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Abstract
β cells are defined by the ability to produce and secret insulin. Recent studies have evaluated that human pancreatic β cells 
are heterogeneous and demonstrated the transcript alterations of β cell subpopulation in diabetes. Single-cell RNA sequence 
(scRNA-seq) analysis helps us to refine the cell types signatures and understand the role of the β cells during metabolic 
challenges and diseases. Here, we construct the pseudotime trajectory of β cells from publicly available scRNA-seq data 
in health and type 2 diabetes (T2D) based on highly dispersed and highly expressed genes using Monocle2. We identified 
three major states including 1) Normal branch, 2) Obesity-like branch and 3) T2D-like branch based on biomarker genes 
and genes that give rise to bifurcation in the trajectory. β cell function-maintain-related genes, insulin expression-related 
genes, and T2D-related genes enriched in three branches, respectively. Continuous pseudotime spectrum might suggest that 
β cells transition among different states. The application of pseudotime analysis is conducted to clarify the different cell 
states, providing novel insights into the pathology of β cells in T2D.
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Introduction

The pancreas is a vital metabolic organ consisting largely 
of exocrine ductal and acinar cells which secret digestive 
enzymes. As part of the pancreas, the islets of Langerhans 
are essential for blood glucose homeostasis. The endocrine 
islets comprise of at least five kinds of endocrine cells: α 

cells (30–45%), β cells (50–60%), γ/PP cells (less than 
10%), δ cells (less than 10%), and ε cells (less than 1%), 
which secrete glucagon (GCG), insulin (INS), pancreatic 
polypeptide (PPY), somatostatin (SST) and ghrelin (GHRL), 
respectively; however, the cell-type composition is variable 
among individuals (Cabrera et al. 2006). Accumulating evi-
dence suggests islet β cells play an important role in glu-
cose level maintained by stimulating the glucose uptake of 
peripheral organs (Ashcroft and Rorsman 2012). However, 
it has been known that β cells are not functionally identical 
to each other, including the rate of insulin synthesis and 
secretion.

Type 2 diabetes (T2D) is characterized by increasing 
insulin resistance in peripheral tissues and decreasing insulin 
secretion due to the loss of functional β cells (Kahn 2003). 
According to our understanding, the correlation between 
T2D and the changes in the transcriptome of pancreatic cells 
is obtained from whole-islets transcriptome data (Fadista 
et al. 2014; Taneera et al. 2012), which makes it difficult to 
clarify cell-type changes. Single-cell transcriptomic analy-
sis of the pancreas has undergone dramatic advances over 
the past 5 years (Segerstolpe et al. 2016; Xin et al. 2016), 
of which it is now able to identify the cell-type-specific 
transcriptomic changes in the development of T2D (Wang 
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and Kaestner 2019). Previous studies have demonstrated 
the great potential of single-cell RNA sequence (scRNA-
seq) in islet biology and confirmed the heterogeneity of 
human β cells. However, the single-cell analysis represents 
the dynamic states of β cells rather than stable and distinct 
disease-related subpopulations (Fang et al. 2019; Xin et al. 
2018), which means more efforts are needed for evaluating 
the transcript alteration of β cell subpopulations in diseases.

In this study, we traced pancreatic cells from publicly 
available scRNA-Seq data in healthy and T2D status. The 
β cells were ordered by pseudotime and projected onto a 
constructed trajectory. The gene expression of ordered cells 
was used to study dynamic state change. This provides a 
higher resolution view of the gene expression landscape of 
β cells in health and T2D. The gene signatures, together 
with the enriched pathways for each state and inter-state are 
described.

Materials and Methods

Single Cell RNA‑seq Data Acquisition

In this study, we analyzed scRNA-seq data of the human 
pancreas obtained from the NCBI GEO DataSets (https://​
www.​ncbi.​nlm.​nih.​gov/​gds/) with accession id: GSE101207 
(Fang et al. 2019). It contains 39,905 pancreatic islet single 
cells isolated from six healthy and three T2D donors. The 
donor information is provided in Table 1. The data analysis 
was conducted by R (R Core Team 2020).

