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of a soybean genotype revealed by global gene expression
analysis
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Abstract Drought stress is major abiotic stress that affects soybean production. Therefore, it is widely desirable
that soybean becomes more tolerant to stress. To provide insights into regulatory mechanisms of the
stress response, we compared the global gene expression profiles from leaves of two soybean genotypes
that display different responses to water-deficit (BR 16 and Embrapa 48, drought-sensitive and drought-
tolerant, respectively). After the RNA-seq analysis, a total of 5335 down-regulated and 3170 up-regulated
genes were identified in the BR16. On the other hand, the number of genes differentially expressed was
markedly lower in the Embrapa 48, 355 up-regulated and 471 down-regulated genes. However, induc-
tion and expression of protein kinases and transcription factors indicated signaling cascades involved in
the drought tolerance. Overall, the results suggest that the metabolism of pectin is differently modulated
in response to drought stress and may play a role in the soybean defense mechanism against drought.
This occurs via an increase of the cell wall plasticity and crosslink, which contributed to a higher
hydraulic conductance (Kf) and relative water content (RWC%). The drought-tolerance mechanism of the
Embrapa 48 genotype involves remodeling of the cell wall and increase of the hydraulic conductance to
the maintenance of cell turgor and metabolic processes, resulting in the highest leaf RWC, photosynthetic
rate (A), transpiration (E) and carboxylation (A/Ci). Thus, we concluded that the cell wall adjustment
under drought is important for a more efficient water use which promoted a more active photosynthetic
metabolism, maintaining higher plant growth under drought stress.
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INTRODUCTION

Drought is the main environmental factor that nega-
tively influences both plant growth and development,
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thus restricting productivity and agricultural expansion.
Projections of climate change indicate that drought will
become more intense in some areas of the world and
therefore the development of tolerant plants is neces-
sary to maintain production (Passioura 2007; Stanke
et al. 2013; Spinoni et al. 2017). On the other hand,
plants have evolved to create several strategies to cope
with drought, including a short life cycle or phenotypi-
cal plasticity, enhance in water uptake and reduction
water loss, as well as osmotic adjustment, antioxidant
capacity, and drought tolerance (Fang and Xiong 2015).
The evaluation of tolerance mechanisms and drought-
responsive genes from soybean is essential for genetic
breeding programs (Rodrigues et al. 2012; Brown
2017). Thus, a transcriptome analysis of contrasting
genotypes may contribute to the understanding of the
molecular and physiological responses.

The main difficulty in selecting genes as targets for
plant breeding that is aimed at drought tolerance is the
complexity of the physiological responses to drought
stress. Plant survival strategies under drought involve
transient responses, such as reduced transpiration,
changes in the root system, reduction of leaf area and
adjusted osmotic status leading to a minimal water loss
and improving water uptake (Hu and Xiong 2014).
Transient response and developmental changes require
a substantial rebuilding of plant metabolism and chan-
ges in the expression of a high number of genes. Global
transcriptome analysis has been used to provide a
deeper insight into the complexity of plant response to
drought stress on the molecular level.

External drought stimuli are perceived by sensors on
the membrane, and then the signals are delivered
through multiple signaling pathways, resulting in the
expression of responsive genes so as to confer drought
tolerance in the plants (Zhu 2002; Hirayama and Shi-
nozaki 2010). In general, gene expression studies of
various plant species have been performed to classify
several groups of genes, which are regulated in
response to drought. Among them are those encoding
calcium-dependent protein kinases, calmodulin and
calmodulin-related calcium sensor proteins and protein
phosphatases class 2C (PP2C) (Molina et al. 2008; Guo
et al. 2009; Ranjan and Sawant 2015), along with a
number of transcription factors (TFs) (Sahoo et al.
2013; Janiak et al. 2018). These signaling proteins are
usually classified as ABA-dependent and ABA-indepen-
dent stress response pathways (Shinozaki and Yam-
aguchi-Shinozaki 2007). Genes involved in biosynthesis
and signaling pathways of other plant hormones, such
as auxin, ethylene, jasmonic or salicylic acid, were also
identified as differentially expressed under drought
(Jakoby et al. 2002; Aimar et al. 2011). Moreover, genes

related to anti-oxidation processes, osmo-protectant
synthesis and various factors from late embryogenesis
abundant (LEA) family were also reported as differen-
tially expressed in response to drought (Shinozaki and
Yamaguchi-Shinozaki 2007; Talame et al. 2007).

The main challenge when performing gene expres-
sion studies is to identify which genes are not only
responsive, but also confer a differential physiological
behavior when compared to a sensitive genotype. To
achieve this goal, it is necessary to use parental plant
genotypes contrasting in drought-tolerance. The physi-
ological response of the genotypes BR 16 (drought-
sensitive) and Embrapa 48 (drought-tolerant) under
drought conditions was studied by Oya et al. (2004),
Carvalho et al. (2015) and our research group (-
Mesquita et al. 2020). They found that, in the vegetative
stage under drought conditions in the field, the drought-
tolerant genotype had the highest number of pods. The
studies of the proteome, phosphoproteome and meta-
bolomic profile were also performed by Lima et al.
(2019) to detect the metabolic pathways which are
affected by drought stress. An integrative overview
showed that tolerant plants maintain cell homeostasis
and photosynthetic metabolism under stress conditions,
as indicated by an abundance of protein and regulation
by phosphorylation. Drought-stress marker in roots was
also evaluated to understand the mechanism of toler-
ance in these genotypes. The GmaxRD20A-like and
GmaxRD22-like genes, homologs of Arabidopsis genes
of the ABA-independent pathway, are highly induced by
water-deficit, being these potential drought marker ge-
nes in these genotypes (Neves-Borges et al. 2012).

