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Abstract Assays for transposase-accessible chromatin through high-throughput sequencing (ATAC-seq) are
effective tools in the study of genome-wide chromatin accessibility landscapes. With the rapid devel-
opment of single-cell technology, open chromatin regions that play essential roles in epigenetic regu-
lation have been measured at the single-cell level using single-cell ATAC-seq approaches. The
application of scATAC-seq has become as popular as that of scRNA-seq. However, owing to the nature of
scATAC-seq data, which are sparse and noisy, processing the data requires different methodologies and
empirical experience. This review presents a practical guide for processing scATAC-seq data, from
quality evaluation to downstream analysis, for various applications. In addition to the epigenomic
profiling from scATAC-seq, we also discuss recent studies in which the function of non-coding variants
has been investigated based on cell type-specific cis-regulatory elements and how to use the by-product
genetic information obtained from scATAC-seq to infer single-cell copy number variants and trace cell
lineage. We anticipate that this review will assist researchers in designing and implementing scATAC-
seq assays to facilitate research in diverse fields.
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INTRODUCTION

In multicellular organisms, cellular heterogeneity is the
basis for distinct physiological functions and affects a
wide range of biological processes, including develop-
mental plasticity (Chang et al. 2008) and cancer
heterogeneity (Dagogo-Jack and Shaw 2018). With the
advent of single-cell sequencing technologies, cell-to-cell
variations have been characterized at the molecular
level (Han et al. 2020). As an example, single-cell RNA-
seq, which allows researchers to profile the whole
transcriptome of a large number of individual cells, has
been applied to explore novel or rare cell populations
(Villani et al. 2017) and to uncover the diversity of

immune cells in tumors (Zheng et al. 2021). Although
the transcriptome information in individual cells has
successfully been used to reveal the identity and func-
tions of cells, the underlying mechanisms that regulate
cellular diversity are not completely understood and
have attracted much attention as a research topic (Han
et al. 2020).

Accessibility of chromatin is one of the main epige-
netic regulatory layers. It can be measured using various
high-throughput sequencing assays, such as DNase I
hypersensitive sites sequencing (DNase-seq), trans-
posase-accessible chromatin sequencing (ATAC-seq),
micrococcal nuclease sequencing (MNase-seq), and
nucleosome occupancy and methylome sequencing
(NOMe-seq) (Klemm et al. 2019). Among these methods,
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ATAC-seq has gained growing popularity owing to its
efficiency and sensitivity (Buenrostro et al. 2013).

With the development of single-cell ATAC sequencing
(scATAC-seq), the study of chromatin accessibility has
been extended to single-cell resolution (Buenrostro
et al. 2015). However, the processing of scATAC-seq
data, which tends to be sparse and noisy, requires dif-
ferent methodologies (Schep et al. 2017; Fang et al.
2021). The lack of a comprehensive handbook on scA-
TAC-seq data analysis may hinder its further applica-
tions. This review provides a brief overview of the
general principle and production of single-cell ATAC-seq
followed by an explanation of the data analysis process
from the general workflow to downstream analysis for
different applications. We also discuss key analytical
tools for processing the scATAC-seq datasets.

SAMPLE PREPARATION AND QUALITY CONTROL
FOR SCATAC-SEQ

ATAC-seq utilizes a genetically engineered hyperactive
Tn5 transposase to insert adaptors into accessible
chromatin regions, thereby enabling genome-wide pro-
filing of open chromatin regions by sequencing

(Fig. 1A). Following the development of bulk ATAC-seq
methods, three different strategies for single-cell ATAC-
seq have been developed, including the microfluidics-
based method (Buenrostro et al. 2015), the split-and-
pool combinatorial cellular indexing method (Cusano-
vich et al. 2015), and the droplet-based procedure
(Satpathy et al. 2019). Initial single-cell ATAC-seq tech-
nologies using microfluidics or split-and-pool combina-
torial cellular indexing have the disadvantages of low
throughput and high costs. Recently, several methods
integrated with fluorescence-activated cell sorting
(FACS), droplet, and nano-well platforms have been
developed by either commercial companies or academic
groups. These methods provide high-throughput solu-
tions and are becoming increasingly popular. The
experimental details and protocols for each method
have been previously reviewed and discussed (Baek and
Lee 2020; Preissl et al. 2022). Here we would like to
focus on the issues of sample preparation and preser-
vation, which have not been adequately covered in the
literature.