Data Preprocessing and Cluster Identification

The gene expression matrix was converted to Seurat objects 
using the Seurat R package (Stuart et al. 2019). Cells were 
removed when the number of detected genes was less than 
100. The top 2000 variable genes were used to correlate and 
integrate data from different individuals. A total of 500 vari-
able genes were used for the principal component analysis. 
The first 20 principal components were chosen to reduce 

dimensions. The first two uniform manifold approximation 
and projection (UMAP) dimensions were used to visualize 
cell clusters. Cell clusters were identified using FindClusters 
(10 principal components and 0.15 resolution), and the cell 
clusters express the same marker genes will be merged. The 
β cell cluster was used for next-step pseudotime analysis.

Constructing Single‑Cell Trajectory in Pseudotime

Pseudo-time analysis was performed using Monocle 2 (Qiu 
et al. 2017), which utilized reverse graph embedding based 
on a user-defined gene list to generate a pseudotime plot 
that can account for both branched and linear differentiation 
processes. For pseudo-time analysis of the β cells, the raw 
count data were normalized by estimating the size factors 
for the trajectory inference. The highly dispersed and highly 
expressed genes (empirical dispersion/dispersion fit ≥ 1 and 
mean expression ≥ 0.01) were used to construct pseudotime 
trajectory (Karmaus et al. 2019). Default values were chosen 
for parameters of the DDRTree algorithm. To further ana-
lyze these branching events, we used Branched Expression 
Analysis Modeling (BEAM) implemented in Monocle 2. 
It helps to identify all genes that show significant branch-
dependent expression (Qiu et al. 2017). Visualization of the 
branch-dependent expression patterns as a heatmap was per-
formed using Monocle 2.

Differential Expression and Downstream Analysis

DESeq 2 was used with default settings for differential 
expression analysis (Love et al. 2014). Top enriched gene 
sets selected by adjusting p value < 0.005 were taken for 
downstream analysis. Differential expression genes and 
branch-dependent genes were analyzed for pathway enrich-
ment with Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), Reactome gene sets, canoni-
cal pathways, and CORUM through Metascape (Zhou et al. 
2019). The adjusted p value was calculated based on the 
accumulative hypergeometric distribution. Part resulting 
data was visualized using ggplot2 (Wickham 2016).

Table 1   Donor information of 
GSE101207

Donor Gender Age BMI HbA1c (%) # of cells # of β cells

Normal1 Male 27 20.6 5.4 1455 279
Normal2 Male 21 22.6 5.2 1206 218
Normal3 Female 38 34.4 5.0 9409 2744
Normal4 Male 52 22.0 5.6 6058 2358
Normal5 Male 28 30.8 4.9 5405 1213
Normal6 Male 44 34.6 5.4 6969 2030
T2D1 Male 58 39.3 8.9 1203 291
T2D2 Male 61 28.1 5.2 1823 444
T2D3 Male 51 35.6 7.1 6377 1715

https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/


201Pseudotime Ordering Single‑Cell Transcriptomic of β Cells Pancreatic Islets in Health and…

1 3

Results

Reidentification of Pancreatic Cell Type and Obtain 
of β Cell Cluster

The scRNA-seq data of the islet was obtained from the 
NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​gds/) with acces-
sion id: GSE101207 (Fang et al. 2019). Islets isolated 
from nine donors in either healthy and T2D status under-
went single-cell RNA-seq analysis. We input the read 
counts matrix into Seurat, after quality control, 30,696 
out of 39,905 cells were retained for dimension reduc-
tion, as detailed in the Materials and Methods. The cells 
were divided into eight cell clusters, with different rela-
tive unique molecular identifier values per cell (Fig. 1a). 
When the cells were projected to a two-dimensional uni-
form manifold approximation and projection (UMAP) plot, 
the distinction between endocrine cells and non-endocrine 
cells was observed, which is the same as GSE101207, and 
homogeneous populations are independent of donor types 
(Fig. 1b). Using the cell markers in published literatures 
(Fang et al. 2019; Segerstolpe et al. 2016; Xin et al. 2016), 
four non-endocrine cells including pancreatic ductal cells 
(PDCs, n = 1873) marked by several keratin genes (KRTs), 
pancreatic stellate cells (PSCs, n = 1525) marked by 
COL1A1, endothelial cells (n = 198) marked by ANGPT2 
and acinar cells (n = 143) marked by REG1A were identi-
fied (Fig. 1c, d). The differential expression of FABP4, 
the lipid-processing or adipogenesis gene, shows the het-
erogeneity of the PSCs cluster. Fang et al. (2019) label the 
PSCs with high expression of FABP4 as quiescent PSCs, 
otherwise, as activated PSCs (Fig. 1C). Four endocrine 
cells were recognized, mainly α cells (n = 11,973), β cells 
(n = 11,292), γ/PP cells (n = 1121), and δ cells (n = 2571), 
marked by INS, GCG, PPY, SST, respectively (Fig. 1c, 
d). Compared with GSE101207, an extra endothelial cell 
cluster is identified, which might be caused by different 
criteria of quality control.

