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Abstract
Deciphering the relationship between human proteins (genes) and phenotypes is one of the fundamental tasks in phenomics 
research. The Human Phenotype Ontology (HPO) builds upon a standardized logical vocabulary to describe the abnormal 
phenotypes encountered in human diseases and paves the way towards the computational analysis of their genetic causes. To 
date, many computational methods have been proposed to predict the HPO annotations of proteins. In this paper, we conduct 
a comprehensive review of the existing approaches to predicting HPO annotations of novel proteins, identifying missing 
HPO annotations, and prioritizing candidate proteins with respect to a certain HPO term. For each topic, we first give the 
formalized description of the problem, and then systematically revisit the published literatures highlighting their advantages 
and disadvantages, followed by the discussion on the challenges and promising future directions. In addition, we point out 
several potential topics to be worthy of exploration including the selection of negative HPO annotations and detecting HPO 
misannotations. We believe that this review will provide insight to the researchers in the field of computational phenotype 
analyses in terms of comprehending and developing novel prediction algorithms.

Keywords  Human Phenotype Ontology (HPO) · Human protein-phenotype association · HPO annotation · Machine 
learning · Deep learning

Introduction

In the context of clinical medicine, a phenotype refers to 
any observable trait or characteristic of a disease, such as 
morphology, development, biochemical or physiological 
properties, or behavior (Scheuermann et al. 2009; Robinson 

2012). The analysis of phenotype plays a fundamental role 
in biomedical research and deepens the understanding of the 
phenotypic spectrum of human disorders (Deans et al. 2015; 
Yu and Zhang 2015). The use of phenotype information can 
help empower the discovery of phenotypic mutations and 
enrich the understanding of disease pathogenesis (Son et al. 
2018). To promote the computational analysis of pheno-
typic data, Robinson et al. (Robinson et al. 2008) developed 
Human Phenotype Ontology (HPO) to provide a standard-
ized controlled vocabulary describing the phenotypic abnor-
malities and clinical features related to human diseases. The 
combination of features is often used for clinical diagnosis 
in genetics research. With the advent of precision medicine, 
it is essential to determine the exact genetic causes for a 
patient and provide individualized diagnosis with a definite 
molecular profile (Yu and Zhang 2015; Akhmetov and Bub-
nov 2015). Therefore, deciphering the associations between 
human proteins and phenotypes can be of great help in the 
prevention, diagnosis, and therapy of rare diseases (Groza 
et al. 2015).

It has been estimated that the genetic cause of only about 
half of the currently named rare diseases (about 7000) has 
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been elucidated, and many more genetic disorders have yet 
to be recognized (Boycott et al. 2013; Chong et al. 2015). 
The genetics community believes that considerable quan-
tities of additional Mendelian disease genes remain to be 
elucidated. So far, only about 4000 human proteins have 
been annotated with HPO terms. Nonetheless, manual 
curation is a time-, labor-, and money-consuming process. 
Hence, developing an accurate and efficient tool to annotate 
novel human proteins with HPO terms computationally is 
imperative. The second Critical Assessment of protein Func-
tion Annotation algorithms (CAFA2) challenge launched a 
special track on automatic HPO annotation prediction. The 
assessment results show the undesirable performance of 
participants: no methods could significantly outperform the 
Naive method, a baseline that simply uses the frequency of 
HPO terms in the HPO annotations as the prediction scores, 
in the protein-centric mode (Jiang et al. 2016), which high-
lighted the difficulty of this problem.

Due to the limitation of biomedical technique and the 
biased research interest of biologists, the current HPO 
annotations are in fact incomplete. From 2018 to 2020, the 
average number of annotations per protein has increased 
by 25%. The missing protein-phenotype associations have 
a side effect on computational tools (Liu et al. 2020) and 
mislead the phenotypic analysis of genetic diseases. Identi-
fying missing HPO annotations is needed to ensure the data 
quality and improve the accuracy of prediction algorithms.

Typically, molecular biologists and physicians are more 
interested in knowing the set of proteins associated with a 
certain HPO term. The recent explosion in high-throughput 
experimental techniques has significantly improved the effi-
ciency in genome-wide association studies (GWAS) (Bush 
and Moore 2012), which highly promotes the identifica-
tion of disease-associated mutations (Bromberg 2013). But 
unfortunately, despite the limited knowledge of phenotype-
causative variants, there still exists the sheer quantity of yet 
experimentally unverified proteins. Computational methods 
for recognizing probable phenotype-related proteins among 
the large pool of candidate proteins are therefore necessary 
to decrease manpower of in vitro verification.

The above tasks can be categorized according to the com-
pleteness of annotations: (1) Determining the HPO anno-
tations of no-knowledge proteins, which currently have 
no experimentally-verified annotations. We can further dis-
tinguish based on the optimization target: (a) protein-centric, 
produces all HPO terms associated with a given protein; (b) 
term-centric, prioritizes the candidate proteins concerning a 
certain HPO term. (2) Identifying missing HPO annotations 
of limited-knowledge proteins, which have been experimen-
tally annotated with some HPO terms but incompletely.

Although many computational methods have been pro-
posed in this area, there are no systematic literature reviews 
till now. In this paper, we systematically summarized 

existing works about the above three tasks and attempt to 
help readers have acquaintance with the current develop-
ments and forthcoming applications in this field. The paper 
is organized as follows. In “Human Phenotype Ontology”, 
we briefly introduce the basic concepts and characteristics of 
HPO and HPO annotations. Then, we review the computa-
tional methods for predicting HPO annotations of novel pro-
teins (“Methods for Predicting HPO Annotations of Novel 
Protein”), identifying missing HPO annotations (“Methods 
for Identifying Missing HPO Annotations”), and phenotype 
protein prioritization (“Methods for Phenotype Protein Pri-
oritization”). In each section, we first provide the problem 
formulation, followed by the systematic overview of the 
existing methods highlighting their advantages and disad-
vantages, and discuss about promising directions for further 
improvement. “Potential Topics” outlines the potential top-
ics and future guidelines. Finally, the last section concludes 
this paper.

