Engineering codon-optimized ADS and mevalonate pathway from S. cerevisiae in E. coli
|
E. coli |
24 mg/L |
Martin et al. (2003) |
Enhancing production of rate-limiting enzymes MK and ADS |
E. coli |
300 mg/L |
Anthony et al. (2009) |
Introducing more active HMG-CoA synthase and HMG-CoA reductase |
E. coli |
27.4 g/L |
Tsuruta et al. (2009) |
Enhancing production of rate-limiting enzymes MK and PMK |
E. coli |
500 mg/L |
Redding-Johanson et al. (2011) |
Introducing more active HMG-CoA reductase |
E. coli |
700 mg/L |
Ma et al. (2011) |
Engineering efflux pumps |
E. coli |
363 mg/L |
Wang et al. (2013) |
Deleting PTS |
E. coli |
182 mg/L |
Zhang et al. (2013) |
Engineering PTS and GGS |
E. coli |
201 mg/L |
Zhang et al. (2015) |
Efflux transporter engineering |
E. coli |
150 mg/L |
Zhang et al. (2016) |
Systematically optimizing transcription and translation in E. coli
|
E. coli |
30 g/L |
Shukal et al. (2019) |
Plasmid integration of ADS into yeast |
S. cerevisiae |
0.6 mg/L |
Lindahl et al. (2006) |
Inserting ADS into yeast genome |
S. cerevisiae |
0.1 mg/L |
Lindahl et al. (2006) |
Overexpressing tHMGR, ERG20, and upc2-1, and downregulating ERG9
|
S. cerevisiae |
153 mg/L |
Ro et al. (2006) |
Increasing copy number of ADS in yeast |
S. cerevisiae |
781 mg/L |
Ro et al. (2008) |
Engineering codon-optimized ADS in S. cerevisiae
|
S. cerevisiae |
123 mg/L |
Kong et al. (2009) |
Integrating HMG1, FDPS, and ADS into yeast mitochondria |
S. cerevisiae |
20 mg/L |
Farhi et al. (2011a) |
Overexpressing every enzyme of MVA pathway |
S. cerevisiae |
41 g/L |
Westfall et al. (2012) |
Downregulating ERG9 and fusing ADS with FPPS
|
S. cerevisiae |
25 mg/L |
Baadhe et al. (2013) |
Combinatorial genome integration of MVA pathway genes in yeast |
S. cerevisiae |
64 mg/L |
Yuan and Ching (2014) |
Knockout genes outside isoprenoid pathway but improving isoprenoid fluxes |
S. cerevisiae |
54.5 mg/L |
Sun et al. (2014) |
Dynamic control of the expression of ERG9
|
S. cerevisiae |
350 mg/L |
Yuan and Ching (2015a) |
Assembling MVA pathway genes into yeast chromosomes and reducing ERG9 expression |
S. cerevisiae |
500 mg/L |
Yuan and Ching (2015b) |
Integrating MVA pathway genes and ADS into yeast mitochondria |
S. cerevisiae |
427 mg/L |
Yuan and Ching (2016) |
Expressing ADS in N. tabacum
|
N. tabacum |
1.7 ng/g FW |
Wallaart et al. (2001) |
Targeting FPS and ADS in plastids |
N. tabacum |
25 μg/g FW |
Wu et al. (2006) |
Introducing tHMGR, FPS, and ADS into N. benthamiana
|
N. benthamiana |
6.2 μg/g FW |
Van Herpen et al. (2010) |
Targeting FPS and ADS in plastids |
N. tabacum |
4 μg/g FW |
Zhang et al. (2011) |
Introducing tHMGR from yeast and ADS, CPR, CYP71AV1, and DBR2 into N. tabacum
|
N. tabacum |
827 ng/g FW |
Farhi et al. (2011b) |
Introducing whole artemisinin pathway genes into N. tabacum chloroplasts |
N. tabacum |
|
Fuentes et al. (2016) |
Engineering MVA and artemisinin pathway genes in N. tabacum chloroplasts, nuclei, and mitochondria |
N. tabacum |
60 μg/g DW |
Malhotra et al. (2016) |
Engineering ADS in P. patens
|
Physcomitrella patens |
200 mg/L |
Ikram et al. (2017) |
Engineering dxs, idi, and ADS in B. subtilis
|
B. subtilis |
20 mg/L |
Zhou et al. (2013) |
Chromosomally integrated GFP-ADS, FPPS, and a plasmid-encoded synthetic operon carrying MEP pathway genes |
B. subtilis |
416 mg/L |
Pramastya et al. (2020) |
Engineering MEP pathway genes and ADS in cyanobacteria |
Synechococcus elongatus PCC 7942 |
19.8 mg/L |
Choi et al. (2016) |
Engineering codon-optimized ADS in S. avermitilis
|
S. avermitilis |
30 μg/L |
Komatsu et al. (2010) |
Engineering ADS in R. sphaeroides
|
R. sphaeroides |
56.4 mg/L |
Orsi et al. (2020) |