Initially, ATAC-seq was developed for fresh cells or
cells disassociated from fresh tissues (Buenrostro et al.
2015; Cusanovich et al. 2015). As ATAC-seq quantifies
DNA, which is more stable than RNA molecules, it can be
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Fig. 1 General steps and quality control of a conventional scATAC-seq experiment. A Schematic summary of scATAC-seq library
generation. B Length distribution of library fragment quantified by Qseq. C Length distribution of library fragment quantified by Agilent
Bioanalyzer 2100. D Length distribution of DNA fragment by sequencing
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further applied to frozen tissues when nuclei could be
well isolated (Corces et al. 2017; Cusanovich et al.
2018b). With the optimized ATAC-seq protocol, nuclei
are more readily used for scATAC-seq, especially for
tissues that are difficult to dissociate into single cells
(Rai et al. 2020; Ziffra et al. 2021). Furthermore, Chen
et al. demonstrated that cells or nuclei fixed with
formaldehyde yield ATAC-seq data similar to fresh cells
(Chen et al. 2016), which provides an optimized
approach to maintain the integrity of cells or nuclei
during single-cell separation in many scATAC-seq
methods. In summary, it has been shown in many
studies that scATAC-seq can be applied to fresh tissues,
as well as frozen or fixed samples, in contrast to scRNA-
seq. We highlight the publications that performed scA-
TAC-seq on different tissues with various sample
preservation and preparation methods (Table 1).

After determining the method and protocol for the
scATAC-seq experiments, the next step is to ensure data
quality. Regardless of the protocol followed, there are
two crucial quality control steps during the experiment:
sample-level quality control and library-level quality
control (Fig. 1A).

To achieve sample-level quality control, first, the
viability of cells or nuclei must be assessed before
library construction. It is recommended that the cell
viability should exceed 80%. Otherwise, the tagmenta-
tion of cell-free DNA released by dead cells might
increase sequence noise and compromise data quality.
In addition, accurate quantification of the cell number
or nuclear concentration needs to be performed to
ensure the appropriate number of captured cells.
Library construction can be completed according to the
detailed protocol if the sample passes the first quality
control step.

For library-level quality control, it is essential to
evaluate whether the chromatin landscape has been
appropriately profiled prior to sequencing. This can be

achieved by examining the size distribution of DNA
fragments. Tn5 transposition events provide detailed
information regarding nucleosome packing and posi-
tioning. As DNA molecules are protected by integer
multiples of nucleosomes, the insert size distribution of
sequenced fragments from chromatin exhibits an
apparent periodicity of approximately 200 bp, roughly
in accordance with the length of the DNA wrapped
around each nucleosome. The size of the fragments in
the scATAC-seq library can be examined using an Agi-
lent Bioanalyzer. The results indicate the quality of
library construction. We present in Fig. 1B, C a typical
fragment distribution quantified by DNA analyzers, such
as Qseq or Agilent Bioanalyzer. The peaks indicate
nucleosome-free, mononucleosome, dinucleosome, and
multinucleated fragments. The fragment size distribu-
tion analysis of the sequencing data also reveals a
similar pattern (Fig. 1D). The comparison of fragment
distribution quantified by experimental and informatics
methods will help to gain empirical experience in
determining the quality of a library prior to sequencing.

GENERAL WORKFLOW FOR THE ANALYSIS
OF SCATAC-SEQ DATA

In the general processing of single-cell ATAC-seq data
(including raw sequencing processing, feature-by-cell
matrix formation, and dimension reduction), the pri-
mary consideration is the quality of the data library,
independent of biological questions (Fig. 2). The gen-
eric workflow of raw data processing consists of the
following steps. First, the adapter sequences in the raw
reads are trimmed, and low-quality reads are filtered
out using Trimmomatic (Bolger et al. 2014) or fastp
(Chen et al. 2018a). Next, trimmed read pairs are
mapped to the reference genome using tools, such as
bowtie2 (Langmead and Salzberg 2012), bwa (Li and

Table 1 Summary of scATAC-seq experiments with different sample preparation and preservation protocols

Sample
preservation

Sample
preparation

Tissues Reference

Fresh Cell Cell line, PBMC (Buenrostro et al. 2015; Mezger et al. 2018)