Human Phenotype Ontology

Ontology is a technical term denoting a structural and 
abstract representation of domain knowledge (Smith 2003). 
An ontology provides a definitive and exhaustive classifi-
cation of entities. Each entity corresponds to one or more 
terms in the ontology, and there is a specified semantic rela-
tionship between the terms. Therefore, ontology is usually 
utilized as a standard controlled vocabulary in biomedical 
research.

Recent years have witnessed an overwhelming number of 
ontologies in biomedical sciences, such as Gene Ontology 
(GO) (Ashburner et al. 2000), Mammalian Phenotype Ontol-
ogy (MPO) (Smith et al. 2005), and Disease Ontology (DO) 
(Schriml et al. 2012). Inspired by the upsurge of research 
interest in bio-ontologies and great success achieved by GO, 
in 2008, Robinson et al. (Robinson et al. 2008) developed 
Human Phenotype Ontology (HPO), aiming at providing a 
standard categorization of the abnormal phenotypes encoun-
tered in human diseases and of their semantic relationships. 
Figure 1 presents the partial structure of the current HPO 
(by October 2020). At present, the HPO contains 15,371 
terms organized hierarchically in a Directed Acyclic Graph 
(DAG), that is, a term can have multiple child nodes and 
multiple parent nodes. Each HPO term denotes the symp-
toms or phenotypic abnormalities that characterize a disease. 
The directed edge between two terms represents the “is-a” 
(subclass-of) relationship, which implies that the child node 
is a specialization of its ancestor(s). As a result, the HPO 
term at the upper level is more general and refers to a broad 
category of abnormal phenotype, while the HPO term at 
the bottom level is more detailed, specifically referring to a 
certain phenotype. Accordingly, the “true-path-rule” can be 
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derived that: whenever a protein is annotated with a given 
term, then the annotation is propagated to all the ancestors 
in a recursive way.

At present, the HPO consists of seven sub-ontolo-
gies under the root term All (HP:0000001) as shown in 
Fig. 1: Phenotypic Abnormality (HP:0000118), Clinical 
Modifier (HP:0012823), Clinical Course (HP:0031797), 
Mode of Inheritance (HP:0000005), Past medical history 
(HP:0032443), Blood group (HP:0032223), and Frequency 

(HP:0040279). The description of sub-ontologies is summa-
rized in Table 1. Phenotypic Abnormality (PA) is the largest 
and core sub-ontology in HPO.

The HPO annotations have the following characteristics: 

(1)	 The HPO annotation rigidly follows the hierarchi-
cal structure. The HPO annotations of a protein are 
arranged as a consistent subgraph of HPO, which 
means that if a vertex is in the subgraph, all the ances-

Fig. 1   A fraction of the HPO released by October 2020, where each oval denotes an internal term and each rectangle denotes a leaf term

Table 1   Summary of sub-ontologies in HPO

Sub-ontology HPO term ID #Terms Description

Phenotypic abnormality HP:0000118 15,150 Main sub-ontology of the HPO and contain descriptions of clinical abnormalities
Clinical modifier HP:0012823 107 Characterize and specify the phenotypic abnormalities defined in the Phenotypic abnormality 

sub-ontology, with respect to severity, laterality, age of onset, and other aspects
Clinical course HP:0031797 49 Describe the course a disease typically takes from its onset, progression in time, and eventual 

resolution or death of the affected individual
Mode of inheritance HP:0000005 32 Describe the pattern in which a particular genetic trait or disorder is passed from one genera-

tion to the next
Past medical history HP:0032443 16 Record information about the patient’s medical, personal and family history that might be 

relevant to the presenting illness or to provide optimal clinical management
Blood group HP:0032223 9 Describe the blood group systems
Frequency HP:0040279 7 Frequency of phenotypic abnormalities within a patient cohort
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tors of this vertex must also be in the subgraph. Thus, 
the loss-of-function of a protein may lead to multiple 
abnormal phenotypes simultaneously, and their corre-
sponding HPO terms are not mutually independent but 
organized hierarchically.

(2)	 The distribution of HPO annotations presents a serious 
imbalance. As shown in Fig. 2, the distribution of HPO 
annotations is unbalanced drastically, which follows a 
scale-free-like distribution. More than 35.6% of HPO 
terms are annotated with no more than three proteins, 
and only 43.8% of HPO terms are associated with over 
ten proteins.

(3)	 Current HPO annotations are incomplete. Limited by 
the development of biomedical technologies, it is dif-
ficult to fully understand the genetic causes of human 
hereditary disorders and observe all the abnormal phe-
notypes in the disease progress. Therefore, the current 
HPO annotations are still incomplete. We selected 3717 
proteins in the HPO annotations released on 2018-03-
09 and tracked the changes in their average number of 
annotations (that is, how many HPO terms each protein 
is annotated after applying the true-path-rule) in subse-
quent releases. As shown in Fig. 3, the average number 
has increased rapidly from 114.8 to 144.2 in 2 years 
with an increase of more than 25%.

Methods for Predicting HPO Annotations 
of Novel Protein

Problem Formulation

Let Dl = {(pi, Ti)}
m
i=1

 be a labeled dataset, where m is the 
size of the dataset, pi denotes the i-th protein, and Ti ⊆ � 
denotes the experimentally-validated annotations of protein 
pi from HPO � . Here, “ ⊆ ” is used to describe consistent 
subgraph of HPO. We can formulate the HPO annotations 
prediction of novel protein as follows: given a labeled data-
set Dl , and a novel protein p without any known annotation, 
find a consistent subgraph T̂ ⊆ � , such that T̂  is closest to 
the experimental annotation T of p, or more formally, to seek

where P(T̃|p) is the posterior probability of consistent sub-
graph given protein p. It is illustrated in Fig. 4. Due to the 
hierarchical structure, this problem can be modeled as a hier-
archical multi-label classification (HMC) problem.

