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Abstract

Psychostimulant drugs, such as cocaine, inhibit dopamine reuptake via blockade of the dopamine 

transporter (DAT), which is the primary mechanism underpinning their abuse. Atypical DAT 

inhibitors are dissimilar to cocaine and can block cocaine or methamphetamine induced behaviors, 

supporting their development as part of a treatment regimen for psychostimulant use disorders. 

When developing these atypical DAT inhibitors as medications, it is necessary to avoid off-target 

binding that can produce unwanted side effects or toxicities. In particular, the blockade of a 
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potassium channel, human ether-a-go-go (hERG), can lead to the potentially lethal ventricular 

tachycardia. In this study, we established a counter screening platform for DAT and against hERG 

binding by combining machine learning-based quantitative structure-activity relationship (QSAR) 

modeling, experimental validation, and molecular modeling and simulations. Our results show the 

available data are adequate to establish robust QSAR models, as validated by chemical synthesis 

and pharmacological evaluation of a validation set of DAT inhibitors. Further, the QSAR models 

based on subsets of the data according to experimental approaches used have predictive power 

as well, which opens the door to target specific functional states of a protein. Complementarily, 

our molecular modeling and simulations identified the structural elements responsible for a pair of 

DAT inhibitors having opposite binding affinity trends at DAT and hERG, which can be leveraged 

for rational optimization of lead atypical DAT inhibitors with desired pharmacological properties.

Graphical Abstract

INTRODUCTION

When drugs interact with undesired targets (off-targets), adverse side effects can arise;1, 2 if 

such effects are severe enough to cause toxicity, clinical trials fail or post-marketing drugs 

can be recalled.3 On the other hand, some other drugs may require interactions with more 

than one target to exert their therapeutic effects in a polypharmacological way.4 Thus, in 

drug development, it is critical to comprehensively identify the potential targets for a given 

lead molecule, and to rationally optimize it toward the desired pharmacological profile, 

either selectively or synergistically, for appropriate target(s).

The dopamine transporter (DAT) serves to terminate dopamine neurotransmission by 

transporting released dopamine back into the presynaptic neuron. DAT is the primary target 

for medications used to treat ADHD (e.g., Ritalin) and sleep disorders (e.g., modafinil), but 

also for abused psychostimulants such as cocaine and methamphetamine, the abuse of which 

can lead to psychostimulant use disorders (PSUD). Interestingly, although cocaine is a DAT 

inhibitor, a large number of studies over the past ~25 years have shown that several other 

structural classes of DAT inhibitors, based on benztropine, modafinil, and rimcazole, have 

limited or no rewarding effects in numerous animal models across species.5–9 Indeed, based 

on these data, several lead candidates have been proposed as potential medications to treat 

PSUD.10–13

Lee et al. Page 2

J Chem Inf Model. Author manuscript; available in PMC 2022 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the development of these classes of DAT inhibitors, as in many other drug development 

campaigns, however, a frequently encountered challenge is how to avoid hitting other 

targets that may cause toxic side effects; in particular, the human ether-a-go-go (hERG) 

potassium channel (Kv11.1). hERG enables the delayed rectifying potassium current in 

cardiomyocytes. Compounds that block the hERG channel interfere with this current, 

resulting in a prolonged QT interval on an EKG and can lead to Torsades de Pointes (TdP), 

a potentially lethal ventricular tachycardia.14–16 hERG is extremely promiscuous in binding 

small compounds, especially those with protonatable amines and aromatic groups,17, 18 

a hallmark of many neurotransmitter transport inhibitors, as well as G-protein coupled 

receptor ligands, and thus a common challenge for drug design and development.19, 20 It 

was estimated that 40–70% of new drug candidates have measurable affinities to hERG.21, 22 

Indeed, one of the main reasons for drug withdrawals in the 1990s and early 2000s was 

drug-induced cardiotoxicity, for which hERG blockade was identified as one of the major 

causes.23, 24 At present, due to revised FDA regulations in early 2000,25 drug candidates 

have to be evaluated for TdP liability in vitro by patch-clamp electrophysiology and in vivo 
in phase 1 clinical trials, both of which are expensive and time consuming.16, 22

