Skip to main content
. 2021 Jul 30;2(3):276–288. doi: 10.1007/s42994-021-00058-x

Table 1.

Biosynthetic and metabolic engineering approaches to produce amorpha-4,11-diene

Construction Organism Amorphadiene References
Engineering codon-optimized ADS and mevalonate pathway from S. cerevisiae in E. coli E. coli 24 mg/L Martin et al. (2003)
Enhancing production of rate-limiting enzymes MK and ADS E. coli 300 mg/L Anthony et al. (2009)
Introducing more active HMG-CoA synthase and HMG-CoA reductase E. coli 27.4 g/L Tsuruta et al. (2009)
Enhancing production of rate-limiting enzymes MK and PMK E. coli 500 mg/L Redding-Johanson et al. (2011)
Introducing more active HMG-CoA reductase E. coli 700 mg/L Ma et al. (2011)
Engineering efflux pumps E. coli 363 mg/L Wang et al. (2013)
Deleting PTS E. coli 182 mg/L Zhang et al. (2013)
Engineering PTS and GGS E. coli 201 mg/L Zhang et al. (2015)
Efflux transporter engineering E. coli 150 mg/L Zhang et al. (2016)
Systematically optimizing transcription and translation in E. coli E. coli 30 g/L Shukal et al. (2019)
Plasmid integration of ADS into yeast S. cerevisiae 0.6 mg/L Lindahl et al. (2006)
Inserting ADS into yeast genome S. cerevisiae 0.1 mg/L Lindahl et al. (2006)
Overexpressing tHMGR, ERG20, and upc2-1, and downregulating ERG9 S. cerevisiae 153 mg/L Ro et al. (2006)
Increasing copy number of ADS in yeast S. cerevisiae 781 mg/L Ro et al. (2008)
Engineering codon-optimized ADS in S. cerevisiae S. cerevisiae 123 mg/L Kong et al. (2009)
Integrating HMG1, FDPS, and ADS into yeast mitochondria S. cerevisiae 20 mg/L Farhi et al. (2011a)
Overexpressing every enzyme of MVA pathway S. cerevisiae 41 g/L Westfall et al. (2012)
Downregulating ERG9 and fusing ADS with FPPS S. cerevisiae 25 mg/L Baadhe et al. (2013)
Combinatorial genome integration of MVA pathway genes in yeast S. cerevisiae 64 mg/L Yuan and Ching (2014)
Knockout genes outside isoprenoid pathway but improving isoprenoid fluxes S. cerevisiae 54.5 mg/L Sun et al. (2014)
Dynamic control of the expression of ERG9 S. cerevisiae 350 mg/L Yuan and Ching (2015a)
Assembling MVA pathway genes into yeast chromosomes and reducing ERG9 expression S. cerevisiae 500 mg/L Yuan and Ching (2015b)
Integrating MVA pathway genes and ADS into yeast mitochondria S. cerevisiae 427 mg/L Yuan and Ching (2016)
Expressing ADS in N. tabacum N. tabacum 1.7 ng/g FW Wallaart et al. (2001)
Targeting FPS and ADS in plastids N. tabacum 25 μg/g FW Wu et al. (2006)
Introducing tHMGR, FPS, and ADS into N. benthamiana N. benthamiana 6.2 μg/g FW Van Herpen et al. (2010)
Targeting FPS and ADS in plastids N. tabacum 4 μg/g FW Zhang et al. (2011)
Introducing tHMGR from yeast and ADS, CPR, CYP71AV1, and DBR2 into N. tabacum N. tabacum 827 ng/g FW Farhi et al. (2011b)
Introducing whole artemisinin pathway genes into N. tabacum chloroplasts N. tabacum Fuentes et al. (2016)
Engineering MVA and artemisinin pathway genes in N. tabacum chloroplasts, nuclei, and mitochondria N. tabacum 60 μg/g DW Malhotra et al. (2016)
Engineering ADS in P. patens Physcomitrella patens 200 mg/L Ikram et al. (2017)
Engineering dxs, idi, and ADS in B. subtilis B. subtilis 20 mg/L Zhou et al. (2013)
Chromosomally integrated GFP-ADS, FPPS, and a plasmid-encoded synthetic operon carrying MEP pathway genes B. subtilis 416 mg/L Pramastya et al. (2020)
Engineering MEP pathway genes and ADS in cyanobacteria Synechococcus elongatus PCC 7942 19.8 mg/L Choi et al. (2016)
Engineering codon-optimized ADS in S. avermitilis S. avermitilis 30 μg/L Komatsu et al. (2010)
Engineering ADS in R. sphaeroides R. sphaeroides 56.4 mg/L Orsi et al. (2020)