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Abstract The spikelet is a unique structure of inflorescence in grasses that generates one to many flowers
depending on its determinate or indeterminate meristem activity. The growth patterns and number of
spikelets, furthermore, define inflorescence architecture and yield. Therefore, understanding the
molecular mechanisms underlying spikelet development and evolution are attractive to both biologists
and breeders. Based on the progress in rice and maize, along with increasing numbers of genetic
mutants and genome sequences from other grass families, the regulatory networks underpinning
spikelet development are becoming clearer. This is particularly evident for domesticated traits in
agriculture. This review focuses on recent progress on spikelet initiation, and spikelet and floret fer-
tility, by comparing results from Arabidopsis with that of rice, sorghum, maize, barley, wheat,
Brachypodium distachyon, and Setaria viridis. This progress may benefit genetic engineering and
molecular breeding to enhance grain yield.
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INTRODUCTION

The family of grasses (Poaceae) contains about 10,000
species, many of which are essential crops, including
rice (Oryza stavia), maize (Zea mays), barley (Hordeum
vulgare), wheat (Triticum aestivum) and sorghum (Sor-
ghum bicolor). Indeed, the grains produced from these
cereals are regarded as staple food and feed for humans
and livestock (Kellogg 2001). Considering that the
demands for grains will increase due to the projected
rise in population, and to changes in our climate,
research on grain yield is a pressing scientific challenge
(Grierson et al. 2011).

The architecture of the grass inflorescence determi-
nes its reproduction and yield, and is, therefore, a key
agricultural trait to modify to improve yield and ease of
harvesting (Doebley et al. 2006). The architecture of
grass inflorescence is complex and diverse, and largely
depends on the activity of the inflorescence meristem
(IM; see Box 1 for explanations to all acronyms) and
axillary meristem (AM) (Kellogg et al. 2013; Koppolu
and Schnurbusch 2019; Zhang and Yuan 2014). Based
on the lateral organ growth patterns that originate from
AMs (branches and spikelets), inflorescence architec-
tures are typically categorized as ‘‘racemes’’ (spikelets
are pedicellate in a single central monopodial axis),
‘‘spikes’’ (spikelets lack pedicels, exemplified in wheat,
barley and Brachypodium distachyon), and ‘‘panicles’’
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(with higher order branching, exemplified in rice and
sorghum) (Fig. 1). This inflorescence definition system
is borrowed from dicots (Kellogg et al. 2013). However,
in contrast to the determinate growth of flowers, a
spikelet contains one to many florets depending on
whether the spikelet meristem (SpM) is determinate or
indeterminate. Therefore, the spikelet is not equivalent
to the eudicot flower, and the grass inflorescence is also
named as ‘‘compound spikes’’ (Endress 2010). Conse-
quently, the number, growth patterns and morphogen-
esis of spikelets have profound influence on grain yield
potential, with key agricultural potentials in grass
breeding selection.

The spikelet emerges from SpM, a specialized AM
that originates from the IM and branch meristem (BM).
The spikelet is enclosed by glumes, or subtended by
other subsidiary organs, such as the sterile lemma in
rice, and the bristle in Setaria viridis (Fig. 1B). Subse-
quently, a flower meristem (FM) arises in the spikelet to
produce floral organs, which are terminated by seed
growth. A spikelet contains one or multiple florets
based on the timing of SpM termination. Rice and maize
spikelet structures are considered typical determinate
spikelets, which generate fixed numbers of florets; one
floret in the rice panicle and two florets in the maize
tassel (Bommert et al. 2005). Spikelets of wheat and
Brachypodium are indeterminate and produce different
numbers of florets, largely determined by

environmental conditions (Fig. 1B). The grass floret
generally consists of non-reproductive (lemma, palea
and lodicule) and reproductive (stamen and pistil)
organs. Because the spikelet and floret structures are
obviously different in dicots and monocots, and even
among grass family members, many important and
sometimes controversial biological questions remain to
be answered. For example, what are the driving forces
behind maize and sorghum producing spikelet pairs and
not single spikelets as in rice? Why do only the sessile
and not the pedicellate spikelets produce perfect flow-
ers in sorghum (Fig. 1B)? Such spikelet structures are
also evident in barley, whose inflorescence forms a tri-
plet spikelet, with the two lateral spikelets being sterile
in two-rowed barley (Fig. 1B). Other major questions
revolve around how we can improve spikelet fertility,
and whether the regulatory frameworks of spikelet and
floret formation are conserved or developed semi-in-
dependently across grass species? Notably, the spikelet
of wild-type rice is determinate and produces only one
fertile floret, but ‘‘two-florets spikelet’’ and ‘‘three-florets
spikelet’’ mutants have been genetically selected (Ren
et al. 2019, 2018; Zhang et al. 2017c). This demon-
strates that the development of the sterile spikelet or
floret is likely to have common genetic grounds in crop
inflorescence. Deciphering the molecular regulators that
control spikelet and floret fertility will no doubt be of
importance for grain number and yield, as recently

Fig. 1 Diagrams of the grass inflorescences (A) and spikelets (B). Pictograms of rice (Oryza stavia) and sorghum (Sorghum bicolor)
panicle, maize (Zea mays) tassel, barley (Hordeum vulgare), wheat (Triticum aestivum) and Brachypodium distachyon spike, and Setaria
viridis inflorescences (A) and spikelets (B). Note that the spikelet is the structural unit of grasses inflorescence, and the diverse growth
patterns of the spikelets confers inflorescence complexity (see text for details). a awn, br bristle, le lemma, f flower, gl glume, LB lateral
branch, pa palea, PB primary branch, PS pedicellate spikelet, RA rachis, rg rudimentary glume, SB secondary branch, sl sterile lemma, SP
spikelet, SS sessile spikelets
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exemplified in rice, sorghum, barley and wheat (Boden
et al. 2015; Dampanaboina et al. 2019; Dixon et al.
2018b; Gladman et al. 2019; Jiao et al. 2018; Ren et al.
2018; Zhang et al. 2017c; Zwirek et al. 2019). There are
several recent comprehensive reviews that summarize
our knowledge on grass inflorescence branching and
flower development (Callens et al. 2018; Gao et al. 2019;
Gauley and Boden 2019; Koppolu and Schnurbusch
2019; Kyozuka 2014; Kyozuka et al. 2014; Sakuma and
Schnurbusch 2020; Zhang and Yuan 2014; Zhu and
Wagner 2020). In this review, we aim to summarize and
synthesize current progress on molecular modules that
underpin yield improvement, including spikelet initia-
tion and floret fertility, in important grasses.