Pseudotime Analysis Clarify Three Branches of β Cell

Although cell clustering is helpful to identify cell sub-
types, it is difficult to identify the cell subtypes in con-
tinuous processes, which can be observed in the two-
dimension UMAP plot (Fig. 1a, b), and the asynchrony 
and heterogeneity of biological samples are not identical 
with the chronological time of sampling. Therefore, we 
used a pseudotime analysis to reconstruct the trajectory 
of β cells to synchronize the process of diabetes. To guide 
the construction of the trajectory, we used 1138 highly dis-
persed and expressed genes (mean expression ≥ 0.01 and 

dispersion empirical ≥ 1 * dispersion fit). Figure 2a shows 
the trajectory of β cells that bifurcates into two main cell 
fates on branch point 2. We mapped the cell source label 
onto the pseudotime trajectory (Fig. 2b). Branch 3 is com-
posed of cells mostly from T2D donors, which means the 
branch might mostly compose of T2D-like damaged β 
cells (Fig. 2c). This was confirmed by the expression of 
T2D-related genes based on the existed researches, and 
the genes upregulated in the T2D-like branch are linked 
to autophagy, endoplasmic reticulum stress (ER stress), 
and apoptosis (Fig. 2d). Autophagy genes (ATGs) encoded 
multiple proteins to direct the autophagosomes to fuse 
with lysosomes for cytoplasmic components degradation 
and recycle. The upregulation of autophagy, particularly 
the expression levels of Atg5 and Atg7, were reported in 
ob/ob and High-Fat-Diet (HFD) mice (Yang et al. 2010). 
Atg7 deficient mice showed impaired glucose tolerance 
and decreased serum insulin level (Yang et al. 2010). β 
cell mass and pancreatic insulin content were reduced 
because of the increased apoptosis and decreased prolif-
eration of β cells (Ebato et al. 2008; Jung et al. 2008). The 
results identified a unique role of autophagy as an adaptive 
response of β cells in diabetes. The function of β cells is 
also influenced by ER stress, in the case of T2D, predom-
inantly mediated PERK–eIF2α (Eukaryotic Translation 
Initiation Factor 2 Alpha Kinase 3, EIF2AK3) pathways 
(Eizirik et al. 2020). Collectively, this research highlights 
the key role of EIF2AK3 in maintaining β cell function. 
The cysteinyl aspartate protease (CASP) gene family plays 
a significant role in programmed cell death, and CASP3 
and CASP7 from CASP family are also used as the mark-
ers for evaluating the apoptosis level in β cells (Good 
et al. 2019). The upregulation of the CASP gene family 
means the increase of apoptosis in the T2D-like branch, 
apoptosis then decreases β cell mass, which increases the 
stress experienced by the remaining β cells as they try to 
compensate for the reduced insulin levels and experience 
increased secretory demand, resulting in more β cell death.