(1)T̂ = argmax
T̃⊆�

P(T̃|p)

Fig. 2   The number of annotated proteins for each HPO term follows a 
scale-free-like distribution. The x-axis is given on a logarithmic scale

Fig. 3   For proteins that already existed in the HPO annotations 
released on 2018-03-09, the average number of annotations per pro-
tein increased over time

Fig. 4   Illustration of predicting HPO annotations of novel proteins. 
The dark nodes on the right side represent the predicted terms asso-
ciated with the input proteins. Four leaf nodes are highlighted by 
dashed line boxes
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Existing Methods

The basic idea behind existing methods consists of these 
aspects: (1) which data sources should be utilized; (2) how 
should these data sources be integrated; (3) whether the 
prediction results meet the biological consistency. Table 2 
summarizes existing methods from different aspects. Spe-
cifically, we say the prediction scores � = (y1, y2,… , yn) for 
n HPO terms are consistent if they obey the true-path-rule:

where par(i) denotes the parents of term i. In what follows, 
we review the existing approaches according to the predic-
tion consistency.

Inconsistent Methods

Previous studies have revealed that two proteins with 
strong interactions were likely to be associated with the 
same phenotype (Oti et al. 2006; Goh et al. 2007). Moreo-
ver, researchers have also found that orthologs tended to 
retain the functions from ancestors (Koonin 2005; Dolin-
ski and Botstein 2007). Based on such findings, Wang 
et al. (Wang et al. 2013) developed PhenoPPIOrth that 
utilized protein-protein interactions (PPI) and orthology 
information to infer protein-phenotype associations. They 
designed a PPI path considering the interactive partners of 
the query protein, and an orthology path considering all 
proteins connected to the given phenotype in the cross-
species phenotype network PhenomeNET (Hoehndorf 
et al. 2011) and the orthologous proteins of the query pro-
tein. A potential phenotype could be inferred from the 
PPI path and orthology path according to the normalized 
weighted scores which were derived from the above two 
paths. In fact, PhenoPPIOrth only predicted the relation-
ship between proteins and OMIM rare diseases (Hamosh 

(2)
� is consistent ⟺ ∀i ∈ {1,… , n}, j ∈ par(i) ⇒ yj ≥ yi,

et al. 2002), and the protein-HPO term associations were 
produced through the HPO annotations of diseases. How-
ever, the HPO integrated Orphanet (Pavan et al. 2017) and 
DECIPHER (Firth et al. 2009) as well. In consequence, 
a lot of protein-phenotype pairs were missing and hence 
hindered the performance.

Doğan (Doğan et al. 2018) proposed HPO2GO which 
was based on an assumption in the light of protein func-
tion: if a mutation of a protein resulted in reduced or abol-
ished function X, and it might cause the disease which 
was characterized as the phenotype Y, then Y could be 
associated with X. They extracted HPO2GO mappings by 
calculating the frequency of the HPO-GO co-annotations 
and filtered unreliable mappings by statistical resampling. 
Using the generated HPO2GO mappings, we could predict 
HPO annotations of query protein by taking its existing 
GO annotations into account. They inferred HPO annota-
tions only from the proteins with similar functions, while 
ignoring the leverage of PPI. Therefore, the absence of the 
interaction network, an important and effective informa-
tion source, degraded the final performance.

Neither PhenoPPIOrth nor HPO2GO was scalable to 
multiple data sources. To improve the performance by inte-
grating heterogeneous features, Liu et al. (Liu et al. 2020) 
proposed HPOLabeler which adopted the learning to rank 
(LTR) (Li 2011) framework. They designed three types 
of basic models including (1) Logistics Regression mod-
els exploiting PPI networks, GO annotations, domains, 
and sequences; (2) Nearest Neighbor method exploring 
the local structure of PPI network; (3) Naive method that 
simply calculated HPO term frequency. Borrowing the 
idea from information retrieve, they modeled the proteins 
as a query, and each candidate HPO term as a document, 
and trained the model to return the optimal rank of those 
HPO terms with respect to the query protein. Owing to 
the power of a state-of-the-art LTR algorithm, Lamb-
daMART (Burges 2010), HPOLabeler achieved the best 
performance. The advantage of HPOLabeler was that it 

Table 2   Summary of computational methods for predicting HPO annotations of novel proteins

Method Data source(s) Integration strategy Hierar-
chically 
consistent

PhenoPPIOrth (Wang et al. 2013) PPI, orthology Weighting, normalization ✗
HPO2GO (Doğan 2018) GO annotation – ✗
HPOLabeler (Liu et al. 2020) PPI, GO annotation, sequence, domain Learning to rank ✗
PHENOstruct (Kahanda et al. 2015) PPI, GO annotation, literature, variants SSVM ✓
HTD-DAG (Notaro et al. 2017b) – – ✓
TPR-DAG (Notaro et al. 2017b)
DESCENS (Notaro et al. 2017a)
DeepPheno (Kulmanov and Hoehndorf 2020) PPI, gene expression Hierarchical multi-class multi-

label neural network
✓
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used the “Stacking” strategy (Wolpert 1992) in ensemble 
learning, which allowed the model to be scalable to mul-
tiple data sources.

Consistent Methods

Traditional algorithms for solving hierarchical multi-label 
classification problems mostly disassembled multi-labels 
into multiple single labels, and then applied independent 
binary classifiers to each label. However, such a flat clas-
sifier could not learn the inherent relationship between the 
HPO terms, and it would incur a serious label-imbalance 
problem especially for the leaf terms. Besides, flat learning 
usually made the prediction results hierarchically incon-
sistent, so the interpretability is lost. To address the issues, 
Kahanda et al. (Kahanda et al. 2015) proposed PHENOstruct 
to produce hierarchically consistent predictions of the query 
protein. Specifically, PHENOstruct learned a compatibility 
function that described the relationship between the given 
input and the structured output which referred to the possible 
consistent subgraphs in the HPO hierarchy. In their model, 
each protein was characterized by sets of features generated 
from PPI networks, GO, literatures, and variants. The combi-
nation of multiple data sources was achieved by joint kernels 
of structured support vector machine (SSVM). Despite the 
scalability of heterogeneous information sources, PHENO-
struct treated each source equally and did not consider the 
difference in the contribution to the performance. Therefore, 
in some cases, the low-quality information sources would 
degrade the final performance. Furthermore, their method 
was sensitive to the incomplete annotations and thus it led 
to the modest performance.