Knowledge about drought-tolerance mechanisms in
soybean has been reported in recent decades. However,
determinate the main mechanism operating in a given
plant genotype is a challenge that requires multiple
analytical approaches, involving physiological and gene
expression analyzes. The physiological responses
revealed that the tolerant genotype Embrapa 48 post-
pones the leaf dehydration by a mechanism involving a
more efficient use and translocation of water from root
to the shoot to maintain unchanged the cell home-
ostasis and the photosynthetic metabolism under the
stress (Mesquita et al. 2020). Furthermore, an inte-
grative overview involving proteomic, phosphopro-
teomic and metabolomic profiles also showed that the
Embrapa 48 tolerant plants maintain cell metabolism
unchanged under the stress condition in contrast to
BR16 sensitive genotype that showed several dysreg-
ulated pathways (Lima et al. 2019). Only small devia-
tions of the metabolic pathways were observed for
drought-tolerant plants in comparison to the sensitive
genotype. These findings indicated that osmoprotection
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and/or oxidative protection does not appear to be the
major mechanisms for tolerance, as indicated by the
accumulation of the metabolite, enzymes assays and
the phytohormone profiles from tolerant and sensitive
soybean plants (Lima et al. 2019; Mesquita et al.
2020). Here, we analyzed physiological traits essential
for drought-tolerance elucidation, such as assimilation
rate of CO2, stomatal conductance (gs), transpiration
(E), water use efficiency (WUEi), carboxylation effi-
ciency (A/Ci), relative water content (RWC), hydraulic
conductance (Kf), correlating with data from gene-ex-
pression responses to dehydration through RNA-Seq
analysis from soybean parental genotypes (Embrapa
48 and BR 16). The metabolic/regulatory pathways
and biological processes were explored via Gene
Ontology (GO) enrichment and indicated differences in
the gene expression reprogramming in the drought-
tolerant genotype that correlated with the physiologi-
cal mechanisms of the tolerance. The results revealed
that in response to stress, the tolerant genotype
Embrapa 48 has less gene reprogramming, however
expressed specifically protein kinases and transcription
factors in response to drought tolerance. Expression of
the genes relating to pectin remodeling in the leaves
may be involved in a mechanism that contributes to
the maintenance of leaf turgor and metabolism of the
Embrapa 48 genotype under drought stress.

MATERIALS AND METHODS

Plant material, growth and drought-stress
treatments

Seeds of soybean genotypes BR 16 and Embrapa 48
were obtained from the Empresa Brasileira de Pesquisa
Agropecuária (EMBRAPA SOJA, Londrina, Paraná).
Seedlings were grown in plastic trays containing
Plantmax� commercial substrate, where they remained
for 10 days. After germination, seedlings were trans-
planted to pots containing 10 L of a mixture of soil, sand
and manure (2/1/1) each. Plants were grown under
natural sunlight in a greenhouse with average daytime
temperature 15–35 �C and relative humidity 65–85%.

The plants were grown under normal water condi-
tions until reaching the development stage V3 (fully
expanded third trifoliate). The control plants were
watered daily with approximately 30 mL water per
plant. The plants were exposed to a slow drying soil
treatment, which consisted of a reduction in irrigation
to 40% of the daily normal until the plant reached the
hydraulic potential of Ww = - 1 MPa (Valente et al.
2009). The hydric regimes were assigned as irrigated

(IR) and non-irrigated (NI). The leaf water potential
(Ww) was measured in the third emerging trifoliate at
dawn using a Scholander pump (Scholander et al. 1965)
during the stress period. Samples were collected in
liquid nitrogen when the plants had a water potential
- 1 MPa and then stored at - 80 �C until use. For each
treatment, 3 pots were used and each pot contained
three plants. A trifoliate leaf from each plant from one
pot was collected together (3 plants by replicate). Thus,
the analyses were performed using 3 distinct pools,
resulting in 3 biological replicates. These procedures
were performed on both plant cultivars.

RNA extraction, library preparation,
and sequencing

Total RNA was extracted from leaves using a Trizol
reagent (Invitrogen) according to the manufacturer’s
instructions. Five micrograms of total RNA was used to
prepare paired-end 100 bp libraries using the BIOO
NEXT flex Rapid Directional RNA-Seq Kit (Bioo-Scien-
tific, Austin, TX). Library qualities were analyzed with
the Bioanalyzer 2100 (Agilent, Santa Clara, CA) and the
barcoded libraries were quantified by fluorometry
using a Qubit instrument (LifeTechnologies, Carlsbad,
CA). The libraries were then pooled in equimolar ratios,
quantified by qPCR with a Kapa Library Quant kit (Kapa,
Cape Town, South Africa). Three biological replicates of
each treatment were sequenced using the Illumina Hi-
Seq 2500 (Illumina, San Diego, CA) from NuBioMol
(Center for Biomolecules Analysis—UFV, Brazil).

Raw reads were subsequently subjected to trimming
using Trimmometic software (Bolger et al. 2014) with a
Phred quality threshold of 20. Reads were aligned to the
Glycine max genotype Williams 82 primary transcrip-
tome (Wm82.a2.v1) (Schmutz et al. 2010) using the
Kallisto aligner (Bray et al. 2016).

Analysis of differentially expressed genes (DEGs)

To identify differentially expressed genes (DEGs), we
used the DESeq2 software package, which performs
pairwise comparisons (Anders and Huber 2012).
DESeq2 analyses were carried out using the Kallisto
output. The DEGs were identified using the MA-plot-
based method from the package DEGseq version 3.0
(Wang et al. 2009). An absolute fold-change threshold of
2.0 and a false discovery rate (FDR) of B 0.0001 were
used to select the DEGs identified by DEGseq.
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RT-qPCR

RT-qPCR was performed to validate the differential gene
expression data obtained by RNA-Seq analysis. RNA was
extracted from leaf tissues of the control and stressed
plants using Trizol reagent (Invitrogen) according to the
manufacturer’s instructions. RNA quality was analyzed
using agarose gel electrophoresis and quantification
was performed on a Thermo Scientific NanoDrop 2000c.
A total of 4 lg of RNA was used for cDNA synthesis with
the SuperScript III kit (Invitrogen) following the man-
ufacturer’s instructions.

The gene expression was assessed using an ABI 7500
Fast Thermocycler (Applied Biosystems, Foster City, CA,
USA) and Fast SYBR Green Master Mix (Thermo Fisher
Scientific). The cycling conditions were as follows: 15 s
at 95 �C, 40 cycles of 95 �C for 3 s; 30 s at 60 �C, and
final denaturation at 95 �C for 20 s, followed by a
melting curve. Specific primers for RT-qPCR were
designed using the Primer-BLAST software (https://
www.ncbi.nlm.nih.gov/tools/primer-blast/), with a
melting temperature (T) between 59–61 �C, a length of
18–23 bp, an amplicon product size of 120–150 bp, and
a GC content of 40–60% (Supplementary Information
Table S1). Gene expression was normalized using two
soybean housekeeping genes, being them UNK2 and
Actin. A total of three biological replicates and three
technical replicates were performed for each gene.
Relative quantification was calculated according to the
2-DDCt method (Livak and Schmittgen 2001).