The active autophagy, ER stress, and apoptosis pathway 
suggest the T2D-like branch, while another two branches 
composing of cells mostly from normal donors show het-
erogeneity with each other (Fig. 2d). The branch with high-
level INS expression is threefold higher than that in the other 
one. The high expression of INS means the cells are more 
specialized in insulin secretion. Upregulation of ATG5 in 
the high-INS (INShi) branch suggests the high protein bur-
den (Yang et al. 2010). Downregulation in low-INS (INSlo) 
branch, Swi-independent 3a and 3b (SIN3A and SIN3B) are 
linked to modulating Ca2+/ion transport, cell survival, vesi-
cle/membrane trafficking, glucose metabolism, and stress 
responses, and SIN3A and SIN3B deficient reduced islet cell 
mass at the birth of mice (Yang et al. 2020). The expression 
of insulin receptor substrate 2 (IRS2) was correlated with 

https://www.ncbi.nlm.nih.gov/gds/
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Fig. 1   Single islet cell transcriptomes clustering. a Two-dimensional 
t-SNE plot of distinct islet cell types. b Two-dimensional t-SNE 
plots with cells colored based on donor T2D condition. c Violin plots 

confirm that the marker genes of annotated cell types have mutually 
exclusive expressions. d Expression levels of cell markers are over-
laid onto the t-SNE plot in a 
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β cell mass in HFD-induced insulin resistance (IR) mice 
(Takamoto et al. 2008), and the Pancreatic β cell-specific 
IRS2 Knockout (IRS2-KO) mice exhibited a reduction of β 
cell mass and β cell proliferation rates (Kubota et al. 2004; 
Lin et al. 2004). These data suggest that IRS2 is critical 

for regulating β cell mass and function to promote insulin 
secretion. v-maf musculoaponeurotic fibrosarcoma onco-
gene homolog A (MAFA, a basic leucine zipper transcrip-
tion factor) is thought to be critical in the regulation of 
insulin biosynthesis and secretion (Matsuoka et al. 2004; 

Fig. 2   Pseudotime analysis identifies three β-cell states. a Pseudotime 
trajectory was reconstructed in β  cells, which contains three states, 
labeled as normal, obesity-like, and T2D-like branches, respectively. 
States are circled in different colors. b Pseudotime trajectory with 

cells colored based on donor T2D condition. c Bar graphs demon-
strating the percentage of donors in each branch. d Heat map of dif-
ferential expressed marker genes between the branches. e Bar graphs 
demonstrating the percentage of each cell type in each donor
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Wang et al. 2007). Significantly, MAFA was demonstrated 
to be effectively reprogrammed adult pancreatic acinar cells 
to islet β-like cells, which not only produced β cell mark-
ers but also be similar to endogenous β cells in function 
and structure (Zhou et al. 2008). The high requirement of 
insulin processing, maturation, and secretion makes β cells 
particularly susceptible to mitochondrial dysfunction, which 
leads to β cell failure in diabetes. Mitophagy is a key com-
ponent of mitochondrial quality control, which is necessary 
to maintain mitochondrial function and quality. Correlated 
to INS expression, C-type lectin domain family 16, member 
A (CLEC16A) involves the mitochondrial trafficking dur-
ing mitophagy to maintain mitochondrial function, conse-
quently, maintain insulin secretion of β cell (Sidarala et al. 
2020; Soleimanpour et al. 2014). The differential expression 
of marker genes between two branches shows a high protein 
synthesis burden of the INShi branch and reminds us of the 
normal state of the INSlo branch.

Figure 2E shows the distribution of cells from differ-
ent donors. The different cell composition of female donor 
Normal 3 (p < 8.252e-5) might suggest the difference of 
metabolism signature between males and females, which is 
confirmed in the existed cohort study (Rasouli et al. 2021). 
The unique cell states of Normal 3 also can be observed in 
the individual pseudotime analysis (Fig. S1), which might 
suggest the potential T2D risk of Normal 3.

Cluster Genes with Branch‑dependent Differential 
Expression

To focus on how fate choices are made among different β 
cell branches, we performed expression analysis on how 
genes are differentially regulated after the branch point. In 
this way, we could identify genes that are specific for β cell 
fate acquisition. A total of 3094 genes were grouped into 
four clusters (Fig. 3a). We are interested in the genes dif-
ferentially expressed in different branches, hence we take 
them for enrichment analysis. Cluster 1 contains 557 genes 
upregulated in the INSlo branch that are associated with 
insulin secretion, endomembrane system, and organelle 
biogenesis and maintenance (Fig. 3b). Compared to the 
enriched pathway of genes (n = 381) in cluster 2 upregu-
lated in the T2D-like branch, which comprises responses to 
external stimuli, autophagy, oxidation stress, lysosome, and 
apoptosis (Fig. 3c), the enrich pathway of cluster 1 suggests 
the INSlo branch as a normal-function branch. The cluster 3 
genes (n = 1214) upregulated in the INShi branch are linked 
to protein translation and secretion, mitochondria assembly 
and electron transport chain (ETC), and ribosome assembly 
(Fig. 3d). The item ribosome assembly supports the exuber-
ant INS secretion. Mitochondria controls the production of 
insulin in β cells in an ATP/ADP ratio-dependent manner, 
and the active mitochondria and ETC increase the ATP/ADP 