Kulmanov and Hoehndorf (Kulmanov and Hoehn-
dorf 2020) developed DeepPheno to guarantee consistency 
based on an ontology-aware hierarchical neural network. 
They employed a two-step procedure in which the model 
firstly took feature vectors derived from GO annotations and 
gene expression profiles as input and outputted preliminary 
predictions and then fixed inconsistency by the proposed 
hierarchical classification layer. The core idea of this layer 
is to assign the prediction score of a term with the maximum 
scores of all its descendants. However, the quality of final 
predictions was largely influenced by the predictive scores 
of bottom terms, while the performance of them was pos-
sibly undesirable due to the drastic label imbalance. Moreo-
ver, their model did not take PPI or other data sources into 
consideration and was not scalable to heterogeneous input 
features.

Instead of maintaining the hierarchical structure in the 
learning process, Notaro et al. (Notaro et al. 2017b) pro-
posed a series of adjustment strategies of the flat learning 
predictions. The workflow contained two stages: (1) flat 
learning that trained per-term classifiers and (2) hierarchical 

combination that modified the predictions to meet the con-
sistency. The first strategy was the hierarchical top-down 
(HTD-DAG) algorithm, which adjusted the predictions of 
each base learner from top to bottom, or more precisely, 
transmitted the predictive score to their children. Another 
ensemble algorithm was hierarchical true path rule (TPR-
DAG) which considered the opposite information flow from 
bottom to top. Owing to different strategies to select positive 
children and propagate positive predictions from leaves to 
root, a lot of variants were derived from the original TPR-
DAG algorithm. Additionally, to strengthen the contribution 
of the bottom HPO terms to the final ensemble result, so that 
the information would not decay too quickly with the upward 
transmission, they further extended TPR-DAG to DESCENS 
(Notaro et al. 2017a) which selected positive descendants 
rather than direct children. However, the hierarchical com-
bination relied on the quality of flat classifiers, and the final 
performance might decrease in the worst case.

Discussion

Predicting HPO annotations of novel protein is an extremely 
challenging task. To date, only a few methods can outper-
form the Naive method in terms of protein-centric evalu-
ation metrics in the CAFA challenge (Jiang et al. 2016). 
Jiang et al. (Jiang et al. 2016) imputed it to the large number 
of HPO terms associated with each protein and ineffective 
homology information. Recently, Liu et al. (Liu et al. 2020) 
revealed that the relatively low prediction performance 
might be attributed to incomplete annotations of new pro-
teins. Further research should be made into this area.

Due to the hierarchical structure of HPO, terms that are 
far away from the root represent more specific concepts and 
contain a lot of information. Thus, specific terms are more 
meaningful in biomedical research. However typically, those 
terms at the bottom level are annotated with few proteins. 
The relatively low frequency brings heavy class-imbalance 
to the machine learning models. As a result, the performance 
of specific HPO terms shows a decay compared with that of 
general terms. The computational methods that are able to 
alleviate the label imbalance are expected to provide predic-
tions for specific terms of high precision.

Despite the efforts in keeping the biological consistency 
of the prediction, the state-of-the-art performance is still 
achieved by the inconsistent method, HPOLabeler. The 
incomplete annotations or the low-quality of specific term 
predictors have a negative impact on the result. A better 
hierarchical learning strategy is expected to benefit the con-
sistent methods.

The effectiveness of PPI network in the HPO annota-
tion prediction problem has been recognized (Liu et al. 
2020; Kahanda et al. 2015). However, a majority of meth-
ods (Kahanda et al. 2015; Kulmanov and Hoehndorf 2020) 
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simply took the adjacency matrix of PPI network as the 
input feature. Liu et al. (Liu et al. 2020) proposed the Near-
est Neighbor method by exploring the direct neighborhood 
while ignoring the high-order proximity. Additionally, to 
our best knowledge, DeepPheno (Kulmanov and Hoehndorf 
2020) is the only one deploying the deep learning technique. 
With the emergence of graph neural network (GNN) (Deffer-
rard et al. 2016; Kipf and Welling 2017), numerous GNN-
based models have been proposed in many bioinformatics 
fields, such as disease gene prioritization (Han et al. 2019), 
polypharmacy side effects identification (Zitnik et al. 2018), 
and drug repurposing (Wang et al. 2020). The exploitation of 
GNN will hopefully boost the prediction performance from 
the more efficient exploration of the PPI network.

Methods for Identifying Missing HPO 
Annotations

Problem Formulation

Given m proteins � = {p1, p2,… , pm} and n HPO terms 
� = {t1, t2,… , tn} , the known associations between them 
are represented by a binary matrix �̃ . The entry �̃ij = 1 if 
protein pi is annotated by HPO term tj , otherwise �̃ij = 0 . 

However, �̃ij = 0 does not mean that there must be no rela-
tion between them, but only that this link has not been 
observed yet. Identifying missing HPO annotations is to 
find the HPO term tj that �̃ij = 0 but tj may potentially be 
related to pi . It is illustrated in Fig. 5. The problem setting 
is similar to collaborative filtering with implicit feedback in 
the recommendation system (Hu et al. 2008).

Existing Methods

The proposed methods for identifying missing HPO annota-
tions can be categorized into two groups: label propagation-
based and matrix completion-based. The basic assumption 
behind both two categories is that similar proteins tend to 
be related to the same HPO term. The main difference lies 
in how to measure the similarity and how to incorporate the 
similarity into the model. In the following, we review the 
existing algorithms summarized in Table 3.