THE FLORIGEN PATHWAY DECIDES
WHEN TO FLOWER AND THE NUMBER
OF SPIKELETS

Similar to other AMs, the spikelet development typically
involves a three-phased transition, including meristem
initiation, meristem identity maintenance and termina-
tion, which is regulated by environmental and endoge-
nous signals (Fig. 2). Hence, the timing of flowering is
adjusted to environmental conditions that in turn
determine the initiation of spikelets and florets. Preco-
cious flowering generally causes a determinate inflo-
rescence structure with less axillary organs, e.g.

inflorescence branches, spikelets and flowers. In this
section, we briefly highlight the mechanisms behind the
decision of plants to flower and highlight potential
breeding targets.

In Arabidopsis, the canonical flowering pathways
promote reproductive development by activating floral
pathway integrator genes, which respond to environ-
mental conditions, such as light and temperature, and
the circadian clock. Here, the FLOWERING LOCUS T (FT)
is a key integrator gene of florigen, i.e. a flower-inducing
molecule. FTmay be induced by increased temperatures
(Balasubramanian et al. 2006; Kim et al. 2012), and is
activated directly by the photoperiodic timer gene
CONSTANS (CO) under long day (LD) conditions in
leaves (Imaizumi et al. 2003; Putterill et al. 1995). The
FT protein can be transported through the leaf and stem
vasculature to the shoot apical meristem (SAM), where
it forms the ‘‘florigen activation complex’’ (FAC) with
FLOWERING LOCUS D (FD) and 14-3-3 proteins (An-
dres and Coupland 2012; Song et al. 2013; Turck et al.
2008). The FAC accelerates flowering by activating the
expression of the floral integrator gene SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS 1 (SOC1) and FM
identity gene APETALA1 (AP1) (Fig. 3) (Abe et al. 2005;
Corbesier et al. 2007; Taoka et al. 2011; Wigge et al.
2005). Overexpression of FT may shorten the transition
time from IM to AM, as well as antagonize functions of
its homologous gene TERMINAL FLOWER1 (TFL1) in IM
maintenance. Indeed, increased production of TFL1

Fig. 2 Molecular modules for specifying spikelet identity and floret fertility. Spikelet arises from the spikelet meristem, which is derived
from inflorescence or branch meristem. The ‘‘florigen activation complex’’ (FAC) complex integrates environmental and genetic signals to
promoter flowering and inflorescence development. Phytohormones such as CK and auxin play important roles in maintaining meristem
activity and primordium emergence. The FT-TFL, AP1/FUL and SEP-like MADS TFs interact antagonistically or in parallel with each other
to establish IM and BM identity, while BR might restrain expression region of boundary genes to establish spikelet identity. Early
expression of such boundary genes might confer ‘‘unbranch’’-spike architecture. The phytohormone JA plays important role in floret
fertility, and this pathway could be utilized in increasing floret number. BM branch meristem, BR brassinosteroid, CK cytokinin, FAC
florigen activation complex, IM inflorescence meristem, SpM spikelet meristem. See also Table 1 and Box 1 for further explanations
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Table 1 Transcription factor functions in spikelet initiation and development

Family Gene
function

Arabidopsis Rice Maize Barley Wheat Sorghum

MADS IM, SMs and
FMs
identity

APETALA1 (AP1)
(Wigge et al.
2005),
CAULIFLOWER
(CAL) and
FRUITFULL
(FUL) (Ferrandiz
et al. 2000)

OsMADS14,
OsMADA15
and
OsMADS18
(Wu et al.
2017)

– – VRN1, FUL1 and
FUL3 (Li et al.
2019)

–

OsMADS1,
OsMADA5
and
OsMADS34
(Wu et al.
2018)

– – – –

bHLH AM activity REGULATOR OF
AXILLARY
MERISTEM
FORMATION
(ROX) (Yang et al.
2012)

LAX PANICLE1
(LAX1)
(Tabuchi
et al. 2011)

Barren stalk1
(ba1)
(Gallavotti
et al. 2004)

– – –

– LAX2 (Tabuchi
et al. 2011)

BA2 (Yao
et al. 2019)

– – –

SPL AM activity SQUAMOSA
PROMOTER
BINDING
PROTEIN-LIKE 3
(SPL3), SPL9 and
SPL15 (Wang
et al. 2009;
Yamaguchi et al.
2009)

OsSPL14 (Jiao
et al. 2010;
Miura et al.
2010; Wang
et al. 2017;
Zhang et al.
2017b)

– – TaSPL3, TaSPL17
(Liu et al.
2017)

–

euAP2 Spikelet
number

– – – HvAP2 (Houston
et al. 2013)

Q (Zhang et al.
2011)

–

AP2-
ERF

AM activity
and SpM
identity

– FRIZZY
PANICLE
(FZP),
MULTI-
FLORET
SPIKELET1
(MFS1) (Bai
et al. 2017;
Ren et al.
2013)

Branched
silkless1
(bd1)
(Chuck
et al. 2002)

Compositum 2
(com2)
(Poursarebani
et al. 2015)

Branched headt-
A1 (bht-A1)
(Poursarebani
et al. 2015)

–

TCP AM activity
and
boundary
formation

– OsTB1 (Lyu
et al. 2020)

TEOSINTE
BRANCH1
(TB1)
(Doebley
et al. 1997)

HvTB1/
INTERMEDIUM-
C (INT-C)
(Ramsay et al.
2011)

TaTB1 (Dixon
et al. 2018b)

MULTISEEDED 1
(MSD1) (Jiao
et al. 2018)

– OsTB2/
RETARDED
PALEA1
(REP1) (Lyu
et al. 2020)

Branch angle
defective1
(bad1)/
Wavy
auricle in
blade1
(Wab1)
(Lewis
et al. 2014)

COMPOSITUM 1
(COM1)
(Poursarebani
et al. 2020)

– SbWab1
(Poursarebani
et al. 2020)
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results in more branches and flowers in Arabidopsis
(Hanano and Goto 2011; Ho and Weigel 2014; Kardail-
sky et al. 1999; Kobayashi et al. 1999).