Functional classification of the differentially
expressed genes

The DEGs were subjected to functional classification
using The Arabidopsis Information Resource (http://
www.arabidopsis.org). The gene ontology (GO) enrich-
ment analysis of each gene set was performed using the
ClueGO version 2.0.7 plugin tool (Bindea et al. 2009) in
Cytoscape version 3.2.1 (Shannon et al. 2003) using the
GO biological process category. Over-represented bio-
logical process categories were identified using an
(right-sided) enrichment test based on the hypergeo-
metric distribution. To determine significantly the
overrepresented GO terms, the terms with a p value
lower than 0.05 were considered as a Kappa significant
value. Genes classified as significantly over-represented
were validated by the Benjamin test.

Measurement of gas exchange
and photosynthetic parameters

The assimilation rate of CO2 (A), stomatal conductance
to water vapor (gs), transpiratory rate (E) and internal
and external carbon ratio (Ci/Ca ratio) were determined
for the fourth leaf from the apical meristem of each
plant using an infrared gas analyzer (IRGA,
portable model LI-6400XT, LI-COR Biosciences Inc.,
Lincon, Nebraska, USA) as described by Mesquita et al.
(2020).

Measurement of the relative water content
(RWC) of the leaves

The fresh weight (FW) of leaf discs was measured
immediately after they were removed from the stem.
Then, tissues were incubated in distilled water for at
least 4 h in the dark, and the turgid weight (TW) was
measured. Finally, dry weight (DW) was measured after
incubation at 85 �C until the sample reached a constant
weight in the oven. The relative water content (RWC)
was calculated using the equation: RWC
(%) = [(FW - DW)/(TW - DW)] 9 100.

Evaluation of leaf hydraulic conductivity (Kf)

Leaf hydraulic conductivity (Kf) determination was
performed using the evaporative flow method (EFM),
according to the methodology described by Sack et al.
(2002) and Brodribb and Holbrook (2003, 2006), with
modifications. The water restriction experiment started
when the third trefoil was fully expanded. The leaf
water potentials (Ww) were determined before dawn
using a Scholander pressure pump and when the leaves
reached W of approximately - 1.0 MPa, the gas
exchange parameters were determined. The measure-
ment of leaf transpiration rate (E) was carried out
between eight and ten in the morning of the same day
using an infrared gas analyzer (IRGA, portable model LI-
6400xt, LI-COR Biosciences Inc., Lincon, Nebraska,
USA). Kf was calculated using the equation: Kf = - E/W.

RESULTS

Analysis of RNA transcripts

The response of the soybean to moderate drought was
investigated at the transcriptional level by an RNA-Seq
approach. Previous studies performed by our research
group showed greater reduction in the growth of the
aerial part, simultaneously with a greater induction of
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the growth of the root system under drought, without
changing the leaf area, indicating that the tolerant
genotype has a differential mechanism in allocating the
carbon for the roots (Mesquita et al. 2020). In the pre-
sent study, gene expression in leaves of two soybean
genotypes, BR 16 and Embrapa 48, drought-sensitive
and drought-tolerant, were analyzed by Illumina Hi-Seq
2500 (Illumina, San Diego, CA). The initial sample col-
lected after a water-deficit was designated as ‘‘NI’’, and
control plants ‘‘IR’’ (Fig. 1a). Approximately 45–50 mil-
lion reads were generated from each sample. Raw reads
were subjected to a pre-processing/trimming step to
remove short or low-quality sequences and adaptor/
primer sequences. The RNA-Seq analysis workflow is
shown in Supplementary Information Figure S1 and was
used for data analysis.

To understand further about the similarity of the
genotypic responses under water-deficit conditions, we
used Principal Component Analysis (PCA) (Fig. 1b). The
quality of the data obtained can be observed by the
analysis of the sample-by-sample Euclidean distance,
which is repopulated in the form of a heat map (Sup-
plementary Information Fig. S2). High-throughput RNA-
sequencing analysis was performed using a Kallisto
pipeline (Bray et al. 2016) comparing the number of

genes differentially regulated in response to drought
combinations between controls vs. treatments, for each
genotype, using DESEq2 (Anders and Huber 2012).
When comparing all genes differentially expressed, we
identified for sensitive BR 16 8505 genes, including
3170 genes up-regulated and 5335 genes down-regu-
lated under drought conditions. For the tolerant
EMBRAPA 48, 826 genes were differentially expressed,
including 355 up-regulated and 471 genes down-regu-
lated (Fig. 1c). The global data show that the tran-
scriptional reprogramming was more pronounced in the
sensitive plants, considering the highest number of
DEGs in BR 16 genotype. In addition, gene-expression
data obtained by RNA-seq strategy correlated with RT-
qPCR measurements (Fig. 2), confirming the accuracy of
our RNA-seq data.

The gene expression response to drought has been
evaluated extensively in several plants including soy-
beans (Bhargava and Sawant 2013). Thus, to select
genes that may be involved not only in general stress
response, but also that conferred drought tolerance in
soybean, we analyze the list of genes that were differ-
entially expressed only in EMBRAPA 48 genotype and
could be correlated with molecular and physiological
data previously generated for both genotypes (Lima

Fig. 1 Overall gene expression in response to drought stress. In a soybean plants BR 16 and Embrapa 48 exposed to a gradual drought
regime to isolate total RNA for transcriptomic analysis. The water potential was measured by Scholander pump. In the blue box irrigated
plants and in the red stressed plants. In b transcriptome data used for the principal component analysis, showing distinct clusters of the
different soybean genotypes in Irrigated conditions (IR) and not irrigated (NI). In c number of differently expressed genes in drought
conditions in both genotypes and Venn diagram showing the comparison of the number of genes differentially expressed. Proportion of
significant results (p B 0.0001, log2 fold change C 2 for up-regulated and B - 2 for down-regulated genes)

� Agricultural Information Institute, Chinese Academy of Agricultural Sciences 2021