Label Propagation‑Based Algorithms

Label propagation (LP) (Zhu et al. 2003; Zhou et al. 2003) 
is a classical semi-supervised learning algorithm that itera-
tively spread the labels from a few labeled nodes to a large 
number of unlabeled nodes through the connected graph 
structure. The rationality of LP lies in the smoothness 
assumption (Chapelle et al. 2006): if two samples are close 
in the input space, their labels should be the same. It is con-
sistent with the assumption made on the PPI network. Thus, 
the model will assign the HPO term of annotated protein to 
its strongly interacted unannotated partners. The prediction 
results can be obtained from the closed-form solution.

Petegrosso et al. (Petegrosso et al. 2017) extended vanilla 
LP to dual label propagation (DLP) by coupling smoothness 
term imposing smoothness in PPI network and another term 
imposing smoothness in the HPO hierarchy, which encour-
aged directly connected phenotypes to be associated with the 
same protein. Then they further introduced transfer learn-
ing to DLP and proposed tlDLP, which utilized GO annota-
tions as an auxiliary data source and let proteins with similar 

Fig. 5   An illustration of the prediction of missing HPO annotations 
problem. An entry of 1 indicates the association between the corre-
sponding protein and HPO term is known, and an entry filled with 
question mark means an unobserved relationship. The goal is to fig-
ure out which unidentified annotations may be true

Table 3   Summary of computational methods for identifying missing HPO annotations

Base Method Data source(s) HPO hierarchy Optimization

Label propagation LP (Zhu et al. 2003; Zhou et al. 2003) PPI – Closed-form solution
DLP (Petegrosso et al. 2017) PPI Raw HPO DAG L-BFGS-B
tlDLP (Petegrosso et al. 2017) PPI, GO annotation Raw HPO DAG L-BFGS-B

Matrix completion SMC (Lee and Seung 2000) – – ALS
AiProAnnotator (Gao et al. 2018) PPI Lin method ALS
HPOAnnotator (Gao et al. 2019) Multiple PPIs Lin method ALS
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functions be likely to be associated with similar phenotypes. 
It simultaneously reconstructed protein-HPO term associa-
tions matrix and protein-GO term associations matrix, and 
sought the agreement between predicted phenotype relation-
ships and function relationships through the overlapping 
proteins. Through L-BFGS-B optimization algorithm (Zhu 
et al. 1997), DLP and tlDLP achieved better performance 
than conventional LP.

Matrix Completion‑Based Algorithms

Standard matrix completion (SMC) (Lee and Seung 2000) 
is a typical collaborative filtering algorithm widely used in 
recommender systems. It decomposes the protein-phenotype 
associations matrix into the product of two lower dimen-
sionality factor matrices. The missing values are imputed 
through alternating least square (ALS). Existing matrix 
completion-based approaches imposed graph Laplacian 
regularizations in the latent space so as to capture intrinsic 
relationships between proteins and phenotypes and benefit 
the representation learning.

AiProAnnotator was proposed by Gao et  al. (Gao 
et al. 2018) which added graph Laplacians on both PPI 
network and HPO similarity to the objective function of 
SMC to find a better low-rank approximation solution. It 
is noteworthy that they adopted the semantic similarity of 
HPO terms proposed by Lin (Lin 1998) instead of raw HPO 
DAG. Consequently, the information was enabled to flow 
between the siblings or ancestor-descendant pairs more than 
strict parent-child pairs, in order that the model could find 
similar HPO terms more broadly and deeply. A single PPI 
network may provide limited information. To integrate mul-
tiple PPI networks, Gao et al. (Gao et al. 2019) subsequently 
proposed HPOAnnotator which extended the graph Lapla-
cian of AiProAnnotator on a single PPI network to multiple 
networks.

Discussion

The study of identifying missing HPO annotations is still 
in its infancy. The algorithms reviewed above mostly mini-
mized the difference between the predicted association 
matrix � and the known association matrix �̃ through the �2-
norm to implement the approximation process. Besides, they 
resorted to the graph Laplacian to impose smoothness on the 
protein side and/or phenotype side, so that similar proteins 
could be annotated with the same HPO term. Regarding the 
effectiveness of the PPI network, most algorithms included 
it as a measure of protein similarity. Some approaches also 
utilized more information sources, such as GO annotations, 
to further improve the performance. However, these methods 
leveraging heterogeneous data sources showed limited per-
formance improvements compared to the methods that used 

only one auxiliary data source. We expect more studies in 
exploring the better integration manner of multiple features 
in the following years.

The above models dwelt in discovering the linear rela-
tionships between proteins and HPO terms, and could not 
capture complex nonlinear relationships. Moreover, these 
models could only capture low-order topological infor-
mation from PPI and/or HPO term similarity network(s), 
and ignored the high-order connectivity. To the best of our 
knowledge, no researchers have proposed models based on 
deep learning for this task. Recently, graph convolutional 
network (GCN) (Kipf and Welling 2017) opens a new para-
digm for handling graph-based data in a deep learning fash-
ion, and achieves leading performance in many link predic-
tion tasks in biomedical networks (Han et al. 2019; Zitnik 
et al. 2018; Wang et al. 2020). The performance improve-
ment would be promising if applying the similar GCN-based 
architecture to deal with the above issues.

Completing the missing HPO annotations can be seen as 
a process of extending downward from the leaf nodes of cur-
rent annotations towards more specific terms, thus the true-
path-rule should also be followed. However, neither label 
propagation-based nor matrix completion-based algorithms 
could satisfy the consistency. A biological consistent predic-
tion algorithm remains to be explored.

Methods for Phenotype Protein 
Prioritization

Problem Formulation

Suppose a set of m proteins � = {p1,… , pl, pl+1,… , pm} , 
where the first l proteins have been annotated with HPO term 
t. The task is to assign likelihood scores to the remaining 
u = m − l unannotated proteins and suggest their potential to 
be truly associated with the interested phenotype t (Fig. 6). 
From the perspective of machine learning, we can formulate 
it as a binary classification problem.

