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Abstract

Objective: De-centralized data analysis becomes an increasingly preferred option in the 

healthcare domain, as it alleviates the need for sharing primary patient data across collaborating 

institutions. This highlights the need for consistent harmonized data curation, pre-processing, and 

identification of regions of interest based on uniform criteria.

Approach: Towards this end, this manuscript describes the Federated Tumor Segmentation 

(FeTS) tool, in terms of software architecture and functionality.

Main Results: The primary aim of the FeTS tool is to facilitate this harmonized processing and 

the generation of gold standard reference labels for tumor sub-compartments on brain magnetic 

resonance imaging, and further enable federated training of a tumor sub-compartment delineation 

model across numerous sites distributed across the globe, without the need to share patient data.

Significance: Building upon existing open-source tools such as the Insight Toolkit (ITK) and 

Qt, the FeTS tool is designed to enable training deep learning models targeting tumor delineation 

in either centralized or federated settings. The target audience of the FeTS tool is primarily 

the computational researcher interested in developing federated learning models, and interested 

in joining a global federation towards this effort. The tool is open sourced at https://github.com/

FETS-AI/Front-End.
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1. Introduction

Accurate delineation of solid tumors is a critical first step towards furthering downstream 

analyses towards predicting various clinical outcomes (D. A. Gutman et al. 2013; 

Mazurowski, Desjardins, and Malof 2013; Jain et al. 2014; Bonekamp et al. 2015; Macyszyn 

et al. 2015; Bakas, Shukla, et al. 2020), monitoring progression patterns (Akbari, Macyszyn, 

Da, R. L. Wolf, et al. 2014; Akbari, Macyszyn, Da, Bilello, et al. 2016; Akbari, Rathore, 

et al. 2020), and associating imaging patterns with cancer molecular characteristics (Bakas, 

Akbari, J. Pisapia, et al. 2017; Bakas, Rathore, et al. 2018; Akbari, Bakas, et al. 2018; 

Binder et al. 2018; Fathi Kazerooni et al. 2020). Of special note is the problem of 

automating delineation of glioma sub-compartments, which is a particularly challenging 

problem, primarily due to their inherent heterogeneity in shape, extent, location, and 

appearance (Inda, Bonavia, Seoane, et al. 2014). Performing this process manually is 

tedious, prone to misinterpretation, human error, and observer bias (Deeley et al. 2011), but 

importantly leads to non-reproducible annotations with intra- and inter-rater variability up 

to 20% and 28%, respectively (Mazzara et al. 2004; Pati, Ruchika Verma, et al. 2020). The 

Brain Tumor Segmentation (BraTS) challenge (Menze et al. 2014; Bakas, Akbari, Sotiras, et 

al. 2017; Bakas, Reyes, et al. 2018; Baid, Ghodasara, et al. 2021) has been instrumental 

to advance automated delineation of glioma. However, the usability of the algorithms 

developed as part of the challenge is an open question. To promote wider application of the 

methods developed for BraTS and facilitate further research, the public BraTS algorithmic 

repository was created to house them as containers. However, since there is no graphical 

interface, their results and various fusion approaches (which has been shown to perform 

better than expert annotators (Menze et al. 2014; Bakas, Reyes, et al. 2018)) are still out of 

reach for clinical researchers.

The current environment of open-source software tools targeting medical imaging is highly 

fragmented, with many users looking at general-purpose tools such as MevisLab (Link et 

al. 2004), Medical Imaging Interaction Toolkit (MITK) (I. Wolf et al. 2005), MedInria 

(Toussaint, Souplet, and Fillard 2007), 3D-Slicer (Kikinis, Pieper, and Vosburgh 2014), 

the Cancer Imaging Phenomics Toolkit (Rathore et al. 2017; Davatzikos, Rathore, et al. 

2018; Pati, A. Singh, et al. 2019), and ITK-SNAP (Yushkevich et al. 2006), among many 

others. This issue is further exacerbated in tools that can perform deep learning (DL), 

are locally deployable, and provide an end-to-end solution that includes harmonized data 

pre-processing. Example of these DL tools are: NiftyNet (Gibson et al. 2018), DeepNeuro 

(Beers et al. 2020), ANTsPyNet (Tustison, Cook, et al. 2020), DLTK (Pawlowski et al. 

2017), and the Generally Nuanced Deep Learning Framework (GaNDLF) (Pati, Siddhesh 

P. Thakur, et al. 2021). Importantly, none of these DL tools have a proper graphical 

interface to allow for manual quality control of pre-processed data nor allow definition 

of harmonized pre-processing pipelines for an entire population cohort. The ability to define 

and manage such pipelines is a critical first step in any cohort-based computational analysis, 
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and particularly in complex federated learning studies (M. J. Sheller, Reina, et al. 2018; M. 