18 aBIOTECH (2021) 2:14–31



et al. 2019; Mesquita et al. 2020). Since the genotype
BR16 and EMBRAPA 48 are parental, we believe that the
genes differentially expressed only in the genotype
EMBRAPA 48 during stress may be responsible for their
tolerance. Thus, we first manually inspect the functional
categories (ClueGO results) grouped for each genotype
to select those enriched only for the tolerant genotype.
Followed, the functions of the genes included in these
categories were related to molecular mechanisms
described for drought tolerance and correlated as
physiological traits of both genotypes. This strategy
allowed us to select candidates that could play a role in
drought adaptation and tolerance, whilst also may
explain the lower number of DEGs found in the tolerant
genotype. Thus, 260 genes were selected as being dif-
ferentially expressed exclusively in the tolerant geno-
type, including 88 up-regulated and 172 down-
regulated (Fig. 1c). We identified 20 genes encoding
protein kinases (PKs) (Table 1): four genes encoding

Serine/threonine-protein kinases (S/T PKs), two were
up-regulated (Glyma20G14580.1, Glyma18G18720.1)
and two were down-regulated (Glyma09G09800.1, Gly-
ma20G17650.1) under water-deficit; three genes
encoding Calcium-dependent protein kinases (CDPKs)
all were up-regulated (Glyma16G02240.1, Gly-
ma16G14250.1, Glyma15G14340.1); and fourteen other
PKs genes, nine of them were down-regulated (Gly-
ma10G19570.1, Glyma07G21590.1, Glyma13G26610.1,
Glyma13G24090.1, Glyma18G12450.1, Gly-
ma13G28310.1, Glyma04G19530.1, Glyma07G21660.1)
and five were up-regulated genes (Glyma10G22220.1,
Glyma13G22430.18, Glyma13G22430.22, Gly-
ma13G22430.11, Glyma17G14990.2).

In addition, 23 genes were identified encoding tran-
scription factors (TFs) (Table 2). These genes were
grouped into major groups. The first group contained
one auxin response factor (ARF) gene down-regulated
(Glyma18G18450.1) in the drought-tolerant genotype.

Fig. 2 Validation of (black
filled square) RNA-Seq data by
real-time (ash filled square)
RT-qPCR. The expression
variation of the RNAs analyzed
in this study in plants
submitted to water-deficit
compared with controls. The
graph in a shows the
expression variation in the
genotype BR16, and the graph
in b shows the expression
variation in the genotype
EMBRAPA48. Genes encoding
Dehydryn, LEA18, CP31B
(chloroplast RNA-binding
protein 31B), CA2 (carbonic
anhydrase), NPF4.7 (protein
NRT1/PTR family 4.7), RGXT2
and RGXT1 were analyzed.
The data represent the
mean ± SE (n = 3)
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The second group was composed of zinc-finger protein
family genes, containing five members (Gly-
ma07G12680.1, Glyma08G03140.1, Glyma05G22440.1,
Glyma01G00500.1, Glyma17G15100.1) which were
induced by dehydration, and three (Glyma06G19660.2,
Glyma12G17890.1, Glyma04G06660.1) were sup-
pressed. The third group was constituted by five MYB
family genes down-regulated (Glyma08G02080.1, Gly-
ma19G22220.1, Glyma11G18340.1, Glyma15G14190.1,
Glyma12G18470.1). The fourth group consisted of ring-
finger family genes; two members (Glyma20G07670.1,
Glyma04G03980.4) were induced by dehydration in
leaves, and one (Glyma10G12460.4) was suppressed.
The fifth group consisted of heat-shock factors (HSFs);
two members were induced (Glyma01G21740.1, Gly-
ma09G19060.1) and two suppressed (Gly-
ma08G02590.1, Glyma08G15850.1) by water-deficit.
The remaining TF genes encoded members of families
AP2/EREBP (Glyma16G01260.4) and NAC domain pro-
tein (Glyma11G18200.1).

We found that some genes that code for proteins
involved in cell wall dynamics were differentially

expressed for both genotypes, which appear to be reg-
ulated by drought stress (Table 3). The genes related to
the metabolism of Rhamnogalacturonan were only
expressed in the tolerant genotype (Glyma08G09360.1,
Glyma15G07400.1, Glyma05G22440.1). Two expansion
protein genes (Glyma05G06580.1, Glyma20G03390.1)
and two responsive xyloglucans transferase genes
(Glyma10G15100.1, Glyma05G13870.1) were expressed
in both genotypes. Two glycosidases responsive (Gly-
ma10G20000.1, Glyma03G10450.1) were only expres-
sed in the tolerant genotype. A synthase-like D3
Cellulose (Glyma01G23250.1) overexposed in the sen-
sitive genotype and the pectinesterase inhibitor (gly-
ma08G14790.1) down-regulated in the tolerant
genotype and up-regulated in the susceptible.

Functional classification of differentially
expressed genes

We used the enrichment analysis of DEGs based on up-
and down-regulated genes, performed by Cytoscape
plug-in ClueGO, which identified significantly over-

Table 1 Protein Kinases responsive to dehydration only in the drought-tolerant genotype

Protein kinase

Gene Log2 ratio Annotation

S/T PKS

GLYMA09G09800.1 - 0.709405048 CBL-interacting serine/threonine-protein kinase

GLYMA18G18720.1 1.162165 Serine/threonine-protein kinase wnk with no lysine

GLYMA20G14580.1 1.035192 Serine/threonine-protein kinase wnk with no lysine

GLYMA20G17650.1 - 0.624644997 Serine/threonine-protein kinase

CDPKS

GLYMA16G02240.1 1.123958 Calcium-binding protein

GLYMA16G14250.1 1.102288 Calcium-binding protein cml41-related

GLYMA15G14340.1 0.827979131 WTF9

PKS

GLYMA10G19570.1 - 1.091893292 Leucine-rich repeat receptor-like protein kinase pepr1-related

GLYMA07G21590.1 - 1.570048333 Leucine-rich repeat N-terminal domain (LRRNT_2)

GLYMA13G26610.1 - 1.640632312 Protein tyrosine kinase (Pkinase_Tyr)

GLYMA13G24090.1 - 0.484742282 AMP-activated protein kinase. gamma regulatory subunit

GLYMA18G12450.1 - 1.188983376 Protein kinase domain (Pkinase)//Leucine Rich Repeat (LRR_1)

GLYMA13G28310.1 - 0.964734668 Cysteine-rich receptor-like protein kinase 27-related

GLYMA04G19530.1 - 1.480822749 SNF1-related protein kinase regulatory subunit gamma-1

GLYMA10G22220.1 1.094759 Cell division protein kinase

GLYMA07G21660.1 - 0.539613982 1-Phosphatidylinositol-3-phosphate 5-kinase fyab1c-related

GLYMA13G22430.18 1.81788 Protein tyrosine kinase

GLYMA13G22430.22 1.648667 Protein tyrosine kinase

GLYMA13G22430.11 1.506839 Protein tyrosine kinase

GLYMA17G14990.2 2.101687 Protein tyrosine kinase
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represented enrichment networks present in both
genotypes for the drought treatment (Figs. 3, 4). When
the lists of functional categories and networks produced
by ClueGO for each genotype were verified, we observed
similarities, despite the number of genes grouped in the
categories to be very small for tolerant Embrapa 48.
This lower number was justified by lower number of
dysregulated genes in the tolerant genotype, as describe
before. However, some categories and genes were
highlighted or present only for Embrapa 48.