Existing Methods

As far as we know, the phenotype protein prioritization is 
still a little-tapped problem. Previous efforts mainly focused 
on ranking candidate proteins with respect to a specific GO 
term. Existing algorithms can be summarized into two cat-
egories according to the way of representation learning on 
the protein networks: (1) unsupervised learning methods 
and (2) semi-supervised learning methods. The details are 
provided in Table 4.
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Unsupervised Methods

The general workflow of unsupervised methods is to first 
learn the embeddings of the proteins from the input asso-
ciation networks via unsupervised model, and then use the 
derived embeddings to train a flat classifier for each GO term 
by a classical supervised learning algorithm, such as support 
vector machine (SVM).

Mashup (Cho et al. 2016) first analyzed the diffusion state 
in each network by the random walk with restart (RWR) 
to characterize the topological context. Low-dimensional 
embeddings of each node were obtained by jointly minimiz-
ing the difference between the observed topological patterns 
and the parameterized-multinomial logistic distributions for 
all networks simultaneously. The learned compact represen-
tations were then plugged into downstream machine learning 
models to derive function predictions. However, the integra-
tion of heterogeneous networks through multinomial logis-
tic models required high computational complexity, which 
made it infeasible to large-scale networks.

While Mashup adopted a traditional machine learning 
technique to learn the low-dimensional embeddings, most 
previous works obtained representations from the deep 

auto-encoders. The advantage of deep architecture is that 
the model can preserve the complex and non-linear net-
work topological structure.

Gligorijevic et al. (Gligorijevic et al. 2018) proposed 
deepNF which fused multiple interaction networks via 
multimodal deep auto-encoders. In the first step, they ran 
RWR and constructed positive pointwise mutual informa-
tion (PPMI) matrix to convert network structural infor-
mation into initial high-dimensional node representations. 
A multimodal auto-encoder was then applied to integrate 
heterogeneous networks and extract high-level embeddings 
from the bottleneck layer. The learned compact feature 
representations were finally fed into off-the-shelf SVM 
classifiers for function prediction.

The information fusion of multi-networks in deepNF 
was implemented by dense fully connected layers, ignor-
ing the correlation across different networks. Xue et al. 
(Xue et  al.  2019) revised traditional auto-encoders to 
incorporate prior constraints. Specifically, the authors 
assumed that the nodes with must-link constraints were 
highly similar and closer in the latent space, while the 
nodes with cannot-link constraints were highly dissimi-
lar and more distant in the low-dimensional space. These 
constraints were modeled as the penalty term in the loss 
function of the auto-encoder. DeepMNE chained multiple 
revised auto-encoders together, where the constraints of 
each network extracted from the previous auto-encoder 
were merged and applied to the next auto-encoder as the 
prior information. The representations derived from the 
last auto-encoder were used to train the SVM classifi-
ers for protein function prediction. Soon afterward, they 
proposed a novel convolutional neural network (CNN) as 
the downstream classifier (Peng et al. 2021), which con-
sisted of three components including convolutional lay-
ers, max-pooling layer, and the final fully connected layer. 
DeepMNE stacked multiple auto-encoders and iteratively 
extracted constraints one by one, thereby the model was 
time and memory expensive comparing with deepNF. 
Moreover, the model was sensitive to the noise because 
the error in constraints of the first few layers could keep 
accumulating and misled the node representation learning.

Fig. 6   Illustration of phenotype protein prioritization problem. Given 
a HPO term t, the model assigns likelihood of protein involvement in 
generating this phenotype and spots the potential proteins which may 
be truly associated with t 

Table 4   Summary of 
computational methods for 
candidate protein prioritization 
with respect to a particular 
function

Method Mode Downstream Network Technique

Mashup (Cho et al. 2016) Unsupervised SVM Multiple Traditional
deepNF (Gligorijevic et al. 2018) Unsupervised SVM Multiple Deep learning
DeepMNE-SVM (Xue et al. 2019) Unsupervised SVM Multiple Deep learning
DeepMNE-CNN (Peng et al. 2021) Unsupervised CNN Multiple Deep learning
BIONIC (Forster et al. 2021) Unsupervised LR Multiple Deep learning
RANKS (Valentini et al. 2016) Semi-supervised – Single Traditional
GeneMANIA (Mostafavi et al. 2008; 

Mostafavi and Morris 2010)
Semi-supervised – Multiple Traditional
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The network structure information was not introduced 
during the feature extraction but only expressed in the input 
features generated by RWR. Recently, Forster et al. (Forster 
et al. 2021) designed a GNN-based auto-encoder, named 
BINOIC. The network-specific features were first learned 
from each graph convolutional encoder by aggregating 
neighbor features and low-dimensional projection. Then 
various learned features were combined as the integrated 
representations. The decoder restored the embeddings to the 
recovered network adjacency matrices, and the model mini-
mized the differences between input and recovered networks 
to optimize. The integrated embeddings were taken as the 
input of logistic regression for the downstream task. Owing 
to the application of GNN, BIONIC was capable of captur-
ing not only low-order proximity but also high-order con-
nectivity. Therefore, the network topology was sufficiently 
explored when iteratively updating the node representations. 
But if stacking too many GNN layers, the performance might 
drop which could partly be attributed to the over-smoothing 
phenomenon (Li et al. 2018, 2019), thereby hindering the 
discovery of complex hidden patterns from the graph data.

Semi‑supervised Methods

The cornerstone of semi-supervised methods is still the 
broadly recognized smoothness assumption: proteins with 
strong interaction possibly share the same function. There-
fore, it is reasonable to acquire the label from its annotated 
neighbors.