Fresh Nuclei Cell line, PBMC, human cortex, Arabidopsis
thaliana, fly

(Cusanovich et al. 2015; Satpathy et al. 2019; Dorrity
et al. 2021; Mich et al. 2021; Janssens et al. 2022)

Frozen Cell Cell line, human and mouse skin fibroblast, mouse
cardiac progenitor cells, mouse splenocytes

(Chen et al. 2018b)

Frozen Nuclei Mouse brain,

30 adult human tissues

(Lareau et al. 2019; Zhang et al. 2021b)

Frozen Fixed
nuclei

15 human fetal tissues (Domcke et al. 2020)
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Durbin 2009), and STAR (Dobin et al. 2013). Lastly, the
fragments are identified as read pairs with high map-
ping quality in the nuclear genome. To account for the
Tn5 insertion offset, the start and end of fragments can
be adjusted optionally (?4 for the plus-strand and - 5
for the minus-strand). Several raw data processing
pipelines are available to researchers. The choices of
packages for each step are flexible. For example, if
researchers use a commercial platform such as 10X
Genomics, all these steps can be easily accomplished
using Cell Ranger ATAC software (https://support.
10xgenomics.com/single-cell-atac).

After processing the raw sequence data, low-quality
barcodes and multiples must be filtered out, by con-
sidering several cell-level quality control metrics or
using model-based approaches. Three crucial metrics
are commonly used for cell-level quality control. The
first factor is the number of unique nuclear fragments.
Cells with few fragments do not provide sufficient
information to interpret, whereas those with an extre-
mely high number of fragments may represent doublets.
The other two metrics evaluate the signal-to-back-
ground ratio, including the fraction of transposition
events in the peaks and the transcription start sites
(TSS) enrichment scores. The idea behind these two
metrics is that open chromatin regions are enriched in
functional regulatory elements (peaks in ATAT-seq
data), such as promoters and enhancers. A low signal-
to-background ratio indicates that the chromatin
structure of the cell may be disintegrated due to
improper experimental manipulation. In addition to
these three metrics, there are other quality control cri-
teria. For example, the ratio of mononucleosomal to
nucleosome-free fragments can be used to filter out
cells without ATAT-seq-specific nucleosome banding
patterns.

For each cell-level quality control metric, no single
threshold is suitable for all samples. An appropriate
threshold should be determined based on the charac-
teristics of samples and species. Generally, the distri-
butions of QC metrics are examined to determine
appropriate cutoffs. Empirically, for human and mouse
data, the number of unique nuclear fragments greater
than 1000, the fraction of transposition events in peaks
greater than 0.3, and TSS enrichment scores greater
than 5 or 6 (https://www.encodeproject.org/atac-seq/)
are recommended. Furthermore, thresholds of QC met-
rics can be adjusted after subsequent analysis, and
multiplets (predominantly doublets) can be further
excluded by applying advanced methods with different
packages, such as AMULET (Thibodeau et al. 2021) or
bap (Lareau et al. 2019).

Cells that have passed quality control are used to
generate the feature count matrix, which consists of the
fragment counts within each feature for each cell. The
construction of the feature-by-cell count matrix can be
summarized into three broad modules: defining target
regions, count features, and transformation.

In contrast with the analysis of scRNA-seq data, in
which genes are the target regions (where features are
counted), there are various options for target regions in
scATAC-seq data. In practice, researchers have the flex-
ibility to adjust the defined target regions depending on
the characteristics of the samples and the specific bio-
logical questions being addressed. With most of the
current tools, such as ChromVAR (Schep et al. 2017),
scABC (Zamanighomi et al. 2018), and Cicero (Pliner
et al. 2018), regions are defined based on peak calling.
Because per-cell scATAC-seq data are essentially binary,
we cannot call peaks at the single-cell level. Peaks are
usually identified using either a reference bulk ATAC-
seq data or by aggregating single-cell ATAC-seq data. To
avoid missing information on rare cell types, peaks can
also be called and merged from pseudo-bulk data, which
aggregate cells from individual clusters. In addition,
there are methods such as snapATAC (Fang et al. 2021),
which segments the genomes into fixed-size bins (win-
dows) and counts the number of features within each
bin.

Following the definition of the target regions, the
features within these regions are counted. In most cases,
the number of fragments that overlap each peak region
or genome bin is counted. Some other tools, such as
Cicero (Pliner et al. 2018), directly quantify the activity
of each gene in the genome by summarizing the number
of fragments within the gene body, the promoter region
and putative distal regulatory elements.

