 0.0 200.35 154.34 113.80 81.51 55.07 37.99 25.75 17.33 12.03 8.22 5.77
ϕ = 0.1 200.53 154.39 112.71 80.12 56.47 38.04 26.12 17.36 12.01 8.23 5.71
ϕ = 0.3 200.54 157.36 115.31 81.13 56.21 38.63 26.18 17.44 11.94 8.37 5.72
ϕ = 0.5 200.60 157.95 114.44 82.44 55.40 37.52 26.07 17.20 11.83 8.11 5.75
ϕ = 0.7 200.28 157.05 113.29 80.77 54.75 36.72 24.54 16.68 11.26 7.63 5.33
ϕ = 0.9 200.26 160.58 117.71 83.89 57.29 39.27 25.55 17.42 11.99 7.98 5.61

λ2

ARLTotal 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

ϕ = 0.0 200.19 177.14 155.62 131.13 114.83 94.76 79.69 66.10 54.36 45.88 36.51
ϕ = 0.1 200.39 176.12 155.23 133.92 113.95 95.87 79.89 66.70 54.72 44.24 36.68
ϕ = 0.3 200.20 178.01 156.81 131.89 116.47 95.18 80.47 66.09 54.60 46.04 36.35
ϕ = 0.5 200.11 179.69 154.75 136.17 116.77 96.83 80.97 66.03 55.05 45.38 37.73
ϕ = 0.7 200.11 178.67 153.15 131.77 114.13 95.43 78.01 64.73 53.40 43.37 35.58
ϕ = 0.9 200.55 183.67 160.19 139.74 119.75 101.36 83.01 68.61 56.23 46.24 36.91

chart is investigated when there is a shift in the intercept (λ1) and slope (λ2) of the profile
corresponding to the first stage (see Table 5).

According to Table 5, if there is a constant shift in the intercept or slope of the first
stage profile, the total ARL is roughly the same for different correlation parameters. In
other words, the total ARL obtained for a specific shift does not depend on the correlation
or cascade parameter. This is in fact due to the optimal removal of the cascade property
from the monitoring statistic, specifically for small and moderate cascade parameters. It is
apparent that for a large cascade parameter, namely 0.9, the total ARL values differ from
the others slightly. Next, the ARL values of Stage 2 under the shift in intercept and slope of
the first-stage profile are reported.

Form Table 6, it is remarkable that the GLR statistic could reduce the dependency of the
stages for gammadistribution to a large extent. TheGLR-based control chart is quite robust
against the shifts that occurred in the upcoming quality characteristic. However, when the
correlation between the stages is very strong (φ = 0.9), the ARL values are moderately
affected.

Finally, the ARL values of total stages for the existing and the proposed monitoring
schemes are computed and recorded under the shift in the intercept of Stage 1. Table 7
reports the results for gamma and normal distributions respectively.

Table 7 indicates that the GRL-based control chart outweighs the existing counterparts
in that the ARL values are less than those obtained for the T2 andMEWMA. The reason is
actually due to the normality assumptionwhich is the fundamental concept in constructing
the existing control procedures.Moreover, one can observe that theARL values are roughly
constant for a specific shift regardless of the values corresponding to the correlation param-
eter. Besides, the GLR-based control chart developed for normal distribution is superior in
comparison with its competing monitoring methods, and it can detect out-of-control sit-
uations much more quickly. Thus, it can be concluded that the remedial measure based
on the GRL-based scheme can be effectively applied to monitor the described two-stage
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Table 6. ARL values of the GRL-based control chart for Stage 2 under the shifts in intercept (λ1) and
slope (λ2) of Stage 1.

λ1

ARLstage2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ϕ = 0.0 400.1 400.96 401.46 394.16 405.99 404.72 403.08 403.31 402.68 397.18 395.98
ϕ = 0.1 400.04 392.1 395.14 390.46 392.59 396.03 394.25 392.45 387.42 396.13 402.7
ϕ = 0.3 400.21 401 403.1 402.7 405.8 402.2 405.3 400.1 399 404.1 393
ϕ = 0.5 399.5 396 395.3 398 394.8 393.5 395 394 392.3 390 396.5
ϕ = 0.7 399.78 394 403.1 397.3 403.3 401 397.1 396.5 389 395 398
ϕ = 0.9 399.83 390.5 393.86 390 391.1 390 393.8 393.2 391.2 390 390.9

λ2

ARLstage2 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

ϕ = 0.0 400.13 400.01 401 395.1 403 404.5 403.08 405.3 402.69 397.18 396
ϕ = 0.1 399.78 403.4 395 397.12 400 400 398.15 400 400 392.8 390.5
ϕ = 0.3 399.71 403 404.5 393.61 403.51 400 404.15 405.1 404.3 396 393.8
ϕ = 0.5 399.45 397 385.2 393.8 393.06 394.5 394.5 394 390 399 395
ϕ = 0.7 399.65 397 396.4 390.2 389 400.1 395 403.5 400 393 390.1
ϕ = 0.9 398.99 392 393.1 392 392 393.5 391 390 389.1 388 390

process. The similar results, obtained for the shift in the slope parameter, are not reported
here to save space.