RANKS (Valentini et al. 2016) was a general algorithmic 
scheme for prioritizing candidate nodes with respect to a 
given property in a biological network, which included a 
global learning strategy and a local learning strategy. The 
author proposed to use a kernel (e.g. a random walk ker-
nel) to represent the overall topological structure of the net-
work to accomplish global learning. The generated kernel 
extended simple connectivity between adjacent nodes to the 
high-order proximity. Then RANKS adopted a local learning 
strategy that ranked the candidate nodes with a specific scor-
ing function considering only the annotated direct neighbor-
hood and the edge weights to them in the kernel matrix. For 
instance, they implemented four types of scoring functions: 
nearest-neighbors score, k-nearest-neighbors score, average 
score, and weighted sum with linear decay score. However, 
RANKS could provide the likelihood between candidate 
protein and its neighbors with known function annotations 
only on a single network. If one wanted to exploit multiple 
interaction networks, it was necessary to integrate them into 
a composite network in advance. Thus it might lose part of 
information in the original separate network, making the 
characterization of the interaction strength biased.

GeneMANIA (Mostafavi et al. 2008) integrated multiple 
networks based on ridge regression and predicted protein 

function through label propagation. The first step is to gen-
erate a composite functional association network from the 
weighted sum of individual networks. To obtain the network 
weights, they proposed a ridge regression model that mini-
mized the difference between the composite network and 
the target network constructed from the function annota-
tions. Then it predicted GO annotation by applying label 
propagation on the single composite network. Differing from 
conventional binary classification problems which only had 
positive and negative labels, GeneMANIA added the third 
label for the proteins with unknown functions. In fact, those 
unlabeled samples were exactly the proteins to be predicted. 
However, facing the heavy label imbalance in many GO 
categories, the process of assigning network weights was 
prone to overfitting. To address the issues, Mostafavi and 
Morris (Mostafavi and Morris 2010) proposed a novel net-
work combination strategy named SW. In particular, unlike 
GeneMANIA, which calculated network weights for each 
GO term separately, SW optimized the network weights on 
a set of GO terms (e.g. GO hierarchy and term frequency) 
simultaneously. The following protein function prediction 
procedure remained the same. Nevertheless, the network 
weights assignment was independent of the function pre-
diction. We believed that there still existed an improvement 
room if combining two steps to jointly learn the compos-
ite network specifically for functional inference. Although 
GeneMANIA was available to heterogeneous networks, the 
prediction process was still carried on a single integrated 
network generated by adaptive weighted averaging. There-
fore, the information loss could also incur when projecting 
various networks onto a single network representation.

Discussion

Biological networks encode valuable information, but each 
contains its own individual biases and noise. These issues 
could be overcomed by proper integration, as multiple net-
works are complementary to each other. Most unsupervised 
learning methods are focused on network fusion via auto-
encoders, and the produced compact embeddings are too 
general to possess enough discrimination ability for the spe-
cific task. For the semi-supervised learning methods, a lot 
of them could not make predictions without prior network 
combinations which might lead to substantial information 
loss. An end-to-end semi-supervised architecture is expected 
to make up for the above two shortcomings. Despite the 
power of GCN (Kipf and Welling 2017) in learning node 
representation from biological networks, BIONIC still suf-
fers from the intractable over-smoothing problem. Consider-
ing the recent progress towards deep GCN model (Li et al. 
2019; Chen et al. 2020), more efforts can be made to cope 
with these issues.
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While quite substantial literature has emerged on the 
function prediction, the phenotype protein prioritization is 
still under-researched. Although the methodology can be 
transferred to the phenotype prediction domain in a straight-
forward manner, it is necessary to design a dedicated algo-
rithm for this task. We believe that more and more algo-
rithms will emerge in this field in the future.

Potential Topics

Selection of Negative HPO Annotations

Negative examples refer to the proteins that are known not 
to be associated with the given labels. The negative annota-
tions are usually rarely recorded in the proteome databases. 
For example, in the HPO annotation released in October 
2020, only about 1500 negative annotations of diseases were 
stored, which was far from the scale of positive annotations. 
This situation arises possibly due to the experimental limi-
tations: experimental assays are usually applied to a single 
protein, and the protein function may depend on the con-
text, making negative statements/labels quite uncertain, and 
leading to very few confirmed negative examples. However, 
for the vast majority of computational annotation predic-
tion tools using machine learning, the selection of negative 
examples has a significant impact on the final performance: 
they usually require enough positive and negative examples 
to train an accurate predictor. Most of the existing methods 
randomly selected negative examples from unlabeled pro-
teins or treated all unlabeled proteins as negative examples, 
which could lead to false negatives in the training set. There-
fore, a well-designed negative example selection strategy is 
of great benefit to improving the prediction performance of 
computational tools.

The current negative example selection algorithms were 
all in the context of protein function prediction. In fact, simi-
lar problems have long been studied in the field of text clas-
sification and have been named positive-unlabeled learning 
(PU learning) (Bekker and Davis 2020). Zhao et al. (Zhao 
et al. 2008) proposed AGPS based on two-stage PU learn-
ing to automatically generate negative examples from unla-
beled data in the learning procedure. Youngs et al. (Youngs 
et al. 2013) proposed ALBias to choose negative exam-
ples by a parameterizable Bayesian prior computed from 
observed annotations, which could be viewed as a gener-
alization of passive two-stage PU learning. However, the 
ontology structure was overlooked in these methods. To this 
end, Youngs et al. (Youngs et al. 2014) extended ALBias 
to SNOB by applying true-path-rule to the annotations to 
incorporate the hierarchical structure. In addition, they bor-
rowed the idea from the text mining and introduced latent 
Dirichlet allocation (LDA) to the proposed model NETL 

(Youngs et al. 2014) to select negative examples according 
to the learned latent topic distributions. However, there was 
a pitfall in selecting negative examples based on currently 
incomplete annotations. Fu et al. (Fu et al. 2016a) proposed 
NegGOA to mitigate the impact of potentially missing anno-
tations. Then they further considered a small number of 
available negative annotations and proposed ProPN (Fu et al. 
2016b) which modeled the correlations between positive and 
negative examples as a direct signed hybrid graph. Yu et al. 
(Yu et al. 2017a) proposed IFDR based on dimensionality 
reduction with the diffusion component analysis and single 
value decomposition.