Thus, when targeting DAT, accurate computational predictions of both DAT and hERG 

affinities would facilitate medicinal chemistry campaigns in discovering new medication 

candidates with desired properties, i.e., high-affinity DAT inhibitors possessing low hERG 

affinity. Such virtual counter screening can be applied in an early stage of drug discovery 

and help guide drug design and ultimately chemical synthesis. As a result of increased 

concerns of the risks that hERG binding poses, there has been a significant increase in the 

amount of hERG binding affinity data in public databases and the literature. These data have 

been used to generate machine-learning based, quantitative structure-activity relationship 

(QSAR) models to correlate chemical structures with binding affinities at hERG.26–31 On 

the other hand, while there is abundance of data in the literature and databases, machine 

learning-based QSAR models for DAT or its homologs have only begun to emerge.32

Compared to protein structure-based QSAR, ligand-based QSAR is a much faster way 

to predict the correlation between the small-molecule chemical structures and activities, 

such as binding affinities.18, 33 However, the early linear-regression based QSAR models 

suffered from inadequate data and intrinsically non-linear QSAR.26 Unlike linear-regression 

modeling, there is more freedom in the machine learning method to search relevant 

variables in descriptors space, in order to develop a good QSAR model. During the learning 

process, some descriptors can be forward included or backward excluded to better interpret 

the model. Studies have shown that machine-learning based QSAR models outperform 

traditional linear-regression based QSAR models.26, 34, 35

In this study, we established a platform to predict and validate the binding affinities 

of compounds at both DAT and hERG by combining machine-learning based QSAR 

models (Figure S1), experimental binding affinity measurements, and molecular modeling 

approaches.
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RESULTS

The hERG datasets divided by experimental methods result in QSAR models with 
comparable qualities

We queried and retrieved all the available hERG data from ChEMBL (version 25)36 (see 

Methods). Compared to previous work,26, 27 the availability of a larger dataset allowed us 

to further divide and characterize the dataset according to how the binding affinities were 

represented (IC50 versus Ki) and by experimental methods (patch-clamp electrophysiology 

versus radioligand binding assays), and to evaluate the impact of more homogeneous data on 

the quality and predictive power of QSAR models.

First, we found there are three-fold more IC50 than Ki data for hERG (Table S1). While 

Ki conceptually better represents the binding affinity than IC50 (half maximal inhibitory 

concentration), as the latter may be sensitive to the approaches used in the measurements 

according to the Cheng-Prusoff equation,37 the Ki value should always be smaller than the 

IC50 from which it derives, thus the trends of Ki and IC50 should be the same if similar 

approaches were used.37 The abundance of IC50 measurements in the databases is not 

surprising, as it streams from the apparent advances in cellular electrophysiology and the 

availability of robust cell-lines over-expressing hERG1 channel.38, 39 The deployment of 

the automated patch-clamp platforms enabled a broad coverage of hERG inhibitory potency 

for various drug scaffolds.40 An IC50 in the low micro-molar range is strongly associated 

with QT prolongation, a surrogate marker for torsadogenicity of the compound,40, 41 and 

often used for binary classification, e.g., blocker vs. non-blocker. Practically, in order to 

adequately train machine-learning based QSAR models, we would like to have as many 

non-redundant homogenous data points as possible. Thus, based on these considerations, we 

chose to use IC50 data to train our hERG QSAR models (see below), without mixing Ki and 

IC50 data together.

We then developed filters to sort the data based on how they were acquired, i.e., from either 

patch-clamp electrophysiology (referred to as “clamp” below) or radioligand binding assays 

(“binding”). We note that there are a number of inaccurate or ambiguous annotations in 

ChEMBL regarding the types of assays being carried out and had to curate lists of key words 

to comprehensively retrieve all the relevant entries for each dataset (Table S2). The resulting 

datasets, after removal of (nearly) identical compounds (Tanimoto similarly > 0.999), are 

~2000 IC50 data points for the clamp dataset and ~1400 IC50 data points for the binding 

dataset. Interestingly, when we plot the distributions of these two hERG datasets, we found 

that both of them have single sharp peaks of pIC50 (i.e., −logIC50) centering around 5.2 

(Figure 1A). Compared to the IC50 datasets, the binding Ki dataset shows the slightly higher 

peak value (5.8) of the pKi distribution curve, suggesting that homogeneous approaches 

were used in acquiring hERG binding data and, therefore, the IC50 trend likely reliably 

represents that of Ki. In contrast, the drastically larger peak value (8.5) of the clamp pKi 

curve, based on only 44 data points, suggests this Ki dataset does not adequately cover 

chemical space.