After constructing the initial raw feature count
matrix, several data transformation methods can be
applied to compensate for the inherent sparsity before
downstream analysis. Binarization is one of the most
frequently used data transformation methods. This can
alleviate potential problems arising from sequencing
depth or PCR amplification artifacts. Recently, a growing
number of tools have adopted latent semantic indexing
(LSI) (Cusanovich et al. 2015, 2018a, b; Granja et al.
2021; Stuart et al. 2021), a natural language processing
approach that was originally designed to assess docu-
ment similarity based on word counts. In the case of
scATAC-seq data, cells are regarded as documents,
whereas peak regions are regarded as words.

After the transformation of the raw feature-by-cell
matrix, dimensionality reduction is further applied to
mitigate redundant features and potential noise, while
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preserving biologically meaningful variance, cell clus-
tering and annotation can be performed then.

Dimension reduction techniques, such as t-dis-
tributed stochastic neighbor embedding (t-SNE) (van
der Maaten and Hinton 2008), and uniform manifold
approximation and projection (UMAP) (Becht et al.
2019), are used to display cells in two-dimensional
space. Compared to t-SNE, which is designed to preserve
the local structure of data, UMAP preserves both the
local and most of the global data structure, performs
faster, and better reflects the developmental chrono-
logical continuity.

To facilitate better annotation of cell types, cells with
similar accessibility profiles are organized into clusters.
In the scATAC-seq data, three different unsupervised
clustering methods are used: K-means clustering, hier-
archical clustering, and the Louvain community detec-
tion algorithm (Chen et al. 2019). The Louvain
community detection algorithm was found to outper-
form other clustering methods in the processing of
scATAC-seq data (Chen et al. 2019). After clustering, it is
common to assign a cell identity to each cluster. Broadly,
there are two approaches to cell identity annotation: the
cell type-specific peaks-based method and the scRNA-
seq-based method. Enhancers can be used to accurately
annotate cell types as distal cis-regulatory elements
specific to particular cell types and states. However, this
method is only suitable for a limited number of datasets

with known cell-type-specific enhancers. For the scRNA-
seq-based method, cell type-specific gene expression is
predicted based on their accessibility and used to
annotate cells. In addition, scATAC-seq data can also be
integrated with reference scRNA-seq data, and cell
identity annotation can be transferred across the two
modalities.

ANALYSIS OF CELL TYPE-SPECIFIC CHROMATIN
ARCHITECTURE AND REGULATORY GRAMMAR

In contrast to the general processing, which focuses on
the conversion of data formats and mathematic natures
of scATAC-seq data, the downstream analyses are based
on the scientific hypothesis and experimental design; in
other words, there is no uniform approach to this type
of analysis. However, based on the chromatin accessi-
bility profile provided by scATAC-seq, the following
steps are commonly taken (Fig. 3): (1) profiling the
regulatory elements for each cluster/cell type, (2)
identifying differentially accessible regions between
different clusters/cell types, (3) uncovering key factors
that contribute to the altered chromatin accessibility,
and (4) Linking promoter–enhancer interactions.

To gain insight into the cluster- or cell type-specific
biology, differential accessibility analysis can be per-
formed in two ways: cluster-specific peaks can be
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obtained by comparing the chromatin accessibility of
cells in a particular cluster with that of all other cells.
Additionally, a pairwise comparison between the two
groups can be performed. A variety of statistical tests
have been applied in differential accessibility analysis,
including the Wilcoxon test (Yu et al. 2020), binomial
test (Cusanovich et al. 2018a), Wald test (Zamanighomi
et al. 2018), and logistic regression models (Stuart et al.
2021). Differential accessibility analysis may be con-
founded by technical biases, such as the number of
unique nuclear fragments and the TSS enrichment
score, which should be considered during the analysis.
For example, when identifying marker peaks for each
cluster, ArchR (Granja et al. 2021) selects a set of
background cells that match the known biases for each
cell group and performs comparisons between each cell
group and its background cells. Signac (Stuart et al.
2021) uses logistic regression for differential accessi-
bility analysis and regards the total number of frag-
ments as a latent variable to mitigate the effects of
technical biases. Differential accessibility between clus-
ters embeds the chromatin information that regulates
gene expression.

