TABLE 2.
The overall predictive performance of fingerprint-based models for the test sets.
Model | Test set | ||||||
---|---|---|---|---|---|---|---|
ACC a | F1 b | BA c | SE d | SP e | MCC f | AUC g | |
DNN::Morgan | 0.841 ± 0.059 | 0.899 ± 0.049 | 0.703 ± 0.057 | 0.930 ± 0.034 | 0.476 ± 0.109 | 0.468 ± 0.106 | 0.873 ± 0.043 |
XGBoost::Morgan | 0.854 ± 0.049 | 0.909 ± 0.042 | 0.700 ± 0.069 | 0.947 ± 0.039 | 0.454 ± 0.155 | 0.486 ± 0.120 | 0.861 ± 0.050 |
SVM::Morgan | 0.844 ± 0.063 | 0.901 ± 0.054 | 0.692 ± 0.074 | 0.936 ± 0.051 | 0.448 ± 0.163 | 0.453 ± 0.129 | 0.854 ± 0.050 |
RF::Morgan | 0.849 ± 0.049 | 0.908 ± 0.041 | 0.655 ± 0.095 | 0.965 ± 0.034 | 0.344 ± 0.212 | 0.429 ± 0.142 | 0.870 ± 0.051 |
LR::Morgan | 0.846 ± 0.052 | 0.901 ± 0.045 | 0.735 ± 0.047 | 0.917 ± 0.037 | 0.554 ± 0.095 | 0.493 ± 0.085 | 0.735 ± 0.047 |
Average (Morgan) | 0.847 | 0.904 | 0.697 | 0.939 | 0.455 | 0.466 | 0.839 |
XGBoost::MACCS | 0.850 ± 0.053 | 0.904 ± 0.049 | 0.691 ± 0.075 | 0.939 ± 0.061 | 0.443 ± 0.189 | 0.470 ± 0.104 | 0.853 ± 0.046 |
DNN::MACCS | 0.846 ± 0.038 | 0.904 ± 0.035 | 0.681 ± 0.087 | 0.944 ± 0.032 | 0.417 ± 0.199 | 0.448 ± 0.127 | 0.832 ± 0.041 |
SVM::MACCS | 0.846 ± 0.057 | 0.903 ± 0.049 | 0.680 ± 0.067 | 0.946 ± 0.044 | 0.414 ± 0.157 | 0.444 ± 0.107 | 0.817 ± 0.047 |
RF::MACCS | 0.841 ± 0.062 | 0.900 ± 0.053 | 0.673 ± 0.063 | 0.943 ± 0.049 | 0.403 ± 0.148 | 0.442 ± 0.099 | 0.841 ± 0.044 |
LR::MACCS | 0.835 ± 0.031 | 0.897 ± 0.028 | 0.695 ± 0.058 | 0.920 ± 0.023 | 0.470 ± 0.117 | 0.435 ± 0.116 | 0.695 ± 0.058 |
Average (MACCS) | 0.844 | 0.902 | 0.684 | 0.938 | 0.429 | 0.448 | 0.808 |
ACC, accuracy.
F1, F1-measure.
BA, balanced accuracy.
SE, sensitivity.
SP, specificity.
MCC, matthews correlation coefficient.
AUC, the area under receiver operating characteristic.
Bold font illustrates the models that outperformed all other models.