ratio, then insulin is secreted (Rocha et al. 2020). Compared 
to the expression in the INShi branch, the genes in cluster 4 
(n = 942) are highly expressed in the T2D-like branch, and 
the enrichment analysis reveals the difference in ER stress, 
apoptosis, glycosylation, and response to hypoxia between 
the INShi branch and the T2D-like branch (Fig. 3e). Ohtsubo 
et al. (2011) report the key role of glycosylation in maintain-
ing β cell hemostasis to prevent hyperglycemia, impaired 
glucose tolerance, and hyperinsulinemia. Hypoxia-inducible 
factors (HIFs) are a family of transcription factors activated 
by hypoxia. The deletion of HIF-1α in β cells decreased 
basal and glucose-stimulated ATP concentrations, and the 
low ATP generation provides a mechanism for impaired 
glucose-stimulated insulin secretion (Cheng et al. 2010). 
Compared to the T2D-like branch, the INShi branch suffers 
a heavier protein burden, however, the upregulation of mito-
chondrial and ETC pathway suggests the cells in the INShi 
branch react to stress normally. The upregulation of INS 
and molecule enrichment pathways reflect the obesity-like 
signature of the INShi branch (Alarcon et al. 2016; Kusmin-
ski et al. 2020; Sarparanta et al. 2017). Based on the gene 
expression signatures, we mark the branch with enrichment 
items related to endomembrane system and insulin secre-
tion as Normal branch, then the one related to mitochondria 
and ETC as Obesity-like branch, while the one related to 
apoptotic, ER stress, and autophagy are marked as T2D-like 
branch (Fig. 2a).

Identification and Comparison of T2D‑ 
and Obesity‑related Genes

The analysis of differential expression among branches is 
conducted with R package DEseq2 by input reads count 
matrix. The differential expression genes between Obesity-
like and T2D-like branches indicate the complex transcrip-
tional state of the Obesity-like branch (Fig. 4a). The result 
of enrichment analysis is related to the genes upregulated in 
the Obesity-like branch to ETC, mitochondrial membrane 
potential, and insulin synthesis and secretion (Fig. 4c). 
Meanwhile, the genes upregulated in T2D-like branch were 
enriched in Unfolded Protein Response (UPR), ER stress, 
lysosome, apoptosis, and external stimuli related items 
(Fig. 4b). The enrichment analysis demonstrated the stress-
state of the T2D-like branch, which is consistent with our 
previous conclusion.

More upregulated obesity-related genes match with the 
complex transcriptome of the Obesity-like branch. Some genes 
are upregulated in the T2D-like branch while downregulated 
in the Obesity-like branch showing the transcriptional het-
erogeneity of two states (Fig. 4d). To assess the efficiency of 
our analysis, we compared our results with T2D-related and 
obesity-related genes list provided by Fang et al. (2019). The 
overlap between the sets of differentially expressed genes is 
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displayed in the Venn diagram (Fig. 4e,f). We then applied 
the genes to pathway enrichment analysis. The obesity-
related genes were both expressed differentially in two analy-
ses, which were related with protein synthesis and secretion, 
mitochondrion and ETC, and apoptotic (Fig. 4g). The similar-
ity in enrichment items indicates the functional consistency 
of the two gene groups. The genes expressed differentially 
in our analysis are more relevant with the function of β cell 
than those in Fang et al. (2019), as shown in Fig. 4f. Enriched 
translation item was shown in our enrichment result, and Ras 
homolog enriched in brain (RHEB) is demonstrated to activate 

the mTORC1 pathway to increase β cell mass and the glucose 
tolerance of mice (Hamada et al. 2009). The expression of INS 
is related to the ATP/ADP ratio, which is under the control of 
mitochondrial. In mitochondrial-related pathways, ATF4 acts 
as a master regulator of cellular stress, and the mitochondrial 
dysfunction induces FGF21 in ATF4-dependent manner to 
increase insulin resistance and adipose tissue browning (Kim 
et al. 2013). In response to the high protein burden, autophagy 
protects from obesity and IR. Lysosome-associated membrane 
protein 2 (LAMP2), which is enriched in the autophagy path-
way, is essential for lysosomes formation and autophagy, and 