Combinations of transcription factors (TFs) orches-
trate spatiotemporal genetic programs, which regulate
the chromatin state and gene transcription by recog-
nizing and binding to specific DNA sequences in cis-
regulatory elements. Interpreting chromatin accessibil-
ity profiles at the single-cell level assists in deciphering
key cell type-specific regulators of cellular
differentiation.

Three main strategies are used to identify TFs of
interest: searching for overrepresented motifs in cell
type-specific accessible regions (Stuart et al. 2021),
comparing motif activity between cell types (Schep et al.
2017; Stuart et al. 2021), and detecting foot-printing for
TF occupancy (Li et al. 2019; Bentsen et al. 2020; Stuart
et al. 2021). These three forms of analysis can be used to
identify a list of candidate TFs that show considerable
changes in accessibility at putative TFBSs. Because TFs
from the same family can share similar motifs, they
frequently show the same patterns in motif-based TF
analysis, making it challenging to appropriately identify
TFs of interest. To overcome this obstacle and narrow
down the candidate list, scRNA-seq can be integrated to
identify TFs whose gene expression is positively
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correlated with changes in the accessibility of their
corresponding motifs. If matched gene expression data
are not readily available, the gene scores of TFs pre-
dicted based on accessibility around genes can be used.

It has been shown that accessibility profiles along the
linear genome in individual cells are associated with
higher-order chromosome folding (Buenrostro et al.
2015). Therefore, promoter–enhancer interactions and
gene regulatory networks can be obtained from scATAC-
seq data, which is also known as linkage analysis. There
are two primary types of linkage analysis: peak-to-peak
co-accessible analysis and peak-to-gene linkage analysis.
Cicero (Pliner et al. 2018) is the first algorithm devel-
oped to link distal enhancers with promoters on a
genome-wide basis based on patterns of co-accessibility
in scATAC-seq data. Briefly, the peak-to-peak co-acces-
sibility analysis looks for correlations of accessibility
between two peaks across cells. Thus, it does not nec-
essarily indicate a direct regulatory relationship
between inferred co-accessible peaks because cell type-
specific peaks are frequently co-accessible. To overcome
this challenge, peak-to-gene linkage analysis is imple-
mented by integrating scRNA-seq data and computing
correlations between peak accessibility and gene
expression (Ma et al. 2020; Granja et al. 2021). Com-
pared with peak-to-peak co-accessibility analysis, this
method better reflects gene regulatory interactions.

GENETICS BONUS BEYOND CHROMATIN PROFILING
FROM SCATAC-SEQ

Although the scATAC-seq method was designed to cap-
ture the chromatin structure and epigenetic information
of individual cells, as it works on DNA, the genetic
information is incorporated simultaneously. The by-
product genetic information from scATAC-seq data can
also be used to assay whole-genome copy number
variants at the single-cell level and infer cell lineage
relationships based on somatic mutations on mito-
chondrial DNA. Furthermore, the cell type-specific cis-
regulatory elements have great power to infer the
function of non-coding genetic variants (Fig. 4).

The chromatin accessibility profiled by scATAC-seq
provides a comprehensive map of cis-regulatory ele-
ments for many cell types at the same time. Intersecting
these cis-regulatory maps with genetic variants identi-
fied by genome-wide association studies facilitates the
interpretation of how non-coding genetic variants are
linked to complex traits or diseases. Several studies
have demonstrated a framework to systematically
interpret non-coding risk variants using cis-regulatory

maps (Cusanovich et al. 2018a; Rai et al. 2020; Trevino
et al. 2021; Zhang et al. 2021b).

As an example, scATAC-seq from 30 adult and 15 fetal
human tissue samples revealed 1.2 million cis-regula-
tory elements in 222 distinct cell types. Using a hyper-
geometric test, Zhang et al. found that GWAS variants of
450 traits/diseases were enriched in cis-regulatory
elements from at least one cell type. The enrichments
revealed many expected cell-type-disease phenotype
relationships; for example, eczema risk variants were
strongly enriched in adult T lymphocyte cis-regulatory
elements, and atrial fibrillation risk variants were
strongly enriched in both adult and fetal atrial and
ventricular cardiomyocyte cis-regulatory elements
(Zhang et al. 2021b). Besides disease-associated vari-
ants, de novo non-coding mutations in patients could
also be interpreted in combination with cis-regulatory
maps from scATAC-seq using deep-learning models
(Trevino et al. 2021).