J. Sheller, Edwards, et al. 2020).

Increased amounts and diversity of datasets available for training machine learning (ML) 

models are essential to produce appropriately generalizable models (Obermeyer and 

Emanuel 2016). This has so far been addressed by the paradigm of sharing data to 

a centralized location, spearheaded by use-inspired consortia (Armato III et al. 2004; 

Thompson et al. 2014; Consortium 2018; Bakas, Ormond, et al. 2020; Davatzikos, 

Barnholtz-Sloan, et al. 2020; Habes et al. 2021). However, this approach is not scalable 

due to various legal and technical concerns (M. J. Sheller, Edwards, et al. 2020; Rieke et al. 

2020). Federated Learning (FL) offers an alternative to this paradigm, by facilitating training 

of ML models by sharing ML model information among participating sites (M. J. Sheller, 

Reina, et al. 2018; M. J. Sheller, Edwards, et al. 2020; Rieke et al. 2020; Roth et al. 2020).

Building upon our existing efforts, in this manuscript we present the Federated Tumor 

Segmentation (FeTS) tool, which aims at i) enabling harmonized data curation of population 

cohorts for computational analyses, ii) bringing various pre-trained challenge-winning 

algorithms and their fusion closer to clinical experts, iii) provide a graphical interactive 

interface to allow for refinements of the fused outputs, and iv) empower users to perform 

DL training in either a localized or federated manner, the latter being done without sharing 

patient data. In the following sections, we will describe the methods used by the FeTS tool, 

the use cases it has facilitated so far, and our concluding remarks.

2. Methods

Although the FeTS tool has been designed to be agnostic to the use-case, in the rest of the 

manuscript we have focused on the design and application of the FeTS tool in brain tumors.

2.1. Data

The starting point for FeTS users would be the identification of local multi-parametric 

magnetic resonance imaging (mpMRI) scans for each subject included in their study. The 

specific mpMRI scans considered for the case of brain gliomas, follow the convention of 

the BraTS challenge, and comprise i) native T1-weighted (T1), ii) Gadolinium-enhanced 

T1 (T1Gd), iii) native T2-weighted (T2), and iv) T2-Fluid-Attenuated-Inversion-Recovery 

(T2-FLAIR) sequences, characterizing the apparent anatomical tissue structure (Shukla et 

al. 2017). The FeTS tool deals specifically with adult-type diffuse glioma (Louis et al. 

2021). In terms of radiologic appearance, glioblastomas typically comprise of 3 main sub-

compartments, i) the “enhancing tumor” (ET), which represents the vascular blood-brain 

barrier breakdown within the tumor, ii) the “tumor core” (TC), which includes the ET and 

the necrotic (NCR) part, and represents the surgically relevant part of the tumor, and iii) 

the “whole tumor” (WT), which is defined by the union of the TC and the peritumoral 

edematous/infiltrated tissue (ED), and represents the complete tumor extent relevant to 

radiotherapy.
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2.2. Modes of Operation

The functionality of the FeTS Tool can be summarized by 4 modes of operation, 

to facilitate an end-to-end ML-driven solid tumor study: i) data pre-processing, ii) 

automated segmentation using multiple pre-trained models, iii) interactive tools for manual 

segmentation refinements towards generating gold standard labels, and iv) ML model 

training.

2.2.1. Data Pre-processing for Downstream Analyses—The considered mpMRI 

scans are typically stored in the Digital Imaging and Communications in Medicine 

(DICOM) format (Pianykh 2012; Kahn et al. 2007; Mustra, Delac, and Grgic 2008). Prior to 

start utilizing these scans, the user needs to curate their data according to a specific folder 

structure, as described in the FeTS tool’s documentation ‡. Once the curated data conform to 

the provided definitions, the user can use this folder structure as input to the FeTS tool. The 

DICOM scans are then converted to the Neuroimaging Informatics Technology Initiative 

(NIfTI) file format (Cox et al. 2004). This process ensures that the acquired MRI scans can 

be easily parsed during each computational process defined in the FeTS Tool. The added 

benefit to this file conversion step is that all patient-identifiable metadata are removed from 

the DICOM scans’ header (X. Li et al. 2016; White, Blok, and Calhoun 2020). Each of these 

converted NIfTI scans are then registered to a common anatomical space, namely the SRI24 

atlas (Rohlfing, Zahr, et al. 2010) §, to ensure a harmonized data shape ([240, 240, 155]) and 

voxel resolution (1mm3), thereby enabling in-tandem analysis of the mpMRI scans.