The flowering activation pathway appears to be
conserved in cereals, though the functions of FT-like
genes are diverse in reproductive development (Fig. 3).
Rice is a typical short day (SD) plant and contains two
complementary FT-like genes, Heading-date 3a (Hd3a)
and RICE FLOWERING LOCUS T1 (RFT1) (Komiya et al.
2008). Hd3a promotes flowering under inductive SD
condition (Hayama et al. 2003; Kojima et al. 2002),
while RFT1 induces flowering under LD condition
(Komiya et al. 2008, 2009). Similar to Arabidopsis, the
CO ortholog Heading date 1 (Hd1) activates the
expression of Hd3a in leaves under SD condition. Once
the FAC complex (Hd3a/RFT1-OsFD-14-3-3) is formed
in the rice SAM (Tamaki et al. 2007; Taoka et al. 2011), it
induces the TF OsMADS15 by directly binding its pro-
moter, and also alters the expression of two other
flowering-promoting AP1/FRUITFULL(FUL)-like TFs,
OsMADS14 and OsMADS18 (Tamaki et al. 2015). How-
ever, under LD condition, Hd1 typically represses the
expression of Hd3a and RFT1, though this depends on
the TF DAYS TO HEADING 8 (DTH8) (Du et al. 2017; Zhu
et al. 2017). The expression of Hd3a and RFT1 are
instead activated by the rice specific gene, EARLY
HEADING DATE 1 (Ehd1) under LD condition (Itoh et al.
2010). Furthermore, the expression of Ehd1 is nega-
tively regulated by a group of flowering repressors,
including GRAIN, PLANT HEIGHT and HEADING DATE 7

(Ghd7), DTH7 (Ghd7.1/OsPRR37) and DTH8 (Ghd8)
(Fig. 3) (Wei et al. 2010; Xue et al. 2008; Yan et al.
2011, 2013). This repressor-Ehd1-florigen pathway,
which modulates flowering under LD condition, is vital
to adaptation to high-latitude regions (Komiya et al.
2009; Zhao et al. 2015), and natural variations in these
genes impact spikelet number and yield (Gao et al.
2014; Yan et al. 2011, 2013). Genetic and molecular
studies in rice have repeatedly shown that the heading
date is positively correlated with grain yield due to a
modified transition from vegetative development to
inflorescence differentiation (Liu et al. 2020). Hence, the
repressor genes offer interesting breeding targets to
change flowering in rice. Indeed, association analysis
between Hd1 nucleotide polymorphism and yield/
quality variation in 123 major rice varieties, cultivated
in China, revealed that haplotypes of Hd1 could be uti-
lized to improve yield of japonica varieties in the
southern areas of China by increasing secondary branch
number, grain number per plant and grain weight per
single panicle (Leng et al. 2020).

Wheat and barley genomes contain at least 12 FT
homologs, with multiple roles in plant development
(Dixon et al. 2018a; Halliwell et al. 2016). This might
indicate that the expansion of the FT-like genes family
has a close connection to domestication. Similar to
Arabidopsis and rice, the FT ortholog VERNALIZATION3
(VRN3, also referred to as HvFT1 in barley and TaFT in
wheat) stimulates flowering by activating the expres-
sion of VRN1 (AP1/FUL ortholog) in response to

Fig. 3 Integration of environmental signals into spikelet initiation through florigen pathway. The florigen gene FT plays important role in
response to environmental signals, including day length and temperature, which in turn promotes plant flowering by activating the
expression of reproductive identity genes, such as MADS TFs SOC1 and AP1 in Arabidopsis, OsMADS15, OsMADS14 and OsMADS18 in rice,
VRN1 in wheat and barley. The nucleotide variations of genes involved in florigen pathway, such as Hd1, DTH8, Ghd7 and DTH7 in rice,
VRN3 and VRN1 in wheat and barley, as well as duplication of FT family genes contribute to environmental adaptation, and could be
targeted in plant breeding
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vernalization (Yan et al. 2006). This transition was fur-
ther enhanced by VRN3 directly repressing the expres-
sion of the negative regulator VRN2 (Ghd7 homolog,
Fig. 3) (Deng et al. 2015). It is noteworthy that the
expression of VRN3 is low before vernalization, inde-
pendently of the photoperiod, but is induced by LD
condition after vernalization (Hemming et al. 2008; Yan
et al. 2006). Furthermore, another barley FT homolog,
HvFT3, can control spikelet initiation independently of
the photoperiod (Mulki et al. 2018). These data indicate
sub-functionalization of FT-related genes in barley. In
contrast, a wheat FT-like gene, FT-B1, is sensitive to the
photoperiod. Mutations, or decreased expression, of this
gene extended the time of reproductive developmental
transition, resulting in increased numbers of spikelets
or paired spikelets (Dixon et al. 2018a; Finnegan et al.
2018). The expression of FT-B1 is regulated by the
photo-sensitive gene Photoperiod-1 (Ppd-1), an impor-
tant regulator of inflorescence architecture and paired
spikelet development in wheat (Boden et al. 2015),
corroborating that expression of flowering genes could
be fine-tuned to increase the number of spikelets and
modulate wheat inflorescence architecture.

From the above, it is clear that although the FT
pathway differs in different plants, it accelerates flow-
ering in most of them (Putterill and Varkonyi-Gasic
2016). However, there are exceptions to this rule as the
FT-like gene BvFT1 represses flowering in sugar beet
(Pin et al. 2010). In addition, the FT homolog, MOTHER
OF FT AND TFL1 (MFT), plays only a minor role in
Arabidopsis flowering (Yoo et al. 2004). A recent study
in rice found that the FT-related gene, OsMFT1, may
repress the expression of the APETALA2/ETHYLENE
RESPONSE FACTOR (AP2/ERF) TF FRIZZY PANICLE
(FZP) and SEPALLATA (SEP)-like genes, which in turn
regulate heading date and panicle structure. As a con-
sequence, overexpression of OsMFT1 prolonged the
transition from BM to SpM to produce more branches
and spikelets (Song et al. 2018).