The down-regulated genes from the sensitive geno-
type BR16 showed clusters relating to biological pro-
cesses, such as regulation of protein catabolic,
gibberellin-responsive, acyl-CoA metabolic process,

response to glucose, carbohydrate and lipid transport,
proteolysis, response to red or far red light, stamen
filament development, among others (Fig. 3a). However,
for Embrapa 48 (Fig. 3b), the down-regulated genes
showed distinct clusters related to lipid transport,
membrane fusion, toxin catabolic process, and regula-
tion of secondary cell wall biogenesis.

Analysis applied for up-regulated genes also showed
distinct results for the genotypes. Notably, we observed
in the sensitive BR16 under drought the predominance
of clusters related to the amino acid catabolic process,
alcohol biosynthetic process, response to monosaccha-
ride stimulus, hormone signaling pathway, monocar-
boxylic acid metabolic process, nucleotide salvage

Table 2 Transcription factors responsive to dehydration only in the drought-tolerant genotype

Transcription factors (TFS)

Gene Log2 ratio Annotation

AUXIN-RELATED PROTEIN

GLYMA18G18450.1 - 0.754799159 Auxin response factor

ZINC FINGER PROTEIN

GLYMA07G12680.1 1.293328 CCCH Zinc finger protein

GLYMA08G03140.1 1.437808 CCCH Zinc finger protein

GLYMA06G19660.2 - 0.967052969 C3HC4 Zinc finger protein

GLYMA12G17890.1 - 1.279118701 C2H2 Zinc finger protein

GLYMA04G06660.1 - 2.353948183 C2H2 zinc finger protein

GLYMA05G22440.1 1.214217 CCCH Zinc finger protein

GLYMA01G00500.1 1.406536 CCCH Zinc finger protein

GLYMA17G15100.1 1.06469 C2C2 Zinc-finger of the FCS-type

MYB TRANSCRIPTION FACTOR FAMILY

GLYMA08G02080.1 - 3.100653512 Leucine Rich Repeat (LRR_1)-MYB-LIKE
DNA-BINDING PROTEIN MYB // ATMYB103

GLYMA19G22220.1 - 1.554766923 MYB transcription factor

GLYMA11G18340.1 - 0.993510023 MYB transcription fator-MYB 2

GLYMA15G14190.1 - 0.599749666 MYB

GLYMA12G18470.1 - 1.655029264 MYB transcription fator

RING-H2 PROTEIN

GLYMA20G07670.1 2.672113 Ring finger domain

GLYMA04G03980.4 2.921892 Ring finger domain

GLYMA10G12460.4 - 2.716919566 Ring finger domain

HEAT SHOCK PROTEIN

GLYMA08G02590.1 - 0.507591383 Heat shock protein 70 kDa

GLYMA08G15850.1 - 0.745310757 Small heat-shock protein 20 KDa

GLYMA01G21740.1 1.480779 Heat stress transcription factor B-2B

GLYMA09G19060.1 1.187051 Heat stress transcription factor C-1

AP2/EREBP FAMILY

GLYMA16G01260.4 - 0.946836287 AP2 domain

NAC FAMILY

GLYMA11G18200.1 1.480184 NAC domain protein 61
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(Fig. 4A). For the tolerant genotype, the up-regulation of
the DEGs was mainly corresponded to the pathways
rhamnogalacturonan II biosynthetic process, endo-
sperm development, serine family amino acid metabolic
process as well as photosynthesis and light-harvesting
(Fig. 4b).

Drought-stress assays

After the irrigation was interrupted, a reduction on ww

was observed. As expected, the decrease on ww was

more noticeable in sensitive BR 16 plants (Fig. 5). The
BR 16 plants reached ww values of - 1.0 MPa on the
eleventh day, while the Embrapa 48 plants reached the
same ww levels on the thirteen day after irrigation
suspension. These results were consistent with a more
efficient water use by cultivar Embrapa 48 and con-
firmed this cultivar as drought-tolerant in accordance
with Lima et al. (2019) and Mesquita et al. (2020).

Gas exchange and photosynthetic parameters were
evaluated (Fig. 6) and also were in accordance with
Mesquita et al. (2020). The net photosynthetic rate

Fig. 3 Over-representation analysis of down-regulated genes using the Gene Ontology biological process database. In a clusters
containing down-regulated genes in the sensitive genotype BR16. In b clusters containing down-regulated genes in the tolerant genotype
EMBRAPA 48. The size of the node represents the integration of genes and the thickness of the edge shows a significant Kappa value

Table 3 Genes coding for proteins involved in cell wall dynamics differentially expressed for both genotypes

Gene Protein BR 16-Log2 EMBRAPA 48-Log2

GLYMA10G15100.1 Xylosyltransferase MGP4 3.473208 1.975452

GLYMA08G09360.1 Rhamnogalacturonan xylosyltransferase 1 (RGXT1) NF 2.308536

GLYMA15G07400.1 Rhamnogalacturonan xylosyltransferase 2 (RGXT2) NF 2.397853

GLYMA05G22440.1 Rhamnogalacturonan specific Xylosyltransferase 1 (RGTX3) NF 1.214217