Fig. 3   Analysis of gene clusters with different expression signatures. a Heatmap showing four-gene clusters with different expression signatures. 
b–e Pathway enrichment analysis result of differential expressed genes on b cluster 1, c cluster 2, d cluster 3, and e cluster 4
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Fig. 4   Differential expression 
analysis results compared to 
the previous study by Fang 
et al. (2019). a Volcano plot 
of the genes with differential 
expression (p < 0.05) between 
Obesity-like and T2D-like 
branches. b, c Pathway enrich-
ment analysis of the genes 
upregulated in T2D-like b and 
obesity-like c branches. d Scat-
terplot of the genes with dif-
ferential expression (p < 0.05) of 
obesity-related and T2D-related 
genes. Gray dots indicate genes 
differentially expressed in the 
obesity-like branch or T2D-like 
branch. Red dots indicate genes 
both significantly upregulated 
in obesity-like and T2D-like 
branches. Purple dots indi-
cate genes both significantly 
downregulated in obesity-like 
and T2D-like branches. Yellow 
dots indicate genes significantly 
downregulated in the obesity-
like branch while significantly 
upregulated in the T2D-like 
branch. e, f Venn diagram 
displaying the overlap of the 
sets of obesity-related e and 
T2D-related f genes between the 
current study and the previous 
study by Fang et al. (2019). g, 
h Pathway enrichment analysis 
of the overlap of the obesity-
related g and T2D-related h 
genes between the current 
study and the previous study by 
Fang et al. (2019). i, j Pathway 
enrichment analysis of the obe-
sity-related i and T2D-related j 
genes in the current study. k, l 
Pathway enrichment analysis of 
the obesity-related k and T2D-
related l genes in the previous 
study by Fang et al. (2019)
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the LAMP2 depletion causes cell death and lysosome impair-
ment (Sudhakar et al. 2020). The intermittent fast causes cell 
death in LAMP2 KO mice also demonstrates the key role 
of autophagy and lysosome pathways in maintaining β cell 
homeostasis (Liu et al. 2017).

The overlap of differentially expressed genes between T2D-
like and Obesity-like branches similarly shows the enriched 
pathway items (Fig. 4d, g–l). The enrichment result suggests 
the important role of translation, mitochondrion and autophagy 
in obesity and T2D. Compared to the T2D-related genes 
enrichment items in Fang et al. (2019), the translation item 
missed (Fig. 4j, l) and linked to insulin secretion was found 
in the enrichment of obesity-related genes. The difference 
indicates the complex etiology of T2D, individual heteroge-
neity, and the expression of insulin. Particularly single-cell 
insulin expression is not completely correlated to individual 
T2D, and this is demonstrated by the division of Obesity-like 
and T2D-like branches in pseudotime analysis. The func-
tional difference between Obesity-like and T2D-like branches 
might interpret how obese people escape from T2D. However, 
restricted by individual clinical information, the inner hetero-
geneity in the individual is ignored in Fang et al. (2019). The 
pseudotime analysis synchronizes the cells from individuals 
and contributes to clustering the function-similar cell across 
individuals, which helps us understand the process of T2D at 
the single-cell level. The genes of the T2D-like branch also 
provide insight into the etiology of T2D (Fig. 4j). In the item 
of vesicle-mediated transport, vesicle-associated membrane 
protein 8 (VAMP8) is confirmed to play a dual role in the regu-
lation of insulin recruitment and negative regulation of β cell 
proliferation, of which the precise mechanisms are not com-
pletely understood. However, VAMP8 KO mice are reported 
with increased insulin secretion, which improved metabo-
lism homeostasis (Zhu et al. 2012). In the citric acid (TCA) 
cycle and respiratory electron transport, while syntaxin-1A 
(STX1A) regulates insulin secretion through binding to β cell 
ion channels, and STX1A overexpression causes impaired 
mice insulin secretion (Lam et al. 2005). The enrichment item 
VEGFA–VEGFR2 signaling is linked to vascularization, on 
the one hand, the vascular changes contribute to the onset of 
diabetes (Staels et al. 2019). Nonetheless, diabetes induces 
vascular complications via VEGFA-related pathway (Sivas-
kandarajah et al. 2012; Wirostko et al. 2008). The demon-
strated T2D related genes suggest that pseudotime can syn-
chronize samples of asynchrony and provide potential insight 
into obesity and diabetes.