Inhomogeneity of the magnetic field is one of the most common issues observed in MRI 

scans (Song, Zheng, and Y. He 2017). In (Bakas, Akbari, Sotiras, et al. 2017), it has been 

shown that the use of non-parametric, non-uniform intensity normalization to correct for 

these magnetic bias fields (Sled, Zijdenbos, and Evans 1998; Tustison, Avants, et al. 2010) 

obliterates the MRI signal in T2-FLAIR scans, and particularly in the regions defining the 

abnormal T2-FLAIR signal. In this tool, we have taken advantage of this adverse effect and 

used the bias field-corrected scans to generate a more optimal rigid registration solution 

across the mpMRI scans. Specifically, the bias field-corrected scans are registered to the 

T1Gd scan, which itself is rigidly registered to the SRI24 atlas, resulting in 2 sets of 

transformation matrices per MRI scan. These matrices are then aggregated to a single matrix 

defining the transformation of each MRI scan from their original space to the atlas. We 

then apply this single aggregated matrix to the original NIfTI scans (i.e., those prior to 

the application of the bias field correction) to maximize the fidelity of the scans that will 

be used in further computational analyses. Following the co-registration of the different 

mpMRI scans to the template atlas, automated brain extraction (i.e., removal of all non-brain 

tissue from the image, including neck, fat, eyeballs, and skull) is performed. This allows 

further computational analyses while avoiding any potential face reconstruction/recognition 

(Schwarz et al. 2019). This brain extraction step is done using the Brain Mask Generator 

(BrainMaGe) ∥ tool (Siddhesh P Thakur et al. 2019; S. Thakur et al. 2020), which was 

specifically developed to address brain extraction in the presence of diffuse glioma by 

‡ https://fets-ai.github.io/Front-End/ 
§ https://www.nitrc.org/projects/sri24/ 
∥ https://github.com/CBICA/BrainMaGe 
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considering the brain shape as a prior, resulting in it being agnostic to the specific sequence/

modality as input.

2.2.2. Automated Segmentation—This mode of operation provides users the ability 

to generate automated delineations of the tumor sub-compartments from pre-trained models. 

Specifically for the glioma use case, three top-performing BraTS methods are incorporated, 

trained on the training cohort of the BraTS challenge (Menze et al. 2014; Bakas, Akbari, 

Sotiras, et al. 2017; Bakas, Reyes, et al. 2018; Baid, Ghodasara, et al. 2021). These methods 

are i) DeepMedic (Kamnitsas et al. 2017), ii) DeepScan (McKinley, Meier, and Wiest 2018), 

and iii) nnU-Net (Isensee et al. 2021). Further to the generation of segmentations from these 

three individual pre-trained models, various label fusion strategies are also provided through 

the FeTS tool, to generate a single decision segmentation label from the three outputs 

avoiding the systematic errors of each individual pre-trained model (Pati and Bakas 2021). 

The exact label fusion approaches considered are: i) standard voting (Rohlfing, Russakoff, 

and Maurer 2004), ii) Simultaneous Truth And Performance Level Estimation (STAPLE) 

(Warfield, Zou, and Wells 2004; Rohlfing and Maurer Jr 2005), iii) majority voting (Huo 

et al. 2015), and iv) Selective and Iterative Method for Performance Level Estimation 

(SIMPLE) (Langerak et al. 2010). Although the fused output segmentation label is expected 

to provide a reasonable approximation to the actual reference standard label, manual review 

by expert neuroradiologists is still recommended, as further refinements might be required 

prior to final approval.

2.2.3. Manual Refinements Towards Reference Standard Labels—The 

automatically generated annotations are meant to be used as a good approximated label 

on which manual refinements are needed by radiology experts following a consistently 

communicated annotation protocol. As defined in the BraTS challenge (Menze et al. 2014; 

Bakas, Akbari, Sotiras, et al. 2017; Bakas, Reyes, et al. 2018; Baid, Ghodasara, et al. 2021), 

the reference annotations (also known as ground truth labels) comprise of the enhancing part 

of the tumor (ET - label ‘4’), the peritumoral edematous/infiltrated tissue (ED - label ‘2’), 

and the necrotic tumor core (NCR - label ‘1’). ET is described by areas with both distinctly 

and faintly avid enhancement on the T1Gd scan, and is considered the active portion of the 

tumor. NCR appears hypointense on the T1Gd scan and is the necrotic/pre-necrotic part of 

the tumor. ED is defined by the abnormal hyperintense signal envelope on the T2-FLAIR 

scans and represents the peritumoral edematous and infiltrated tissue.