The interactions between florigen FT and the antag-
onistic ‘‘anti-florigen’’ TFL1-like genes are not well
studied in grasses yet, but the TFL1 pathway is con-
served among Arabidopsis, rice and maize in regulating
inflorescence architecture. Here, reduced expression of
TFL1 homologs, RICE CENTRORADIALIS 1–4 (RCN 1–
RCN 4), produced small panicles, while overexpression
of RCN1, RCN2 or RCN4 led to increased branching due
to the delay of transition to the reproductive phase (Liu
et al. 2013; Nakagawa et al. 2002). In maize, ectopic
expression of the TFL1-like genes can also modify
flowering time and inflorescence architecture (Dani-
levskaya et al. 2010), but the downstream components
of the TFL1 pathway in crop inflorescence development

and spikelet initiation need to be clarified. Nevertheless,
these results indicate that florigen pathway is not only
controlling flowering time and its adaption, but also has
a prominent role in determining spikelet number and
yield selection (Figs. 2, 3).

Optimal seasonal timing of flowering is one of the
most important breeding targets as it is essential in
adapting cereal crops to temperate climates, and for
grain production. Molecular marker-assisted selection
has resulted in an increased number of haplotypes and
alleles in flowering genes in cereals (Hickey et al. 2019).
On the molecular level, CRISPR/Cas9 genome editing
systems may further aid in generating many new alleles
(Chen et al. 2019; Rodriguez-Leal et al. 2017). For
example, such approach may enable fine-tuning the
expression of flowering repressors, such as DTH8, Ghd7,
DTH7 in rice and VRN2 in wheat and barley, which could
boost branching to increase the number of spikelets. On
the other hand, enhanced activity of the anti-florigen
TFL-like genes might also promote higher-order
branching of inflorescence and increase yield, and thus
become suitable breeding targets.

PHYTOHORMONE GRADIENTS DETERMINE
SPIKELET INITIATION AND OUTGROWTH

Once an Arabidopsis plant is dedicated to flowering,
spatial and temporal distribution of phytohormones,
including auxin, cytokinin (CK), brassinosteroids (BRs)
and gibberellic acids (GAs), trigger FM initiation and
outgrowth (Wils and Kaufmann 2017). In this section,
we briefly outline how hormone distributions and
components influence inflorescence development.

Auxin is a morphogen that determines almost every
aspect of plant growth and development (Zhao 2018). In
Arabidopsis inflorescence development, the activity of
auxin efflux transporter PIN-FORMED 1 (PIN1) produces
an auxin maxima, which determines the site of floral
primordium by activating the expression of auxin
responsive gene AUXIN RESPONSE FACTOR 5/MONO-
PTEROS (ARF5/MP) (Okada et al. 1991; Yamaguchi et al.
2013). ARF5/MP then directly activates the expression
of FM identity genes, such as LFY and AINTEGUMENTA
(ANT), by recruiting SWI/SNF chromatin remodeling
complexes RAHMA (BRM) and SPLAYED (SYD) to
increase accessibility of the DNA for the induction of key
regulators of flower primordium initiation (Wu et al.
2015; Yamaguchi et al. 2013). Then LFY, ANT and other
transcription factors (TFs), including AP1-CAULI-
FLOWER (CAL)-FRUITFULL (FUL) (discussed below),
form feed-forward and feed-back loops to establish FM
identity (Liu and Mara 2010).
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Auxin maxima also determine the site and initiation
of spikelet in grasses. In maize, mutations in genes
related to auxin biosynthesis or polar auxin transport,
such as SPARSE INFLORESCENCE1 (SPI1, an ortholog of
YUCCA that regulates auxin biosynthesis), ZmAux1 (an
auxin influx transporter) and BARREN INFLORES-
CENCE2 (BIF2, an ortholog of PINOID), led to barren
inflorescence and/or less spikelets (Gallavotti et al.
2008a, b; Huang et al. 2017). Similar phenotypes were
also observed in Setaria viridis, where the inflorescence
of a SvAUX1 mutant contained less branches than that of
wild type (Huang et al. 2017). Although there is no
direct genetic evidence for a role of auxin in rice inflo-
rescence development, auxin maxima were observed
during IM progression using the auxin biosensor
markers DR5rev-VENUS and DII-VENUS (Yang et al.
2017). It is plausible that gene redundancy of certain
auxin biosynthesis, transport or response genes might
mask the impact of the auxin pathway in rice spikelet
initiation.

CK controls many processes in plant growth and
development, including cell proliferation and differen-
tiation, shoot and root architecture, light and stress
responses and senescence (Hwang et al. 2012). In Ara-
bidopsis, high concentrations of CK promote AM initia-
tion in shoot regeneration and the leaf axils by
activating expression of meristem marker gene
WUSCHEL (WUS) (Zhang et al. 2017a, d). However, it is
unclear if CK also drives WUS expression during FM
formation. Nevertheless, AP1 does repress CK accumu-
lation in the axil of sepals to inhibit secondary floret
growth by suppressing the cytokinin biosynthetic gene
LONELY GUY1 (LOG) and activating the cytokinin
degradation gene CYTOKININ OXIDASE/DEHY-
DROGENASE3 (CKX3) (Han et al. 2014). These results
indicate that high content of CK correlates with strong
meristem activity in Arabidopsis. In rice, increased
levels of CK result in a boost in spikelet numbers and in
yield. Indeed, the CK degrading enzyme cytokinin oxi-
dase/dehydrogenase (OsCKX2) has been one of the main
yield breeding loci during rice domestication (Ashikari
et al. 2005; Kurakawa et al. 2007; Li et al. 2013). In
contrast to Arabidopsis, blocking CK signal transduction
decreases IM activity in rice (Worthen et al. 2019),
implying that distinct pathways might control inflores-
cence development in grasses. Consistent with this
hypothesis, multiple genes involved in CK biosynthesis,
degradation and signaling regulate cereal inflorescence
development (Chen et al. 2020; Yamburenko et al.
2017). In addition, CK concentration is increasing in an
apical-to-basal pattern, which is opposite to the auxin
gradient and to the expression pattern of Six-rowed
spike 2 (Vrs2), encoding a SHORT INTERNODES (SHI) TF

in floral organ patterning (Youssef et al. 2017), during
early barley inflorescence development. This indicates
that hormone gradients might play a pivotal role in
balancing meristem activity and organ outgrowth.
However, detailed functions of these distribution pat-
terns in spikelet initiation, fertility and growth duration
are still underappreciated.