Discussion

Earlier studies were mainly based on the expression of indi-
vidual genes in different cell types. However, the expres-
sion of individual genes does not provide information on the 

transcriptional programming of cell types. With the multi-
ple methodologies employed in single-cell analysis, several 
groups identified subpopulations of β, α, ductal and acinar 
cells based on scRNA-seq data and reported differentially 
expressed genes in T2D across all kinds of islets cell types 
(Fang et al. 2019; Lawlor et al. 2017; Segerstolpe et al. 2016; 
Xin et al. 2016). In this study, we detected heterogeneity 
among β cells. Pseudotime analysis ordered the β cells into 
three branches with varying degrees of INS and diabetes-
related gene expression. The single-cell transcriptome pro-
vides insight into the relationship between individual β cell 
heterogeneity and T2D while identifying three different β 
cell branches. According to the expression of marker genes 
and enrichment analysis of branch differential expression 
analysis, the three branches are labeled as normal, obesity-
like, and T2D-like. Unprecedented insights into the associa-
tion of β cell transcriptome and disease states were provided 
through applying pseudotime analysis to connect the pro-
gression of gene expression and β cell states. The analy-
sis identified the genes of important role that missed in the 
analysis result of Fang et al. (2019), which is crucial in the 
process of diabetes. The genes are enriched in mitochondrial 
& ETC, protein synthesis and secretion, autophagy, and vas-
cularization. The enrichment pathway and part of enriched 
genes are demonstrated to be related to obesity and T2D. 
Further research is needed to prove the role of the rest genes 
in the etiology of obesity and T2D. We hope the pseudotime 
analysis will help us understand the change of cell states in 
the processing of T2D.

Cell branches or states might not be restricted only to 
pancreatic β cells. Baron et al. (Baron et al. 2016) reported 
two expression profiles related to different ductal cell states. 
Segerstolpe et al. (Segerstolpe et al. 2016) reported a sub-
population of α cells and acinar cells. Future studies will 
focus on the analysis of the whole pancreas cell types to 
determine the permanent subpopulation or identify the tem-
porary change of cell states and the genes that drive the state 
change during the disease process.

Concerning the islet cell transcriptome in T2D, the differ-
ential expressed genes between the T2D sample and control 
were reported by several groups, respectively (Lawlor et al. 
2017; Segerstolpe et al. 2016; Xin et al. 2016). The differen-
tial expressed genes from different groups are largely non-
overlapping (Wang and Kaestner 2019). The discrepancy 
reflects the complex etiology of T2D and asynchrony and 
heterogeneity of the biological samples. In our study, the 
distribution of individual cells among branches also sug-
gests the limitation of donor samples (Fig. 2c, e). Applying 
pseudotime analysis might contribute to synchronizing the 
inter-individual asynchrony, and expanding the number of 
islet donors also might be helpful to discover the disease-
associated change in gene expression and contribute to the 
robust analysis.
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In summary, we conducted pseudotime analysis to 
better understand the behavior of β cells in health and 
disease. We observed the difference between our analy-
sis result and Fang et al. (2019). The difference suggests 
the development of an analysis method is needed to close 
the gap between cellular function and transcriptomics. 
Another limitation of scRNA-seq is “dropout” caused by 
low-efficiency of mRNA capture and cDNA synthesis, 
which leads to loss of information and artefactually over-
estimates the heterogeneity between cell subpopulations. 
We hope the improvement of methodology can help us 
better understand the etiology of the disease.
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