In order to build machine-learning based QSAR models, we further filtered the datasets 

as described in Methods. In particular, 55 compounds that appeared in a high-quality patch-
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clamp electrophysiology study41 were first filtered out from the clamp set, then the results 

of those 55 compounds from that study were added to the dataset after all other filters 

were applied. Similar to a previous study,27 in the training datasets for the classification 

models, we further excluded the data points with pIC50s between 5 and 6, to define a clearer 

boundary between binders and non-binders.

Using these training datasets, we first built and evaluated regression QSAR models, 

which would predict numeric values of the binding affinities. We compared two machine 

learning algorithms, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), and 

systematically scanned and optimized their parameters (see Methods). The benchmarks of 

the regression models, i.e., the coefficient of determination (R2) and root mean square error 

(RMSE), indicate that both algorithms can result in reasonably good models, while the 

XGBoost-trained models outperform the RF-trained models, and the binding data-based 

models have slightly better benchmarks than those based on the clamp data (Table 1). We 

noticed there is a strong stochastic element in training of the models when splitting the 

dataset into training and testing sets (see Methods), i.e., if we build the model twice with the 

same algorithm but with different splittings, it will result in somewhat different benchmarks. 

Our statistics show that more models would reduce the stochastic uncertainty (Figure S2, see 

Methods). Thus, to eliminate the stochastic effect in evaluating the quality of the models, we 

use multiple models constructed with different random numbers.

We then used correspondingly prepared training datasets (Table S1) to build the 

classification QSAR models, which would predict whether a compound is a binder or a 

non-binder. We evaluated their qualities with the benchmarks, accuracy, sensitivity, and 

specificity (see Methods for definitions). Both clamp and binding datasets result in high 

accuracy (≥0.87) models. However, while the binding data-based models have relatively 

good and balanced sensitivity, specificity, and F-score, the clamp data-based models have 

relatively low sensitivity and high specificity, regardless of the machine learning algorithm 

used, which is likely due to the smaller number of binders in this dataset (see Discussion).

Adequate DAT Ki data result in reasonably good QSAR models

Among the available DAT data in ChEMBL (including all species, see Methods and 

below), there are comparable amount of IC50 and Ki data (Table S1). For DAT, when 

radioligand binding assays were carried out with various selective DAT inhibitor probes, 

the resulting binding affinities represent the situation in which the transporter is trapped 

in outward-facing conformations. In comparison, the inhibition of dopamine uptake using 

[3H]dopamine as the probe may reflect a mixed scenario, wherein the protein is in an 

equilibrium of outward- and inward-facing conformations.42, 43 Thus, we developed filters 

to sort the data according to their assay types, from either the binding assay using 

radiolabeled inhibitors (“binding”) or inhibition of dopamine uptake (“uptake”).

After applying additional filters, like those developed for hERG datasets (Table S2), both 

the binding and uptake DAT datasets have broader distributions than the hERG datasets and 

show more than one peak (Figure 2A and B). In addition, while the pIC50 curve of DAT 

binding data peaks at 6.7, ~1.5 unit larger than that of hERG, the peak of DAT pKi curve 

at 5.9 is comparable to that of hERG binding dataset (Figure 1A). The higher peak value of 
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the pIC50 curve suggest that the DAT binding data were likely collected with heterogeneous 

approaches and that IC50 data using different approaches may not be directly comparable. 

Thus, based on these considerations, we chose to use the Ki datasets to train our DAT QSAR 

models.

We used either the binding or the uptake dataset to train DAT regression models and 

compared the XGBoost and RF algorithms. While most of the resulting models have 

reasonably good benchmarks, the R2 of XGBoost models are in most cases better than 

those of RF ones (Table 2). Interestingly, the models based on the binding data are slightly 

better than those based on uptake data. Using the correspondingly prepared datasets (same 

as the regression datasets except that the data points with pKi of 5 to 6 were excluded), our 

DAT classification models have high accuracy, sensitivity, and F-score, but poor specificity, 

which may be related to relatively smaller numbers of nonbinders in the training datasets 

(see Discussion).