BRs are a group of steroid hormones known for their
function in cell elongation and stress response. The
spatial and temporal distribution patterns of BRs affect
inflorescence and flower development (Li and He 2020).
Several studies in Arabidopsis found that organ
boundary formation was altered in BR deficient and
constitutive mutants. For example, the BR responsive
TFs BRASSINAZOLE RESISTANT 1 (BZR1) and BR1-
EMS-SUPPRESSSOR 1 (BES1) could recruit the general
repressor TOPLESS (TPL) to repress the expression of
boundary identity genes CUP SHAPED COTYLEDON 1
(CUC1), CUC2, CUC3, LATERAL ORGAN FUSION1 and
LATERAL ORGAN BOUNDARIES (LOB) (Gendron et al.
2012). Moreover, LOB activated the expression of PHYB
ACTIVATION TAGGED SUPPRESSOR1 (BAS1), a cyto-
chrome P450 enzyme that inactivates BRs, to form a
negative feed-back loop and limit growth in boundary
regions (Bell et al. 2012). Consistent with BRs role as a
positional cue, clustered inflorescence and paired spi-
kelets were observed in rice BR-deficient mutant panicle
morphology mutant 1 (pmm1) (Li et al. 2018). In addi-
tion, the number of spikelets was changed in BR
biosynthesis and signaling transduction mutants, such
as dwarf 11 (d11) alleles (Wu et al. 2016; Zhou et al.
2017), and bri1-associated receptor kinase (Osbak1)/
Ossg2 (Yuan et al. 2017). In some aus rice varieties, two
copies of the CGTG motifs, i.e. an OsBZR1 binding motif,
are present in the promoter of FZP, which resulted in
repression of FZP and in increased number of spikelets
due to a longer transition of SpM to FM identity (Bai
et al. 2017). Therefore, the numbers of CGTG motifs in
the FZP promoter could be targeted in rice breeding
efforts. Whether the BZR1-FZP regulatory module is
conserved also in other grasses is an interesting ques-
tion that remains to be addressed.

In Arabidopsis, the FM identity component LFY can
suppress the content of GA, a group of tetracyclic
diterpenoid hormones that modulate cell division and
elongation (Xu et al. 2014). LFY may here activate the
expression of EUI-LIKE P450 A1 (ELA1), encoding a
P450 enzyme that catabolize bioactive GAs (Yamaguchi
et al. 2014). In parallel, the levels of DELLAs (repressors
of GA signaling pathway) increase and interact with
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9
(SPL9), which then activate the expression of AP1 to
enforce FM identity (Yamaguchi et al. 2014; Yu et al.
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2012). Furthermore, studies in Arabidopsis and barley
found that accumulation of DELLAs limits IM size
(Serrano-Mislata et al. 2017), indicating that the spatio-
temporal GA distribution affects the number and onset
of flowers that in turn contribute to yield. Indeed, a
longitudinal inflorescence GA gradient regulates pat-
terning in barley (Youssef et al. 2017). However, whe-
ther such gradients, and the corresponding upstream
regulatory loop, i.e. LFY-ELA1-SPL9-AP1 in Arabidopsis,
plays similar roles in grass spikelet and floret initiation
in other grasses remain elusive.

To summarize, we conclude that auxin plays an
important and conserved function in AM initiation,
while CK and BR appear to have distinct roles in
meristem transition of cereal inflorescence. For
breeding applications, it will be crucial to further
explore the spatio-temporal distribution patterns of
phytohormones, as well as their downstream targets,
during the reproductive meristem transition of the
inflorescence. Here, it seems that controlling the CK
and BR levels/activity before FM initiation may con-
tribute a key factor in increasing the number of spi-
kelets and thus yield.

MULTIPLE TRANSCRIPTION FACTORS FUNCTION
SYNERGISTICALLY IN SPECIFYING THE IDENTITY
AND DEVELOPMENT OF SPIKELETS

Many TFs regulate inflorescence development. These
TFs are typically directed by environmental and hor-
monal interactions to regulate SpM and FM identity,
fertility and determinacy. These TFs typically include
members of the MADS, AP2/ERF, SPL, basic helix–loop–
helix (bHLH), and Teosinte branched/Cycloidea/PCF
(TCP) families (Fig. 2). The TFs may interact with each
other to form regulatory complexes that promote or
maintain SpM identity by feed-forward or feed-back
loops to guarantee the progression of spikelet and floret
development (Liu and Mara 2010; Zhu and Wagner
2020). Here, we focus on select recent TF inflorescence
studies and discuss how insights from these studies
may guide breeding efforts.

The AP1/CAL/FUL TFs respond to FT to promote
meristem transition

AP1, CAULIFLOWER (CAL) and FRUITFULL (FUL) are
MIKC-type MADS-box TFs that play a critical role in FM
identity and are activated by the florigen pathway in
Arabidopsis. The inflorescence of ap1 cal ful triple
mutant display leafy shoots instead of flowers (Ferran-
diz et al. 2000). In rice, the inflorescence of osmads14

osmads15 double mutant plants also produced leaf-like
structures (Wu et al. 2017). Furthermore, by suppress-
ing the expression of OsMADS14, OsMADS15 and
OsMADS18 in an osmads34/pap2 (panicle phytomer 2,
one of SEP-like MADS TFs) mutant background, rice
plants formed vegetative tillers on branches other than
the primary ones (Kobayashi et al. 2012). Similar phe-
notypes were observed in the triple SEP-like mutant
osmads1-z osmads5-3 osmads34-1 (Wu et al. 2018),
indicating that the AP1/FUL and SEP-like MADS box
genes have similar roles in maintaining AM identity
during reproductive development in Arabidopsis and
rice. In wheat, the MADS box TFs VRN1, FUL1 and FUL3
(homologs to the AP1/FUL and SEP-like MADS box TFs
above) have redundant roles in promoting spikelet ini-
tiation and spike determinacy, as well as in flowering
and stem elongation (Li et al. 2019). The number of
wheat spikelets increased in both vrn1 and ful2 single
mutant, but, perhaps more interestingly, floret numbers
increased in ful2 spikelets (Li et al. 2019). Since
molecular data show that the AP1/FUL genes can
interact with different MADS-box proteins (Li et al.
2019; Wu et al. 2017), it is reasonable to deduce that
many of them contribute to IM, SpMs and FMs identity
determination.