2.2.4. ML Model Training—The FeTS tool intends to utilize the data generated by the 

previous 3 modes of operation in 2 ways: i) to train a local collaborator model, using just the 

local data, or ii) participate in a federation with multiple sites to contribute the knowledge of 

the local collaborator data in the global consensus model, enabled by OpenFL (Reina et al. 

2021). If a ML model is trained as part of a federation, no information about the actual data 

ever gets sent, but only each model update parameters from the collaborating sites are used 

to aggregate into a single global consensus model.

2.2.5. Model Architecture—Considering the impact that the potential clinical 

translation of the global consensus model could have, we did not follow the paradigm of 
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training an ensemble of models (as is typically reported in related literature Menze et al. 

2014; Bakas, Akbari, Sotiras, et al. 2017; Bakas, Reyes, et al. 2018; Baid, Ghodasara, et 

al. 2021), due to the additional computational burden the execution of multiple models 

introduce. We instead trained a single model architecture during the federated training, 

and specifically an off-the-shelf implementation of the popular 3D U-Net with residual 

connections (3D-ResUNet) (Ronneberger, Fischer, and Brox 2015; Çiçek et al. 2016; K. 

He et al. 2016; Drozdzal et al. 2016; Bhalerao and S. Thakur 2019). An illustration of the 

model architecture can be seen in Fig. 1. The network consists of 30 base filters, with a 

learning rate of lr = 5 × 10−5, optimized using the Adam optimizer (Kingma and Ba 2014). 

The generalized DSC score (Eq. 1) (C. H. Sudre et al. 2017; Zijdenbos et al. 1994) was 

calculated on the absolute complement of each tumor sub-compartment independently, as 

the loss function to drive the model training.

DSC = 2 RL ⊙ PM 1
RL 1 + PM 1

(1)

where RL serves as the reference standard label, PM is the predicted mask, ⊙ is the 

Hadamard product (Horn 1990) (i.e., component wise multiplication), and ∥x∥1 is the L1-

norm (Barrodale 1968), i.e., sum of the absolute values of all components).

Previous work (Isensee et al. 2021) has shown that such mirrored DSC loss is superior in 

capturing variations in smaller regions. The final layer of the model is a sigmoid layer, 

providing three channel outputs for each voxel in the input volume, i.e., one output channel 

per tumor sub-compartment. While we used the floating point DSC (Shamir et al. 2019) 

during the training process, the generalized DSC score was calculated using a binarized 

version of the output (against the threshold 0.5) for the final prediction.

2.3. Open-source Software Practices

The entire source code is open-source (detailed software architecture diagram is shown in 

Fig. 2) and automated periodic security analysis and static code checks of the main code 

repository is done with public notification of alerts using Dependabot ¶ (Alfadel et al. 2021). 

Continuous integration is automatically performed for every pull request, with multiple 

automated checks and code reviews conducted prior to every code merge. All of these steps 

contribute in ensuring that information security teams of collaborating sites are comfortable 

with executing the FeTS tool on-premise.

3. Use Cases

3.1. The Largest to-date Real-World Federated Learning Initiative

The FeTS tool has enabled the largest to-date federation, utilizing data across 71 sites 

(Fig. 3), focusing on training a single consensus model to automatically delineate tumor 

sub-regions, without sharing patient data, and thereby overcoming legal, privacy, and data-

ownership challenges. Specifically, the FeTS tool aimed at i) enabling clinical experts and 

researchers to work with the state-of-the-art segmentation algorithms (Kamnitsas et al. 2017; 

¶ https://github.com/dependabot 
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McKinley, Meier, and Wiest 2018; Isensee et al. 2021) and label fusion approaches (Pati and 

Bakas 2021), which directly resulted in easier quantification of tumor sub-compartments and 

the generation of reference standard labels in unseen radiologic scans.

This FeTS initiative followed a staged approach. The initial stage was conducted over a 

smaller consortium of 23 sites with data of 2, 200 patients (Baid, Pati, et al. 2021; Pati, 

Baid, Edwards, et al. 2022). The consensus model developed from this initial federation was 

evaluated on unseen validation data from each collaborator and showed an average model 

performance improvement of 11.1%, when compared to a model trained on the publicly 

available BraTS data (n = 231) (Baid, Pati, et al. 2021). Comparing against the model trained 

on publicly available data, the final consensus model (developed using 6, 314 patients) 

produced an improvement of 33% to delineate the surgically targetable tumor, and 23% over 

the tumor’s entire extent (Pati, Baid, Edwards, et al. 2022).