Models based on human or rat DAT dataset alone have predictive powers but these 
datasets can be combined

In the DAT dataset, as expected, the majority of the data points are of human DAT (hDAT) 

and rat DAT (rDAT), because the majority of the experiments were carried out with hDAT 

heterologously expressed in in vitro cell lines or with rat brain tissues. When we specifically 

filtered the DAT dataset by species, after removing redundancy, hDAT has 684 Ki values 

in the binding dataset, while rDAT has 541 binding Ki values. The uptake datasets are 

significantly smaller, only 126 hDAT Ki values and 229 rDAT Ki values. To evaluate 

whether the datasets of these sizes can result in QSAR models with predictive power, we 

built both regression and classification models using individual hDAT or rDAT binding or 

uptake datasets.

While hDAT binding, rDAT binding, and rDAT uptake datasets all result in regression 

models with good benchmarks, the regression models based on only 126 hDAT uptake 

data points, which does not cover sufficient chemical space, have poor benchmarks. For 

classification modeling, hDAT binding, rDAT binding, and rDAT uptake datasets result 

in models with high accuracy and sensitivity, but with poor specificity. Similar to the 

situation of the hDAT uptake regression model, the small hDAT uptake dataset (only 45 data 

points after excluding pKi 5–6) generated classification models with very poor benchmarks, 

regardless of the machine learning algorithm used.

Curiously, the rDAT binding dataset appears to have more distribution at higher pKi values 

than that of hDAT, i.e., the rDAT pKi curve has two peaks, one of them is at 7.6, 1.5 

unit higher than that of the hDAT (Figure 2C and E). To investigate whether this trend 

represents rDAT having higher affinities than hDAT, we identified that there are 18 common 

compounds that have been tested for binding at both hDAT and rDAT (Figure S3A), and 

our analysis showed that ~85% of these compounds have a ΔpKi (hDAT pKi - rDAT pKi) 

less than 1 (Figure S3B). Therefore, the binding sites of hDAT and rDAT have very similar 

binding affinities for the same compounds. Indeed, the central binding site residues of hDAT 

and rDAT are identical.44 We further compare how different the compounds in the hDAT and 

rDAT binding datasets are by their chemical similarity (see Methods). The results show that 
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these two datasets have only a smaller percentage of highly similar compounds, i.e., with a 

similarity score > 0.85 (Figure S3C). Thus, we concluded that the compounds in the rDAT 

and hDAT binding datasets do not have significant overlap.

Taken together, due to their highly similar binding sites, we can combine hDAT and rDAT 

datasets as the training data for the QSAR model building, as described in the previous 

section. Such a combination is also necessary to cover adequate chemical space as the hDAT 

uptake dataset appears not large enough to build robust models.

Experimental validation of the QSAR models on a selected set of DAT inhibitors

To establish a counter screening platform to discover small-molecule reagents for DAT and 

against hERG, the affinity prediction at these two targets is the initial, but critical, step 

for efficient lead discovery. Reliable predictions would minimize the efforts in chemical 

synthesis and pharmacological measurements. Thus, it is important to evaluate whether our 

QSAR models have adequate predictive power at both DAT and hERG. To this end, we 

selected a set of modafinil-derivatized DAT inhibitors, and carried out both computational 

predictions and experimental measurements of their affinities, at both rDAT and hERG.

Computationally, we built QSAR models using the same protocol described above but 100% 

data retrieved and filtered from ChEMBL (see Figure S1 and Methods), and used them to 

predict both the affinity values and the binary classifications of binder versus non-binder 

for each compound. Experimentally, we measured their binding affinities at DAT, with 

[3H]WIN35,428 as the radioligand, and at hERG, with patch-clamp pipette experiments (see 

Methods). We then performed the correlation analysis between the computational predicted 

and experimental measured affinities of these compounds (Figure 3). For hERG, the affinity 

predictions with the regression models based on the clamp data, are moderately correlated 

with the experimental measurements; the models trained with the XGBoost algorithm 

performed better than those trained with RF (R2 = 0.70 and 0.54, respectively, Figure 3A). 