The bHLH TFs respond to auxin to regulate AM
initiation

In Arabidopsis, REGULATOR OF AXILLARY MERISTEM
FORMATION (ROX) encodes a non-canonical bHLH pro-
tein that regulates vegetative AM activity (Yang et al.
2012). In maize, the barren stalk1 (ba1) mutant, which
corresponds to a mutation in the maize ROX ortholog,
grows unbranched tassels with no spikelet initiation
(Gallavotti et al. 2004), indicating that reproductive AM
activity may be directed by different regulatory net-
works in plants. The rice ba1 ortholog, LAX PANICLE1
(LAX1), likewise controls spikelet initiation, and does
this by interacting with LAX2 (Tabuchi et al. 2011). This
is consistent with data from maize, in which the
ortholog of LAX2, BA2, could interact with BA1 to reg-
ulate both vegetative and reproductive AM formation
(Yao et al. 2019). Bioinformatic analyses further found
that LAX2/BA2 has orthologs in Brachypodium and
sorghum, perhaps indicating that the LAX1–LAX2/BA1–
BA2 pathway is conserved among grasses. Based on the
expression pattern of BA2, combined with genetic data
of ba1 and other barren inflorescence mutants (Yao
et al. 2019), the BA1–BA2 pathway might function
downstream of auxin signaling to position boundary
regions for AM formation. Therefore, it would be inter-
esting to study the spatio-temporal expression patterns,
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and interactions, among the AP2 and bHLH boundary
marker genes and proteins.

The age pathway drives a phase transition
to activate spikelet initiation

In Arabidopsis, the so-called ‘‘age pathway’’ controls, in
parallel to environmental and phytohormonal cues, the
transition of vegetative-to-reproductive phase and is
mediated by the miRNA156-SPL module (Yu et al.
2015). The expression of miRNA156 declines as plant
ages and targets for example the TFs SPL3, SPL9 and
SPL15 to promote flowering, as they activate AP1, FUL
and SOC1 (Wang et al. 2009; Yamaguchi et al. 2009). The
SPL family members also play important roles in bal-
ancing plant vegetative and reproductive growth (Wang
and Wang 2015). In rice, the OsSPL14 expression cor-
relates with the number of spikelets (Jiao et al. 2010;
Miura et al. 2010; Wang et al. 2017; Zhang et al. 2017b).
In switchgrass (Panicum virgatum L.), PvSPL7 and
PvSPL8 induced flowering by directly activating the
flower identity genes, PvSEPALLATA3 (PvSEP3) and
PvMADS32. Consistent with this observation, down-
regulation of PvSPL7 and PvSPL8 induced inflorescence
reversion (Gou et al. 2019), indicating that SPL TFs have
conserved roles in promoting the transition from vege-
tative to reproductive growth in grasses. Such role
would suggest that they also might engage with LFY;
however, such relationships are unknown and will be
exciting avenues to explore in the future.

Another aspect of the SPLs in grasses is that PvSPL4
regulates aerial axillary bud formation in switchgrass
(Gou et al. 2017). Analogously, OsSPL7 binds directly to
the promoter of OsGH3.8, one of the acyl-acid-amido
synthetases in auxin catabolism, to regulate tiller
number in rice (Dai et al. 2018). A recent study, fur-
thermore, found that TaSPL3 and TaSPL17 interact with
the strigolactone (SL) signaling repressor DWARF53
(TaD53) to regulate the expression of TEOSINTE
BRANCHED1 (TaTB1) and BARREN STALK1 (TaBA1) to
control tillering and spikelet development in wheat (Liu
et al. 2017). Hence, the SPL family members control a
variety of important inflorescence pathways in grasses.

The miRNA172–euAP2 pathway functions down-
stream of miRNA156-SPL module in juvenile-to-adult
phase transition. In Arabidopsis, the expression level of
miRNA172 is activated by SPL9 and the expression
increases with age (Wu et al. 2009). Specific alleles of
the euAP2 genes, a subfamily of AP2/ERF with a
miRNA172-binding site, such as Q in wheat (Zhang et al.
2011) and HvAP2 in barley (Houston et al. 2013), have
been selected for high density of spikelets during
breeding. These alleles have altered the binding site of

miRNA172, rendering elevated levels of euAP2 proteins,
which extended the transition duration for spikelet
development to increase yield (Houston et al. 2013; Liu
et al. 2018).

The AP2/ERF TFs regulate boundary formation
and specify spikelet identity

The AP2/ERF family members impact stress responses
and plant development; processes that control AM
activity and SpM identity via hormone signaling
(Chandler 2018; Zhu and Wagner 2020). An increase in
floret number is associated with decreased expression
of certain members of the AP2 TFs, such as branched
silkless1 (bd1) in maize (Chuck et al. 2002), MORE SPI-
KELETS 1 (MOS1) in Brachypodium (Derbyshire and
Byrne 2013), FZP and MULTI-FLORET SPIKELET1
(MFS1) in rice (Bai et al. 2017; Ren et al. 2013), com-
positum 2 (com2) in barley and branched headt-A1 (bht-
A1) in wheat (Poursarebani et al. 2015). Notably, the
bd1 genes are expressed specifically in the boundary
region between the indeterminate meristem and dif-
ferentiating lateral organ (Chuck et al. 2002; Komatsu
et al. 2003), and OsBZR1 binds directly to the promoter
of FZP (Bai et al. 2017). Therefore, as also discussed
above, it would be interesting to investigate whether the
AP2/ERFs contribute to a conserved boundary-estab-
lishment pathway in the inflorescence, perhaps linked
to BR signaling. Understanding how AP2/ERF TFs con-
trol the fate of the SpM, both at transcriptional and
translational levels, is an attractive goal and some of
these TFs may be targets for cereal breeding. Potential
genetic interactions between AP2/ERF and MADS TFs in
grasses are also awaiting to be uncovered.