GLYMA05G13870.1 Xyloglucan endotransglucosylase 27 3.006961 1.068432

GLYMA10G20000.1 UDP-Glycosyltransferase superfamily protein NF 3.68817

GLYMA03G10450.1 Hydroquinone glucosyltransferase NF 1.567052

GLYMA08G14790.1 Pectinesterase inhibitor 51 1.29512 -2.04434

GLYMA05G06580.1 Expansin-like B1 8.871832 3.815932

GLYMA20G03390.1 Expansin -A14 6.47856 NF

GLYMA01G23250.1 Cellulose Synthase-like D3 2.404065 NF
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(A) decreased for both cultivars under water-deficit;
however, the Embrapa 48 maintained higher net pho-
tosynthetic rate than BR 16 (Fig. 6a). The stomatal
conductance (gs) showed also higher values in Embrapa
48 (Fig. 6b) while the ratio between internal and
external CO2 (Ci/Ca) concentrations showed slight

differences between genotypes (Fig. 6c). The transpira-
tion rate (E) was reduced in both cultivars when water-
deficit was imposed, however was significantly higher in
the Embrapa 48 cultivar (Fig. 6d). The proportional
decrease in E compared to Awas greater in Embrapa 48
plants under irrigation and drought conditions,

Fig. 4 Over-representation analysis of up-regulated genes using the Gene Ontology biological process database. In a clusters containing
up-regulated genes in the sensitive genotypeBR16. In b clusters containing up-regulated genes in the tolerant genotype EMBRAPA 48. The
size of the node represents the integration of genes and the thickness of the edge shows a significant Kappa value

Fig. 5 Temporal profile of leaf pre-dawn water potential (ww) for two soybean cultivars, sensitive (BR 16), and tolerant (Embrapa 48).
Each point represents the mean ± standard error (n = 5, where n represents the number of plants), IR irrigated, NI non-irrigated
treatments

� Agricultural Information Institute, Chinese Academy of Agricultural Sciences 2021

aBIOTECH (2021) 2:14–31 23



contributing to a greater instantaneous water use effi-
ciency (A/E) in the tolerant genotype (Fig. 6e). The
same behavior was also verified for the A/Ci ratio
(carboxylation efficiency) being higher in Embrapa 48
(Fig. 6f) under irrigation and drought conditions. In
accordance with Mesquita et al. (2020), these results
suggest a greater carboxylation efficiency in the tolerant
cultivar, associated with its greater photosynthetic
capacity.

In conditions of stress due to water-deficit, the
decrease in stomatal conductance (gs) due to stomata
closure leads to a drop in water flow, loss of hydraulic
load, resulting from cavitation of the xylem and, ulti-
mately, a drop in hydraulic conductivity. The decrease in
water flow through the intercellular spaces and the
transpiration through the stomates correlated with the
drop in water potential. Thus, we studied the correla-
tion between photosynthetic and hydraulic parameters
in the soybean genotypes under conditions of normal

Fig. 6 Effect of water-deficit on the a assimilation rate of CO2 (A), in b stomatal conductance (gs), in c ratio Ci/Ca, in d transpiratory rate
E, in e water use efficiency (WUEi) as A/E and in f carboxylation efficiency as A/Ci. IR irrigated, NI non-irrigated treatments. Each bar
represents the mean ? standard error (n = 5, where n represents the number of plants, t test p\0.5). Different lower case letters
indicate significant differences between averages of the same treatment in different cultivars, and capital letters show significant
differences between averages within the same cultivar under different treatments
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irrigation and water-deficit. Leaf hydraulic conductance
(Kf) was estimated from the leaf tissues during gas
exchanges. As expected, the Kf was abruptly reduced
under drought stress. However, the hydraulic conduc-
tivities were higher in the Embrapa 48 tolerant geno-
type under irrigation and drought conditions (Fig. 7a,
b). These results are consistent with a better water-
absorption efficiency in the Embrapa48 genotype (Lima
et al. 2019; Mesquita et al. 2020) and were confirmed by
leaf relative water contents (RWC). RWC values
decreased with the progression of the stress in both
genotypes (Fig. 8). In the leaves under ww = - 1.0 MPa,
the RWC declined in BR16 by 49.14% while for
Embrapa genotype, the reduction in the RWC was only
of 32.67% (Fig. 8).

DISCUSSION

The early events of plant responses to drought stress
are signal perception and subsequent signal transduc-
tion, which lead to the activation of various molecular,
biochemical and physiological changes (Rejeb et al.
2014; Joshi et al. 2016). With the availability of genomic
sequences from various plant species and the recent
advances in sequencing technologies, the genes involved
in drought/dehydration responses have been identified
in a number of plant species, such as Arabidopsis (De
Oliveira et al. 2011; Borkotoky et al. 2013; Shariatipour
and Heidari 2018), and crops, such as rice and soybean
(Prabha et al. 2011; Nakashima et al. 2014; Zhu et al.
2016; Sahebi et al. 2018). Thus, knowledge on gene
expression reprogramming in response to drought
stress has been obtained thoroughly. However, identi-
fying the genes that contribute the most to the physio-
logical and molecular adaptation mechanisms is a
challenge.

In this study, we focused on two soybean genotypes
that share a common ancestor (Davis genotype). The
general response of Embrapa 48, when compared to the
sensitive BR16, showed a very distinct physiological
behavior (Oya et al. 2004; Carvalho et al. 2015; Mes-
quita et al. 2020) and a molecular response (Lima et al.
2019). The overriding feature observed in the gene
expression response of BR16 genotype was the tran-
scriptional induction of a relatively large number of
genes. As this genotype is drought-sensitive, this large
number of differentially expressed genes is in accor-
dance with the other RNAseq studies in other plants
(Yates et al. 2014; Fracasso et al. 2016; Yang et al. 2017),
showing that sensitive plants dramatically reprogram
gene expression under drought stress. This could be
explained by the fact that sensitive species undergo
greater changes in physiological and biochemical when
mitigating the effects of stress conditions, as also
observed by Lima et al. (2019) and Mesquita et al.
(2020). On the other hand, the drought-tolerant geno-
type, Embrapa 48, showed a low alteration of gene
expression under drought stress, as indicated by the
notably lower number of identified DEGs. This general
behavior was also observed in the proteomic and
metabolomic data (Lima et al. 2019). Thus, the tolerance
may reflect a lower level of stress when compared to
BR16 and as a consequence result in a reduced repro-
gramming of the transcriptome (Fig. 1). These data
corroborate with those obtained by Rodrigues et al.
(2012), who used the Suppressive Subtractive
Hybridization (SSH) technique to investigate differen-
tially expressed genes under water-deficit conditions in
these genotypes. This ‘‘more subtle’’ response is