While progress has been made in the field of protein func-
tion prediction, the selection of negative HPO annotations 
is still an untouched area. At present, few negative annota-
tions have been recorded in the HPO database. Identifying 
irrelevant annotations with aid of ontology structure and 
auxiliary data sources has the potential for improving the 
performance of computational tools and should be one of 
the research spotlights in this area.

Detecting HPO Misannotations

Some HPO annotations are automatically extracted from 
the OMIM database through a text mining program. As a 
result, several incorrectly recognized phenotypic abnormali-
ties were introduced into the database, resulting in incorrect 
annotations. For instance, in HPO annotations released in 
August 2020, the genes that were associated with Sinusi-
tis (HP:0000246) included ARMC4, BLM, CCDC114, 
CCDC151, and TTC25. However, these related genes were 
all removed in the latest release. Existing prediction meth-
ods assumed that the known annotations were accurate, and 
ignored the influence of misannotations on the prediction 
results. Moreover, the noisy annotations might mislead sub-
sequent research and applications in multiple fields such as 
clinical diagnosis and treatment. Therefore, detecting HPO 
misannotations is needed to improve the data quality of the 
current annotations.

Nevertheless, related work was limited and focused on 
predicting noisy GO annotations. Some of the methods 
(Deegan et al. 2010; Wei et al. 2020) analyzed the rational-
ity of function annotation based on the assumption that some 
protein functions were species-specific. Other methods like 
NoisyGOA (Lu et al. 2016), NoGOA (Yu et al. 2017b), and 
NFA (Lu et al. 2018) applied machine learning to infer GO 
misannotations, considering taxon, ontology structure, and 
evidence codes.

Despite progress in detecting noisy GO annotations, no 
effort has been made towards HPO misannotations. In view 
of the negative impact of inaccurate annotations, exploring 
an accurate and efficient detecting algorithm will be a direc-
tion worthy of in-depth study.
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Predicting Protein‑Phenotype Associations Under 
the Specific Mechanisms

Tissue-selective gene expression is an important mech-
anism by which the same genome can generate differ-
entiated phenotypes among tissues (Bentz et al. 2019). 
Exploring the pathologic consequences of human genes 
in specific tissues is typically more essential for insights 
into disease diagnostics and therapeutics (Barbeira et al. 
2018; Hekselman and Yeger-Lotem 2020). The abnormal-
ity of the genes in different tissues may incur different 
diseases and phenotypes. For example, Proprotein Con-
vertase Subtilisin/kexin Type 9 (PCSK9) is a member of 
the subtilisin family of PCs that encodes a neural apop-
tosis-regulated convertase 1 (Horton et al. 2007). It spe-
cifically enriches in a number of tissues and is involved 
in lung (Xu et al. 2017), liver (Lee et al. 2019), and brain 
diseases (Rousselet et al. 2011). One of the key points 
of predicting tissue-specific pathologic consequences of 
proteins is the feature representation. Considering the 
effectiveness of PPI network, it would be important to 
extend the integrated PPI network on an organismal level 
to multiple tissue-specific networks (Zitnik and Leskovec 
2017; Guan et al. 2012). Elucidating the mechanisms of 
tissue specificity in human diseases is quite challenging, 
and still under-researched. The efforts towards this field 
can be particularly valuable to fill the blank.

Post-translational modification (PTM) is another 
essential mechanism in protein biosynthesis, whereby the 
addition, folding, or removal of functional groups leads to 
drastic alterations in protein function (Mann and Jensen 
2003; Seo and Lee 2004). Defects in PTMs have been 
linked to many human disorders, highlighting the impor-
tance of understanding PTMs in the study of disease treat-
ment and prevention (Martin et al. 2011; Anbalagan et al. 
2012; Wang et al. 2014). For example, protein caveolin-1 
encoded by gene CAV1 is a scaffolding protein within 
caveolar membranes (Vargas et al. 2002). The role of 
phosphorylation in the relationships between caveolin-1 
and ovarian, breast, rectal, and colon cancers (Wiechen 
et al. 2001; Joshi et al. 2008) has been gradually revealed. 
Recently, an integrative database of human PTM-disease 
associations PTMD was developed which collected thou-
sands of manually curated disease-associated PTM events 
(Xu et al. 2018). However, considering the complexity 
of PTM, the role of post-translational protein modifica-
tions play in shaping phenotypical traits is still poorly 
understood. More efforts are welcomed to uncover the 
relationship between PTMs and phenotypes, and can be 
helpful for a better appreciation for the disease develop-
ment, diagnosis, and clinical therapy.

Conclusion

Uncovering the human protein-phenotype associations has 
long been one of the research hotspots in phenomics study. 
The emergence of HPO provided a comprehensive logi-
cal standard to describe various phenotypic abnormalities 
encountered in human disorders and facilitated the compu-
tational analysis of their genetic causes. In this paper, we 
reviewed computational methods for three different tasks 
including predicting HPO annotations of a novel protein, 
identifying missing HPO annotations, and phenotype protein 
prioritization.

Despite their promising results, there are several unsolved 
challenges remained. In summary, we highlight the follow-
ing key issues: 

(1)	 Specific terms While the specific terms carry more 
valuable information, the prediction performance of 
them is typically undesirable, which is partially caused 
by heavy label imbalance. More efforts are needed to 
explore an efficient strategy to mitigate the impact of 
class-imbalance.

(2)	 Consistency The biological consistency is not preserved 
in the prediction made by most of the existing meth-
ods. Notwithstanding some efforts towards consistent 
prediction, their performance is still inferior. Develop-
ing models that provide consistent predictions without 
losing performance remains a promising issue.

(3)	 Data sources A lot of research has demonstrated the 
effectiveness of PPI networks. However, has the infor-
mation hidden in the networks been fully exploited? 
Can we find other fruitful information sources that may 
boost the prediction performance? How to integrate 
heterogeneous features more effectively? These ques-
tions are left for future research.

Additionally, we pointed out some potential topics including 
the selection of negative annotations and detecting misanno-
tations. These open problems are understudied in the field of 
phenotype prediction and will be interesting research direc-
tions worth exploring.
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