3.2. The First Challenge on Federated Learning

International computational competition (i.e., challenges) have become the accepted 

community standard for validating medical image analysis methods. However, the actual 

performance of submitted algorithms on “real-world” clinical data is often unclear, since the 

data included in these challenges usually follow a strict acquisition protocol from few sites 

and they do not represent the extent of patient populations across the globe. The obvious 

solution of simply collecting more data from more sites does not scale well, due to privacy 

and ownership hurdles.

Towards addressing these hurdles, the FeTS tool enabled the first challenge ever proposed 

for federated learning, i.e., the FeTS challenge 2021+ (Pati, Baid, Zenk, et al. 2021). 

Specifically, the FeTS challenge focused on two tasks: 1) federated training, which aimed 

at effective weight aggregation methods for the creation of a consensus model given a 

pre-defined segmentation algorithm; and 2) federated evaluation, which aimed to evaluate 

algorithms that accurately and robustly produce brain tumor segmentations “in-the-wild”, 

i.e., across different medical sites, demographic distributions, MRI scanners, and image 

acquisition parameters. The FeTS tool enabled both these tasks. In both the tasks, the FeTS 

tool enabled the processing of all clinically acquired multi-institutional MRI scans used by 

the remote sites used to validate the participating algorithms. Specifically for task 1, the 

federated learning component of the FeTS tool Reina et al. 2021 was used as the backbone 

to develop the weight aggregation methods.

4. Discussion

In this manuscript, we have described the Federated Tumor Segmentation (FeTS) tool, 

which has successfully facilitated 1) the first ever challenge on federated learning (Pati, 

Baid, Zenk, et al. 2021), and 2) the largest to-date real-world federation including data from 

71 sites across the globe (Baid, Pati, et al. 2021). The FeTS tool has so far established an 

end-to-end solution for training ML models for neuroradiological mpMRI scans, while also 

incorporating a well-accepted robust harmonized pre-processing pipeline.

+ https://www.med.upenn.edu/cbica/fets/miccai2021/ 
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The FeTS tool was able to successfully process all the collaborators’ routine clinical data 

during the real-world federation, with sites spanning across 6 continents (Fig 3). This proved 

its out-of-the-box ability to handle processing of data “in the wild”, i.e., from a wide array 

of unseen scanner types and acquisition protocols, and importantly without any additional 

considerations. Furthermore, during its application in the first federated learning challenge 

(Pati, Baid, Zenk, et al. 2021), the FeTS tool has enabled i) the challenge participants to 

develop novel FL aggregation strategies, and ii) the “in-the-wild” evaluation of trained tumor 

segmentation ML models, across international collaborating healthcare sites.

One of its current limitations lie in the fact that even though its software stack has 

been designed and developed to be agnostic to the use-case, it has currently been tuned 

specifically for application in neuroradiological mpMRI scans. This is primarily due to 

the maturity and the widely evaluated specific pipelines and pre-trained segmentation 

models. Nonetheless, all incorporated algorithms can be trained and applied on data from 

different anatomies and modalities, notwithstanding their performance evaluation. Moreover, 

extension of the current pre-processing pipeline to include different imaging modalities 

would also be useful. Another potentially considered limitation, is the focus of the tool 

capabilities only defined for delineation tasks, and not offering the basis for classification 

problems. We are actively working towards exploring data augmentation techniques, as well 

as application of the tool to other anatomies and pathologies in future research projects.

In conclusion, we have developed the FeTS tool following numerous years of research 

and development on the BraTS challenge, and evaluated its performance and robustness 

during the largest to-date real-world federation. The FeTS tool can be currently used for 

any computational processing that would relate to brain tumor mpMRI scans. Particularly 

important for addressing the need to perform harmonized processing at remote healthcare 

sites prior to sharing data for varying consortia, as well as for the generation of centralized 

datasets hosted by authoritative organizations for de-centralized evaluation of computational 

algorithms. Towards this end, we expect the FeTS tool to pave the way for the generation 

of uniform datasets, which could contribute in improving our mechanistic understanding of 

disease.
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Figure 1. 
Illustration of the U-Net architecture with residual connections, plotted using PlotNeuralNet 

https://github.com/HarisIqbal88/PlotNeuralNet.
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Figure 2. 
Detailed diagram of the FeTS Tool’s software architecture showing the various inter-

dependencies between the components and the 4 main modes of operation.
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Figure 3. 
Illustration of the sites where the FeTS Tool was deployed.
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