Fig. 7 Leaf hydraulic conductance (Kf) of the soybean genotypes.
Each bar represents the mean ± standard error (n = 5, where n
represents the number of plants, t test p\0.5). In a IR for
irrigated and in b for NI non-irrigated treatments
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probably due to differently expressed genes observed in
Embrapa 48, when comparing the genetic background
among genotypes (Supplementary Information Fig. S3).
Gene expression for Transcriptome study performed by
Janiak et al. (2018) reveals that drought tolerance in
barley may be attributed to stressed-like expression
patterns that exist before the occurrence of stress. Our
results suggest that drought stress and pathway acti-
vation may vary considerably between the two geno-
types and involves genes that are expressed even before
the onset of drought treatment in the genotype
EMBRAPA48, as differentially expressed genes in
genetic background by that participate in the pathways
of activation of cellular catabolic process, organic cation
transport, dicarboxylic acid biosynthetic process, diter-
penoid biosynthetic process and responsive to far red
light. Yet, these processes may be responsible for the
highest photosynthetic rate, stomatal conductance and
carboxylation, observed in this genotype even before
stress (Mesquita et al. 2020). In fact, gene expression
analyses by RNAseq in the present study and by pro-
teomic profiles (Lima et al. 2019) are in accordance
with activities for enzymes involved in antioxidant
defenses that were higher in the sensitive genotype
BR16 (Mesquita et al. 2020). Moreover, levels of oxida-
tive damage (lipid peroxidation) and activity of antiox-
idant enzymes under water-deficit were always higher
in leaves of BR16 and confirmed by a stronger DAB
staining in the leaves BR16 compared with Embrapa48
plants (Mesquita et al. 2020).

The ability to tolerate a water-deficit is a complex
trait that could be controlled by many genes (Molina

et al. 2008; Ergen and Budak 2009). In this context,
plant cells detect stress stimulus through sensors or
receptors that activate second messengers and initiate
the corresponding signaling pathways to transduce the
signals (Bhargava and Sawant 2013). In this study, we
focused on the gene expression patterns that were
distinct between contrasting genotypes aiming to
understand the physiological behavior and identify
specific candidates that correlate with drought
tolerance.

Genes that stimulate the plant to survive better in
drought conditions play a role in the regulatory network
of gene expression, including several kinase proteins
and transcription factors. The higher levels of phyto-
hormone ABA and proline were observed for the sen-
sitive BR 16 in accordance with a more pronounced
perturbation in the metabolic pathways under drought
for this genotype (Lima et al. 2019). However, when in
stress conditions, the genotype Embrapa 48 showed an
less changed metabolism, with higher photosynthetic
rate, less oxidative damage in leaves and greater root
growth compared to the genotype BR 16, indicating
different signaling and regulation of the metabolism of
the soybean leaves (Mesquita et al. 2020). Three cal-
cium-dependent protein kinases (CDPKs) were up-reg-
ulated, and mainly function in the abscisic acid (ABA)
signaling pathway and are plant-specific calcium sen-
sors that play important roles in various aspects of plant
physiology (Yang et al. 2011; Huang et al. 2012). Several
works report that transcript levels of CDPKs are highly
induced by drought, suggesting their important roles
during abiotic stress responses in soybean

Fig. 8 Relative water content RWC (%) of the leaves of BR16 and Embrapa 48 genotypes under different water potential. Bars
represent ± standard error (n = 5, where n represents the number of plants, t test p\ 0.5). Different lower case letters indicate
significant differences between averages of the same treatment in different cultivars, and capital letters show significant differences
between averages within the same cultivar under different treatments. IR irrigated, NI non-irrigated treatments
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(Hettenhausen et al. 2016), especially in the modulation
of ABA signaling to reduce the reactive oxygen species
(ROS) (Asano et al. 2012; Neto et al. 2013). Other
kinases differentially expressed in the tolerant soybean
Embrapa 48 have not been associated to drought
response so far.

In recent years, a wide range of TF families holding
relevance in drought stress response have been identi-
fied, such as AREB, DREB, MYB, WRKY, NAC, ZFP and
bZIP (Golldack et al. 2011; Jin et al. 2014; Anbazhagan
et al. 2015). Genes that encode C3HC4 and C2H2-type
Zinc finger proteins were down-regulated in Embrapa
48 under drought stress (Table 2). Zhang et al. (2016)
reported that the family C2H2-type Zinc finger protein
negatively regulates the drought response in transgenic
Arabidopsis, because the plants, overexpressing these
genes, might lose large volumes of water by increasing
the width/length and number of completely open
stoma, leading to drought stress sensitivity. Most of the
family CCCH-type zinc finger proteins have shown up-
regulation, which has been associated with RNA meta-
bolism by directly binding to RNA targets and have been
involved in abiotic and biotic stresses. Studies have
indicated that CCCH zinc finger proteins are associated
with senescence delaying effect, and they can interact
with ABA and drought response regulators (Jan et al.
2013; Bogamuwa and Jang 2016; Chen et al. 2019). In
summary, the higher expression of these CCCH-type zinc
finger proteins and CDPKs genes in leaves of the toler-
ant cultivar may be responsible for the lower produc-
tion of reactive oxygen species and, consequently, less
cell damage, as observed in the ROS in leaf assay con-
ducted by Mesquita et al. (2020).

Other TFs, such as the MYB and NAC, were also
characterized for their role in stomatal movement con-
trolling pore closure or in inhibiting its opening
(Cominelli et al. 2005; Baldoni et al. 2015). Soybean
MYB genes may contribute to the coordination of both
cellulose and lignin biosynthesis in secondary wall for-
mation. Yang et al. (2017) showed that plants engi-
neered to accumulate less lignin or xylan are more
tolerant to drought and activate drought responses
faster than control plants. This is an important finding
because it demonstrates that modification of cell walls
must occur in the primary wall, and the analyses
showed a low expression of secondary wall biosynthesis
genes in the stress-tolerant genotype. In addition, the
soybean orthologue coding Cellulose Synthase-like D3
was up-regulated only in the sensitive genotype and not
altered in tolerant Embrapa 48. Evidence suggests that
C2H2 transcription factors are also involved in the sec-
ondary metabolism and cell wall structure (Rao and
Dixon 2018).