When ATAC-seq was applied to malignant samples
and cell lines, it was found that the background signals
from the ATAC-seq data could predict the karyotype and
copy number variations of cells (Denny et al. 2016; Xu
et al. 2017). This genetic information can also be
applied to scATAC-seq to infer the copy number varia-
tions (CNVs) at the single-cell level. Several dedicated
tools have been developed and used to call CNVs (e.g.,
focal amplifications and chromosome arm-level gains
and losses) from scATAC-seq data (Ludwig et al. 2019;
Nikolic et al. 2021). Copy-scAT is an R package that uses
scATAC-seq data to infer copy number variants and
visualize genetic heterogeneity in clinical samples
(Nikolic et al. 2021). It takes barcode-fragment matrices
generated by Cell Ranger ATAC as input to create a
pileup of total coverage over bins of 1 Mb. Subsequently,
large peaks in the normalized coverage matrices are
used to infer focal CNVs. In a recent study (Nikolic et al.
2021), Copy-scAT was shown to be effective in detecting
CNVs of diverse malignancies at the single-cell level
using scATAC-seq data. The authors found that malig-
nant and non-malignant cells could be distinguished
based on CNV status (the presence or absence of CNVs).
It was also determined that cells sharing a specific CNV
tend to cluster together in the scATAC-seq data, which
suggests that genetics may contribute to a particular
epigenetic profile.

Mitochondrial DNA is amplified simultaneously when
scATAC-seq is performed on whole cells instead of
nuclei. Cell-specific somatic mutations in the mito-
chondrial genome can be efficiently detected simulta-
neously. Several studies have shown that it is feasible to
utilize this endogenous genetic information to trace cell
lineages in various human cell types (Ludwig et al.
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2019; Xu et al. 2019). Furthermore, an optimized scA-
TAC-seq protocol based on the 10X Genomics platform
has been developed to combine mitochondrial geno-
typing and chromatin profiling on a large scale (Lareau
et al. 2021). The genetic information on the mitochon-
drial genome is generally processed separately using an
SNP calling pipeline, such as GATK (McKenna et al.
2010). In brief, the mitochondrial sequences should be
included in the reference genome during alignment.
Reads mapped to the mitochondrial genome with high
confidence are extracted and de-duplicated. Next, the
reads are realigned to correct potential mapping errors,
thus enabling accurate SNP calling. Following this,
variant calling tools, such as VarScan2 (Koboldt et al.
2012), can be applied to call somatic mutations in the
mitochondrial genome at the single-cell level. High-
confidence mutations are retained based on several
quality control metrics, including sequencing coverage
and strand balance. The variant allele frequency (VAF)
for each mutation in each cell is computed, thereby
removing germline mutations with a high VAF and
constructing a cell-by-variant matrix. Lastly, the matrix
can be used to construct lineage relationships among
cells using traditional phylogenetic methods or
advanced methods (Lin et al. 2022).

KEY ANALYTICAL TOOLS FOR SCATAC-SEQ DATA

With the rapid development of scATAC-seq technologies,
a growing number of packages have been developed to
analyze scATAC-seq data. These packages can be divided

into two categories: tools that use raw sequence data as
input for general data processing and those that use
processed data as input for various downstream
analyses.

Cell Ranger ATAC is one of the most popular tools
used for primary processing and initial downstream
analysis (e.g., identifying open chromatin regions, motif
annotations, and differential accessibility analysis).
Despite its convenience, it requires extensive computa-
tional resources and lengthy runtime. To address this, a
pseudo-alignment approach was introduced into the
scATAC-seq preprocessing pipeline with negligible loss
in accuracy (Cittaro et al. 2020). Furthermore, the
alignment algorithm can also be improved to accelerate
the pipeline (Zhang et al. 2021a). However, a significant
drawback of one-stop pipelines is their inflexibility in
selecting the methods and parameters for specific
analysis tasks.