7. Simulated case study

In this section, a simulated case study, based on what has been discussed in [14], is pre-
sented to evaluate the performance of the GLR-based monitoring scheme in the semicon-
ductor industry. Asmentioned before, the planarization process in this industry consists of
two sub-processes called plasma oxide deposition and oxide etch. The main quality char-
acteristic for each stage is actually the range of thickness which should be measured at four
pre-determined values of gas flow. Thus, a two-stage process with a profile at each stage
can be considered. Figure 2 illustrates this process.

Suppose the data set is a total of 50 profiles with 4 replicates at each stage, out of which
the first 25 samples are usually used in Phase I to estimate the profile parameters, and the
remaining 25 samples are implemented in Phase II to evaluate the performance of the chart
and to quickly detect the shift. Once the distributions of the response, the link function,
and a set of input variables are determined, an iterative procedure is used to obtain themax-
imum likelihood estimates of the regression coefficients. Myers et al. [27] provide detailed
discussions of parameter estimation, diagnostics, andmodel establishment in the GLM. In
addition, the parameter estimation for nonparametric regression is described by Takezawa
[35].

Without loss of generality, consider that the maximum likelihood estimation (MLE)
method has been used for parameter estimation and the in-control profiles with regard to
each stage are:

yij1 = 11.3 + 0.88xi + εij1 i = 1, 2, 3, 4 (28)

yij2 = 0.29yij1 + 12.67 + 0.75xi + εij2 i = 1, 2, 3, 4 (29)
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Table 7. ARL values of total stages for the competing monitoring schemes under the shifts in intercept
(λ1) of Stage 1 considering gamma and normally distributed data.

λ1

ARLTotal 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

φ = 0.0 gamma-distributed data
GLR 200.35 154.34 113.8 81.51 55.07 37.99 25.75 17.33 12.03 8.22 5.77
T2 200.4 187.34 142.65 127.54 96.34 65.98 42.76 30.92 21.87 12.73 8.54
MEWMA 200.12 172.87 134.76 118.5 81.45 50.65 34.15 23.63 19.35 10.38 6.48
φ = 0.1 gamma-distributed data
GLR 200.53 154.39 112.71 80.12 56.47 38.04 26.12 17.36 12.01 8.23 5.71
T2 200.35 186.04 141.61 126.75 95.24 64.91 42.65 31.56 22.65 12.82 8.27
MEWMA 200.31 172.45 133.89 119.34 80.35 51.85 34.87 22.93 18.54 10.22 5.56
φ = 0.9 gamma-distributed data
GLR 200.26 160.58 117.71 83.89 57.29 39.27 25.55 17.42 11.99 7.98 5.61
T2 200.12 187.12 142.64 125.56 95.81 65.82 42.17 30.91 22.01 11.59 7.77
MEWMA 200.43 171.65 133.49 118.36 80.39 50.61 34.62 22.73 19.62 10.03 5.99

λ1

ARLTotal 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

φ = 0.0 normally distributed data
GLR 200.35 56.34 15.65 7.45 4.23 3.76 2.45 2.12 1.76 1.56 1.23
T2 202.57 162.01 89.82 41.56 19.57 9.62 5.28 3.21 2.18 1.64 1.33
MEWMA 201.12 67.37 18.45 8.74 5.62 4.17 3.32 2.8 2.44 2.19 2.02
φ = 0.1 normally distributed data
GLR 200.53 55.65 14.87 7.47 4.76 3.23 2.18 2.01 1.37 1.29 1.01
T2 200.71 160.94 87.76 41.54 19.35 9.53 5.29 3.18 2.20 1.61 1.33
MEWMA 202.17 67.22 18.53 8.78 5.59 4.16 3.34 2.80 2.44 2.18 2.02
φ = 0.9 normally distributed data
GLR 200.26 55.35 13.58 7.83 4.13 3.36 2.12 2.02 1.21 1.09 1.06
T2 199.61 161.26 88.05 41.24 19.14 9.73 5.19 3.22 2.19 1.63 1.33
MEWMA 200.29 67.40 18.64 8.75 5.64 4.15 3.31 2.81 2.45 2.19 2.01

Figure 2. The data model for a simple two-stage semiconductor manufacturing process.

where εij1 ∼ GAM(1.7, 0.9) and εij2 ∼ GAM(1.85, 0.77). Hence, the monitoring of two-
stage gamma profiles is under investigation. The upper control limits for the GLR-based
control chart and theMEWMA chart have been selected in a way to reach the approximate
value of 400 for each stage and 200 for total stages. For calculating the control limits and
the ARLs, simulation studies were conducted with 10,000 replications in a similar fashion
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Figure 3. The performance of the proposed and existing control charts for detecting shifts in Stage 2,
(a) the GLR-based control chart and (b) the MEWMA control chart.

discussed in the previous sections. In Phase II, the next generated 25 statistics correspond-
ing to the competing control charts were plotted to detect out-of-control parameters (see
Figure 3). It should be noted that a shift of size 2 in the intercept of the second profile has
been considered for generating out-of-control data in phase II. The results of plotting the
data reveal that the GLR-based control procedure signals the shifts on Stage 2 (on the 44th
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statistic) more quickly than the MEWMA chart. This indicates the better performance of
the GLR-based control chart compared withMEWMA chart. Note that both control charts
declare the in-control states in Stage 1; thus, for reasons of space their figures have not been
provided.