These clamp data-based models slightly outperformed the binding data-based models (R2 

= 0.62 and 0.47 for XGBoost- and RF-trained models, respectively). For DAT, the binding 

data based regression models have better performance than those based on the uptake data 

in their predicted affinities, in terms of the correlation with the experimentally measured 

affinities, regardless of either XGBoost- or RF-trained models (Figure 3B). When we 

evaluated the models based on species-specific DAT datasets (Figure S4), the best performed 

model was rDAT binding data (R2 = 0.76 and 0.67 for XGBoost- and RF-trained models, 

respectively), the same experimental approach used in collecting the DAT affinity data in 

the current study. Interestingly, the models based rDAT uptake data have no predictive 

power (Figure S4G,H). Taken together, in addition to their good benchmarks described 

above, these correlations suggest our regression models have significant predictive powers, 

while the XGBoost algorithm may better fit these datasets than RF. When comparing the 

correlations of the predictions to experimental data using the Pearson correlation coefficient 

(R), XGBoost models outperform RF models as well for both hERG and DAT (Figure 3).

In our evaluation of the hERG classification models, the 9 compounds with experimentally 

measured pIC50 values between 5 and 6 were not included. For the rest of 9 compounds, 

our models are 100% accurate in differentiating the 7 binders (pIC50 > 6) from the two 
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non-binders (pIC50 <5) (Figure 3A–D). For the same 18 compounds, 16 of them were DAT 

binders, while the pKi of the other two were between 5 and 6. Similar high accuracy was 

observed for the predictions of DAT binders with our classification models based on either 

all-DAT or hDAT data (Figure 3E–H, and Figure S4A–D). However, while most of the 

models based on rDAT data had good predictions as well, the one based on the uptake data 

incorrectly classified the most potent binder as a non-binder (Figure S4E–H).

Impact of dataset size and activity distribution on the predictive power

To further evaluate the impact of the size and activity distribution of the dataset on the 

outcome of our approach, we applied the same protocol of model building on an in-house 

DAT binding dataset, which includes 277 compounds synthesized by Newman group 

throughout the years.6, 7 The strength of this dataset is that the binding affinities have been 

measured using same or similar approaches. For the regression modeling, the benchmarking 

results show moderate R2 values of 0.48 for the XGBoost models and 0.46 for the RF 

models (Table S3). For the classification modeling, both XGBoost and RF models show 

high accuracy, sensitivity, and F-score, but poor specificity in benchmarking. Similar to the 

ChEMBL datasets, the unbalanced numbers of binders and nonbinder compounds in this 

in-house dataset is likely the major cause for the poor specificity (see Discussion).

The regression prediction for the validation dataset (Figure S5) shows that the models based 

on the in-house DAT binding dataset perform worse than the models based on the “all-DAT” 

binding dataset from ChEMBL. We found that the insufficient high-affinity compounds in 

the in-house dataset renders poor predictions of high-affinity compounds in the validation 

dataset. In the all-DAT binding dataset, there are 69 compounds (5.8%) with pKi ≥ 8.5, 

while in the in-house DAT binding dataset, there are only 6 compounds (2.2%) with pKi ≥ 

8.5. The Pearson R value noticeably increases without the high affinity compounds (pKi ≥ 

8.5) in the validation dataset (Figure S5). For the classification prediction of the validation 

dataset, the results are as good as those using the all-DAT binding models (Figure S5).

Thus, a dataset with a few hundred compounds is potentially sufficient to build QSAR 

models with predictive powers; however, adequate training data covering the entire activity 

range, especially for the high-affinity range, is also critical for accurate predictions.

Molecular modeling reveals structural features responsible for the opposite trends of DAT 
and hERG affinities of two DAT inhibitors

From this validation set of DAT inhibitors, we noticed that a pair of analogs with similar 

chemical structures, JJC8-01646 and JJC8-08813 (Tanimoto similarity = 0.62, Figure S6), 

have opposite trends of affinities at DAT and hERG. JJC8-088 has ~90-fold higher affinity 

than JJC8-016 at DAT (Ki = 2.6 and 234.4 nM, respectively), but has ~2-fold lower affinity 

than JJC8-016 at hERG (IC50 = 0.13 and 0.06 μM, respectively). We searched compound 

pairs in the DAT and hERG datasets retrieved from ChEMBL with similar criteria (>90 

fold better in DAT, and >2 fold better in hERG), and found that 6 pairs have Tanimoto 

similarity >0.6 (Figure S7). However, none of these pairs have the DAT or hERG binding 

data collected from the same study; thus, because the binding affinities of our pair (JJC8-088 

and JJC8-016) of DAT and hERG are measured by the same laboratories, their affinity 
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differences are potentially more reliable. Hence, we used this pair of compounds to explore 

the protein structure-based clues in DAT and hERG responsible for these opposite trends by 

carrying out molecular modeling and simulation studies, using both of our hDAT and hERG 

models (see Methods).13, 16, 47, 48

The central ligand binding (S1) site of neurotransmitter transporters to which DAT belongs 

can be divided into three subsites, A, B, and C.49 For the mono-amine transporters, a 

conserved Asp in subsite A is responsible for forming a salt-bridge with the tertiary amine 

moieties of their cognate endogenous neurotransmitter substrates,44 while the subsites B and 