Instead of one-stop pipelines, numerous packages
use preliminarily processed data as input for various
downstream analyses. Several packages provide com-
prehensive analysis frameworks that cover virtually all
aspects of the previously mentioned downstream anal-
yses, such as Signac (Stuart et al. 2021), ArchR (Granja
et al. 2021), SnapATAC (Fang et al. 2021), scATAC-pro
(Yu et al. 2020), and APEC (Li et al. 2020). In Table 2, we
summarize the capabilities of the downstream analysis
for these packages. The inherent sparsity of scATAC-seq
data presents methodological challenges. Therefore,
instead of offering a complete pipeline, several packages
have been developed to improve a particular aspect of
analysis. For example, AtacWorks (Lal et al. 2021) and

-lo
g1

0 
(P

 v
al

ue
)

Top SNP

Chromosone position

GWAS

focal CNV

chromosome arm-
level CNV

Chromosone coordinates

Chr1p Chr1q Chr2p Chr2q

C T

Parental 
  clone

Subclone 1 Subclone 2

Mitochondrion

Mitochondrial
       DNA

Somatic mutation

Allele frequency of mtDNA mutations

Integrate with GWAS data CNVs calling Lineage tracing

<1% >10%

mtDNA with 
somatic mutations

Parental 
  clone

Subclone 1 Subclone 2

Single cells 

m
tD

N
A 

m
ut

at
io

ns

Si
gn

al
Si

gn
al

Fig. 4 Schematic overview of genetics bonus from scATAC-seq

� The Author(s) 2022, corrected publication 2024

aBIOTECH (2022) 3:212–223? 219



SCATE (Ji et al. 2020) enhance scATAC-seq signals,
thereby facilitating the investigation of regulatory ele-
ments in rare cell subpopulations.

Although various software packages are available for
scATAC-seq analysis, there is no consensus on which is
the best. We recommend that beginners start with one-
stop pipelines for general data processing and then
move on to packages with comprehensive analysis
frameworks and detailed tutorials, such as Signac
(Stuart et al. 2021), ArchR (Granja et al. 2021), and
SnapATAC (Fang et al. 2021), to gain a better under-
standing of scATAC-seq analysis. Recently, ten compu-
tational methods for scATAC-seq data analysis were
compared, with the result that SnapATAC (Fang et al.
2021), Cusanovich2018 (Cusanovich et al.
2015, 2018a, b), and cisTopic (Bravo González-Blas et al.
2019) were found to outperform other methods (Chen
et al. 2019). With the ongoing development of the

scATAC-seq analysis tools, more in-depth benchmarking
studies are required.

PROSPECTS

Although both experimental and computational meth-
ods have been developed for mammalian cells, the
application of scATAC-seq is not restricted to mam-
malian species. Based on the principle of scATAC-seq, its
application to plants is straightforward as long as the
nuclei can be accessed from the target samples. Suc-
cessful protocols for performing scATAC-seq have been
reported in the case of maize (Marand et al. 2021) and
Arabidopsis thaliana roots (Dorrity et al. 2021). These
protocols can be readily adapted to other plants and
extended to different organs. The epigenetic insights
provided by scATAC-seq will benefit basic and applied

Table 2 Summary of the features supported by five recent scATAC-seq software packages that provide comprehensive analysis
frameworks

Signac ArchR SnapATAC/
SnapATAC2

scATAC-pro APEC

Language R R R/Python Shell, R Python

Input files Fragment files, Peak-by-
cell matrix

Fragment files/
BAM files

Fastq files

Snap files

Fastq files/Fragment files/
BAM files

Fastq files/Peak-by-
cell matrix

Quality control 4 4 4 4 4

Doublet removal 7 4 4 7 7

Feature matrix Peak Bin, peak Bin, peak Peak Peak

Data imputation 7 4 4 7 7

Gene activity 4 4 4 7 4

DR, clustering 4 4 4 4 4

Peak calling 4 4 4 4 4

DAR 4 4 4 4 4

Functional
annotation

7 7 4 7 4

Motif
enrichment

4 4 4 4 4

Motif activity 4 4 4 4 4

TF foot-printing 4 4 7 4 7

Peak-to-peak 4 4 7 4 4

Peak-to-gene 4 4 4 7 7

Trajectory 4 4 7 7 4

Genome
browser

4 4 4 4 4

Batch effect
correction

4 4 4 7 7

scRNA
integration

4 4 4 7 4

Reference (Stuart et al. 2021) (Granja et al.
2021)

(Fang et al.
2021)

(Fang et al. 2021) (Li et al. 2020)
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research in fields as diverse as biomedicine and agri-
cultural science.
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