8. Real case study of pistonmanufacturing process

In this section, a real case study of the piston manufacturing process, firstly studied by
Fong and Lawless [9], is used to show the application of the proposed control scheme. In
this practical case, a piston, which is used in engines to impart motion by means of piston-
rod, is produced in a four-stage machining process, wherein each stage, the diameters of
a piston are inspected in a micron precision at heights 4, 10, 36.7, and 58.7mm from the
bottom of the part [9]. In this case study, the relationship between the height and diameter
of each piston provides a situation to consider a profile model to monitor each stage of this
process.Without loss of generality and for the sake of studying a two-stage process, we only
investigate the first two stages of this piston manufacturing process. There are a total of 96
pistons and the first 30 profiles with 4 replicates in each of the four heights are considered
to estimate the in-control parameter using the MLE method. It should be noted that the
focus of this paper is on phase II monitoring and not phase I. However, based on what has
been discussed in Myers et al. [27], the in-control parameters of the two profiles in phase
I are derived taking into account gamma-distributed error terms (Table 8).

Table 8. Estimated parameters of the profiles for the two-stage piston manufacturing process.

The first
gamma-distributed

random error

The second
gamma-distributed

random error

A0 A1 φ B1 B2 α β α β

74.11 −0.013 0.21 55.12 −0.034 4.22 3.75 4.22 3.83

Next, the remaining 66 profiles are used in phase II to investigate the application of the
proposed method. It should be noted that Equation (26) has been used to generate the
statistic which should be plotted on the GLR-based control chart. Herein, the values of
μyis0 are calculated respectively (under the in-control condition) based on what has been
obtained in phase I:

for s = 1,μyi10 = E(yi1) = E(A0 + A1xi + εi1) = 74.11 − 0.013xi + (4.22∗3.75)
= 74.11 − 0.013xi + 15.825 = 89.935 − 0.013xi

for s = 2,μyi20 = E(yi2) = E(φyi1 + B1 + B2xi + εi2)

= 0.21E(yi1) + 55.12 − 0.034xi + (4.22 ∗ 3.83)

= 0.21E(yi1) + 55.12 − 0.034xi + 16.162

= 0.21(89.935 − 0.013xi) + 71.282 − 0.034xi
= 90.1683 − 0.03673xi
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Figure 4. The application of the proposedGLR-based control chart to the pistonmanufacturing process
(a) the first stage and (b) the second stage.
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Moreover, the upper control limits for the proposed control chart were selected as before to
reach the value of 400 for each stage respectively. Consequently, plotting the GLR statistics
with regard to each stage (using Equation (26)) yields Figure 4.

From Figure 4, it is apparent that the first stage is in-control while the second stage is out
of control and remedial action is needed to make the process in control. In other words,
the first stage of the piston manufacturing process is statistically in control, whereas an
assignable cause is observed in the second stage. Hence, it can be concluded that the reme-
dial measure based on the proposed GRL-based method can be properly used to monitor
the described two-stage process.

9. Conclusion

This paper investigated the effect of non-normal data following symmetric distributions
with high kurtosis such as t-distribution, and skewed distributions such as gamma dis-
tribution on the monitoring performance of simple linear profiles in cascade processes.
Two-stage processes and the well-known approaches such as T2 and MEWMA for lin-
ear profiles monitoring in Phase II were considered. The results revealed that non-normal
data decreases the performance of T2 and MEWMA control charts when the process is
in-control. Also, in the case of out-of-control conditions, the performance of the exist-
ing monitoring approaches erodes; however, the MEWMA method is more robust than
T2 method for non-normal data while taking into account the shift in the intercept and
slope parameters. To alleviate the non-normality effect in line with removing the depen-
dency structure of the stages, the GLR-based scheme has been developed and used as a
remedial measure for gamma-distributed responses. The simulation outputs revealed that
the GLR-based control chart does not signal a change in Stage 2 due to the shifts in the
slope and intercept of Stage 1. Moreover, it has been shown that the GLR-based monitor-
ing method outperforms the existing control charts in both scenarios including gamma
and normally distributed data while eliminating the cascade property effectively. Next,
the application of the GLR-based control charts to the semiconductor industry in line
with the piston manufacturing industry have been fully studied which proved its ability
for detecting out-of-control situations compared to its competing counterpart. Finally, an
interesting areaworthy of continued research efforts is to compare the results obtained here
with other methods used for the construction of control charts such as non-parametric
approaches. The second area includes multistage profile monitoring of reliability data
where the presence of censoring mechanism is also pronounced.
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