We found that some genes that code for proteins
involved in cell wall dynamics were differentially
expressed for both genotypes. Xyloglucan endotrans-
glucosylase/ hydrolase (XTH) and Expansin are cell wall
proteins involved in cell wall extension, which appear to
be regulated by drought stress as observed for soybean
genotypes. Some xyloglucan transferase and glycosidase
were also responsive in both genotypes; however, some
proteins involved in pectin metabolism were up-regu-
lated in the tolerant genotype Embrapa 48 (Table 3).
The major group of polymers in primary dicot cell walls
are pectins, a heterogeneous group of homogalacturonic
acid, rhamnogalacturonan I (RG-I) and rhamnogalac-
turonan II (RG-II) (Mohnen 2008). Pectins are often
modified in plants exposed to drought, facilitating an
increase in cell wall plasticity that can contribute to the
maintenance of cell turgor or symplast volume (De
Diego et al. 2013; Martı́nez et al. 2007). This plasticity
can be correlated with drought tolerance mainly by
increasing side chains of the pectic polymers rhamno-
galacturonan I and II (RGI and RGII), possibly because
the pectin form hydrated gels, which limit the damage to
cells (Leucci et al. 2008). Despite its highly complex
structure, RG-II is evolutionarily conserved in the plant
kingdom as its present in the primary cell wall of all
higher plants (O’Neill et al. 1996; Kobayashi et al. 1996).
RG-II biosynthesis is a complex process and it is
involved in several glycosyltransferases (GTs). One a3-
xylosyltransferase (a3-XylT), named RGXT, was able to
transfer a xylose residue onto the fucose of the side
chain. The Arabidopsis RGXT family has four members
linked to RG-II synthesis (Egelund et al. 2006; Liu et al.
2011). Three soybean orthologous genes RGXT1, RGXT2
and RGXT3 were up-regulated only in the genotype
Embrapa 48.

An increase in cell wall elasticity can contribute to
the maintenance of cell turgor. These results are an
indication that the cell wall molecular modifications on
the tolerant genotype could contribute to a more effi-
cient water use observed in Embrapa 48. Only in
drought-tolerant wheat genotypes, the side chains of
rhamnogalacturonan I and II significantly increased in
response to water stress (Leucci et al. 2008). The results
confirm the role of the pectic side chains during water
stress response. In addition, in this study, we also found
a gene encoding for pectinesterase inhibitor differen-
tially expressed between genotypes. Pectin is converted
by the pectin methylesterase (PME) in pectate and
methanol. PME activity is regulated by inhibitor pro-
teins known as the pectin methylesterase inhibitor
(PMEI), which plays a key role in wounding, osmotic
stress, senescence and seed development. A gene coding
for a Pectinesterase inhibitor 51 was down-regulated in
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tolerant Embrapa 48 and up-regulated in the sensitive
genotype. These results indicate that the metabolism of
pectin is differently modulated in response to drought
in soybean and may play a role in the plants defense
mechanism against water-deficit, through the increase
of elasticities and crosslink of the cell wall. Interestingly,
the amount of side chains of RGI and/or RGII has been
crucial to determine the hydration status of the cell wall
matrix (Gall et al. 2015). The comparison with tolerant
wheat genotypes indicates an increase in the amount of
side chains during water stress, which consequently
affects the viscosity status of the cell wall (Piro et al.
2003; Leucci et al. 2008; Gall et al. 2015). In fact,
changes in the cell wall in response to abiotic stress,
such as drought and cold, have been verified and involve
a improve the viscoelastic properties of the primary
wall. This is due to increases in the levels of cell wall
remodeling and biosynthesis enzymes, as well as by
modulating other wall loosening agents, including pec-
tin. Thus contributing to increasing the hydration status
of the plant and maintaining turgor pressure for growth
(Gall et al. 2015).

The fact that the tolerant genotype leaves were more
hydrated under the same water potentials suggests a
possible osmotic adjustment; however, the higher levels
ABA and proline were observed in the sensitive BR 16
leaves (Lima et al. 2019). Thus, the signal for drought by
ABA and proline was more noticeable in the sensitive
BR 16. In the same way, amino acids and sugar were
more abundant during drought in the sensitive geno-
type (Lima et al. 2019), which suggests that these
compounds were not important for the osmoprotection
in the tolerant genotype. Furthermore, we observed also
evidences suggesting the participation of a non-stomatal
event in the relative drought tolerance of the Embrapa
48 and even though under severe stress, showing lower
alteration on the net photosynthesis (Mesquita et al.
2020). Thus, the postponement of water and physio-
logical response suggests that differential hydraulic
conductivity may be important to this tolerance. In fact,
the relative water content (RWC%) and hydraulic con-
ductance (Kf) were higher in tolerant genotype Embrapa
48. Therefore, the maintenance of higher water content
in the leaves in the tolerant cultivar could explain, at
least partially, the greater photosynthetic rate of this
cultivar.

CONCLUSION

Drought tolerance in plants is performed by different
complex mechanisms, and to evaluate which gene is
determinant for this phenotype is a challenge, especially

because an extensive gene reprogramming is activated.
However, we have used two soybean parental genotypes
to investigate the molecular responses under drought
stress. Although many genes showed similar gene
expression patterns in both genotypes, genes involved
in the signal transduction cascades and regulation of
gene expression, such as kinase of the family CDPKS and
TFs of the family C2H2 and CCCH, were only differen-
tially expressed in the drought-tolerant genotype. The
global transcriptomic study also showed that drought
tolerance is operating even before the occurrence of
stress and makes the plant ready to respond to adverse
environmental conditions. This behavior was confirmed
by lower genetic reprogramming in the Embrapa 48
genotype when subjected to drought. Physiological
traits combined with proteomic and metabolomic pro-
files are in accordance with gene expression analysis by
RNAseq. The drought-tolerance mechanism of the
Embrapa 48 genotype involves in an increase in cell
wall elasticity and hydraulic conductance contributes to
the maintenance of cell turgor, resulting in the highest
leaf RWC, photosynthetic rate (A), transpiration (E) and
carboxylation (A/Ci) under conditions of water stress
(Mesquita et al. 2020). These genetic traits contribute to
maintain higher growth of the Embrapa 48 soybean
plants under drought conditions (Mesquita et al. 2020).

Gene expression regulation analysis indicated that
cell wall metabolism was changed in this genotype and
could be correlated with the more efficient water use.
Remodeling of the pectin component of the cell wall
may be an important mechanism for the drought tol-
erance in the Embrapa 48 soybean genotype, promoting
a differential hydraulic conductivity and a higher rela-
tive water content (RWC%).
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