The TCP TFs promote boundary formation

TEOSINTE BRANCH1 (TB1) encodes TCP protein
(named after TB1 in maize, CYC in Antirrhinum majus
and the proliferating cell factor DNA-binding proteins of
rice), a gene first cloned in maize where it regulates
tillering and ear size as one of the genetic loci for maize
domestication (Doebley et al. 1997). In Arabidopsis, rice
and barely, the role of TB1 orthologs in repressing
axillary bud outgrowth is well studied (Wang et al.
2018). However, the TB1s role in reproductive AM
development is less well understood. In wheat, TaTB1
interacts with TaFT1 to regulate axillary spikelet
development and tiller number in a dosage-dependent
manner (Dixon et al. 2018b). But unlike TB1, OsTB1 was
apparently not selected for during domestication. Cer-
tain alleles of the OsTB1 homolog, OsTB2/RETARDED
PALEA1 (REP1), were selected for during upland rice
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adaptation, and counteract the inhibitory effect of OsTB1
on tillering (Lyu et al. 2020). Here, REP1 is expressed in
the adaxial side of the spikelet, a boundary region
between IM and SpM, where palea develops. In rep1
mutants, palea development was retarded and cell dif-
ferentiation was abnormal with less body structure of
palea (Yuan et al. 2009). Therefore, sub- and/or neo-
functionalization appears to have occurred in the TCP
family during evolution. In sorghum, MULTISEEDED 1
(MSD1) belongs to the CYC/TB1 subgroup that pro-
motes JA biosynthesis to repress carpel fertility of
pedicellate spikelets (PSs) (Jiao et al. 2018). This func-
tion is conserved in barley, where the HvTB1/INTER-
MEDIUM-C (INT-C) represses carpel fertility of lateral
spikelets (Ramsay et al. 2011). The OsTB2/REP1
homologous gene COMPOSITUM 1 (COM1) is expressed
specifically in barley inflorescence meristem bound-
aries, and the com1 mutant grew branch-like structures
instead of floret, indicating that COM1 confers SpM
identity (Poursarebani et al. 2020). In maize, branch
angle defective1 (bad1)/Wavy auricle in blade1 (Wab1),
homolog of COM1 and OsTB2/REP1, expresses

specifically in the axil of branches, spikelet pair meris-
tems and branch meristems of tassel (Lewis et al. 2014).
Furthermore, mutations of SbWab1, TCP homologous in
sorghum, caused the plants to grow upright tassel
branches and reduced the number of primary inflores-
cence branches (Poursarebani et al. 2020). Therefore,
genes duplicated in the grass CYC/TB1 family might be
recruited independently to regulate inflorescence
development and contribute to inflorescence branching,
SpM identity and carpel fertility, depending on their
interactions with other TFs.

Since multiple TFs (Table 1), such as OsSPL14 and
FZP in rice, TB1 in maize, Q in wheat, INT-C in barley
have been selected for high-yield breeding during
domestication (see above), a rational design to create
defined ideotypes was proposed as future breeding
strategies (Qian et al. 2016). Due to the distinct inflo-
rescence architecture in cereal plants, the basic
scheme behind such rational design is to balance the
number of branches and spikelets to promote maximum
yield. Since the expression dosage and patterns of SPL-
AP2 and TCP TFs play essential roles in inflorescence

Fig. 4 A hypothetical model to modify grass spikelet structures. In cereals, the spikelet structure unit contains one to three spikelets,
where the lateral one is sterile in barley and sorghum. In Brachypodium and wheat, one spikelet contains many florets, whose fertility can
be converted for high yield breeding. Phytohormones (BR, JA), TCP (COM, MSD1), AP2 (SvBd1, FZP), HD-Zip (LF1, VRS1, GNI) TFs are
involved in specifying SpM identity and fertility. Manipulation of these regulatory modules to increase spikelet number and floret fertility
provides a chance to generate optimal inflorescence and spikelet architecture to improve yield. a awn, br bristle, le lemma, f flower, gl
glume, LB lateral branch, pa palea, PB primary branch, PS pedicellate spikelet, RA rachis, rg rudimentary glume, SB secondary branch, sl
sterile lemma, SP spikelet, SS sessile spikelets
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branching and the number of spikelets, their genome
duplication and regulatory modules are worth further
investigation to optimize yield. As exemplified in tomato
breeding, combining different natural alleles in MADS
TF SEP4 genes with gene-editing techniques could
modulate inflorescence complexity and improve yield
(Soyk et al. 2017). Therefore, comparative genomic
studies of TFs across different cereals would not only
enhance our understanding of inflorescence develop-
ment but also open a window for rational breeding.

HIGH YIELD BREEDING: IMPROVING THE NUMBER
AND FERTILITY OF SPIKELETS AND FLORETS

Increasing the number and size of spikelets are main
strategies for high-yield breeding. Based on mutant
screening and functional genetic analyses of rice long
sterile lemma (G1) and LATERAL FLORET 1 (LF1), the
three-florets-spikelet model was indicated as a proba-
ble ancient rice spikelet structure (Yoshida et al. 2009;
Zhang et al. 2017c). This observation led to new
breeding strategies for multiple-florets spikelet selec-
tion (Ren et al. 2020). With more comparative data
from other grass plants, we propose that the grass
spikelets could be modified from a spikelet containing
one floret to a compound spikelet with multiple spi-
kelets and many florets by modifying different molec-
ular modules that function in releasing space
constraint, and improving spikelet and floret fertility
(Fig. 4).

As indicated above, the structure of the grass spike-
lets is quite diverse, depending on the fertility of lateral
spikelet or floret. Notably, it appears that the spikelet
and floret fertility was lost independently several times
in different cereal plants during adaptation and
domestication (Sakuma and Schnurbusch 2020). The S.
viridis, two-rowed barley and sorghum belong to the
multiple spikelets group, where three or two spikelets
grow in a structural unit. However, the lateral spikelets
are sterile in two-rowed barley and sorghum, whereas a
bristle structure accompanies spikelet development in
S. viridis (Figs. 1B, 4). Recent work in the S. viridis d11
mutant, called bristleless1 (bsl1), found that BR levels
specify bristle identity and maintain the SpM activity
(Yang et al. 2018). Bsl1 expression was detected at the
base of secondary and higher order axillary branches, as
well as the initiation sites of lateral spikelet organ. In
the bsl1-1 mutant, the boundary gene SvBd1 was
ectopically expressed in the developing spikelet (Yang
et al. 2018), suggesting that Bd1 class AP2 TFs plays a
conserved role in establishing boundary and specifying
SpM identity. Therefore, by reducing the BR levels or

extending the expression of AP2-type boundary genes
during meristem transition, one could generate multiple
spikelets in S. viridis. In fact, this strategy was already
adopted in 17 accessions in the aus subpopulation of
rice, yielding increased spikelets per panicle (Bai et al.
2017). Hence, modulating the BR levels in the boundary
region could be a potential way to alter yields.

Studies on mutants with fertile lateral spikelets
revealed that a group of Vrs TFs confer lateral spikelet
sterility in barley, making the vrs1 a key genetic locus
to change lateral spikelet fertility (Zwirek et al. 2019).
Vrs1 belongs to the homeodomain leucine zipper I
class (HD-Zip I) TFs, and is expressed mainly in the
lateral spikelet and inhibits female organ development
(Komatsuda et al. 2007; Sakuma et al. 2013). The
expression of the Vrs1 ortholog in wheat, Grain Num-
ber Increase 1-A (GNI-A1), was detected in the most
apical floret primordia, and its expression correlated
with floret sterility (Golan et al. 2019; Sakuma et al.
2019). These data indicate that during domestication,
Vrs1/GNI-A1 was a key locus for selection in high-yield
breeding. Therefore, developing an appropriate num-
ber of floret primordia would be helpful to improve
grain numbers. Optimizing the functionality of HD-Zip I
and AP2 TFs may similarly help improve floret fertility
and number, though detailed studies of many of these
are lacking.

In the rice lateral floret1 (lf1) mutant, a single T to C
substitution in the binding site of miRNA165/166
increased the expression level of LF1, which encodes an
HD-Zip III TF, and led to activation of meristem marker
gene OSH1 in the axillary side of sterile lemma to pro-
duce more florets in a spikelet (Zhang et al. 2017c).
Hence, the HD-Zip I and III TFs might play antagonistic
roles in maintaining FM activity. How this relationship
was established in grasses remains an open question,
but may also become a relevant target to change
reproductive development.

In sorghum, JA content is correlated with carpel fer-
tility. Inflorescence of sorghum generates two kinds of
spikelet, sessile spikelets (SSs) and PSs, and only SSs
develop normally to set grain, while growth of PSs is
aborted without carpel (Figs. 1B, 4). Mutant screening of
fertile PSs identified three genes, MULTISEEDED 1
(MSD1), MSD2 and MSD3 (Dampanaboina et al. 2019;
Gladman et al. 2019; Jiao et al. 2018). MSD1 encodes a
TCP TF that binds to the promoter of MSD2, which
encodes a lipoxygenase (LOX) in the JA biosynthesis
pathway (Gladman et al. 2019; Jiao et al. 2018). MSD3 is
an ortholog of Arabidopsis FATTY ACID DESATURASE 7
(FAD7), another enzyme involved in JA biosynthesis
(Dampanaboina et al. 2019). Although it is still not clear
why high JA concentration triggers programmed cell
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death of SPs, similar to one of the sex-determining
pathways reported in maize tassel development (Acosta
et al. 2009), the function of JA in FM activity seems
conserved in grasses. The JA content also impact organ
development and seed numbers in sorghum, maize and
rice mutants, i.e. reduced JA content led to less seed
setting but new flower organs (Acosta et al. 2009; Cai
et al. 2014; Jiao et al. 2018; Li et al. 2009; Ren et al.
2018). Furthermore, genetic and molecular studies
revealed that the JA responsive TF OsMYC2 binds to the
promoter of FM identity gene OsMADS1 to promote
meristem identity transition from SpM to FM during rice
inflorescence development (Cai et al. 2014; You et al.
2019). OsMADS1 is one of the SEP-like MADS box TFs
that confers floral organ identity and maintains FM
activity (Hu et al. 2015). Therefore, the spatiotemporal
distribution of JAs plays many roles in regulating plant
reproductive organ development. Although the distri-
bution pattern of JAs in spikelet development is unclear,
it may be attractive to harness the pathway that mod-
ulates JA content to increase floret fertility.

CONCLUSIONS

In summary, even though there are some species
specific networks that promote flowering, activate spi-
kelet development and increase spikelet fertility, some
common regulatory modules certainly exist among
cereals. Increasing numbers of studies in the different
grass species will improve on similarities and differ-
ences in these pathways and modules. Manipulation of
the key regulatory modules, such as flowering time,
controlled by the FAC-AP1/FUL module, spikelet num-
ber, regulated by the SPL-miRNA172-AP2 and BR-FZP
modules, and floret fertility, managed by TFs-phyto-
hormone modules, provides many opportunities to
enhance inflorescence and spikelet architecture to
improve yield.

To improve grain yield, modulating floret fertility by
reducing floret abortion are representing a promising
breeding strategy in wheat and other plants without
branched spikes. Similarly, increasing floret number
per spikelet is another strategy in rice and plants
whose FM is determinate. However, both these strate-
gies have space constraints (Fig. 4). A ‘compound spi-
kelet’ with multiple spikelets and florets would need
more ‘‘growth space’’ as well as nutrient supplements,
which depends not only on genetic regulators in spike
branching, and on spikelet and floret fertility, but also
on developing an appropriate system to balance
resistance and growth.
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