C of S1 have aromatic and hydrophobic residues to accommodate the aromatic moieties of 

the ligands.50, 51 As expected in our molecular dynamics (MD) simulations, the bisphenyl 

moieties of both JJC8-016 and JJC8-088 are similarly accommodated by subsites B and 

C, and the two phenyl rings closely interact with Ile152 located in between these two 

subsites, while their charged nitrogen atoms form stable salt bridges with Asp79 of subsite 

A. Our analysis indicates that JJC8-088 forms an additional stable H-bond between its -OH 

and Asp79, which very likely contributes to its higher affinity compared to JJC8-016 at 

DAT (Figures 4A–C and S5). The moieties on the N-termini of these two DAT inhibitors: 

phenylpropyl for JJC8-016 and phenylpropanol for JJC8-088 (referred to as “tail”, Figure 

S6), protrude into the extracellular vestibule of DAT and make aromatic interactions with 

Phe155, Tyr156, and/or Phe320.

The functional unit of hERG is a homotetramer. Each monomer contains six transmembrane 

segments. The hERG binding site is formed at the center and interface of the homotetramer, 

with identical binding residues contributed from all four monomers, and is a large and 

highly hydrophobic cavity located on the intracellular side of the transmembrane domains.52 

The ligand binding site at hERG is highly promiscuous for small molecules with a wide 

range of chemical scaffolds defined by a combination of amphipathic residues capable of 

hydrogen-bonding from the pore helix, two aromatic residues Tyr652 and Phe656 from S6 

helix, and in some cases Phe557 from S5.16, 17, 53–56 Therefore, the water-filled intracavitary 

site of hERG1 channel provides a diverse range of chemical moieties to enable stable 

binding and blockade by a large cohort of drug-like molecules.19, 20, 57 Similar to the 

situation in our hDAT simulations, the results of our MD simulations of hERG show that the 

binding modes of the bisphenyl moieties of JJC8-016 and JJC8-088 are highly similar, and 

they closely interact with Phe656 in the binding site. In comparison, their N-termini (tails) 

do not have very defined binding modes, and are flexible in the large binding cavity that 

opens to the intracellular water phase (Figure 4D–F). Thus, the extra -OH in JJC8-088 could 

not contribute any additional favored interactions, like in hDAT, which is consistent with 

JJC8-088 and JJC8-016 having very small affinity differences at hERG.

Taken together, our results indicate that functionality extending from the tertiary amines of 

these DAT inhibitors can be further tuned without affecting the affinities at hERG, which 

opens the door for structure-based optimization of DAT inhibitors, without simultaneously 

improving hERG affinity.
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DISCUSSION

To facilitate the development of high-affinity DAT inhibitors possessing low hERG 

affinity, we built machine-learning based QSAR models to predict the binding affinities 

of compounds at both DAT and hERG, and identified the structural clues responsible for 

different affinity trends in these two proteins with molecular modeling and simulations. Our 

computational predictions were validated with experimental binding affinity measurements.

In classification models, we found that the sensitivity and specificity may have been driven 

by the balance of binders and nonbinders used in training (Tables 1 and S1). Many more 

binders may lead the classification models to have high sensitivity and low specificity. 

To test this hypothesis, we randomly selected binders to match the number of nonbinders 

from the all-DAT binding dataset (resulting in a training dataset with 89 binders and 89 

non-binders) to build classification models with XGBoost, using the same training and 

validation procedure as for the classification models described above. The benchmarks of 

the models trained with equal numbers of binders and non-binders show that the accuracy 

became slightly worse than using all available binders, though the specificity and sensitivity 

were balanced (Table S4). The lower accuracy is a consequence of much smaller number 

of binders (from 798 to 89), which result in ~89% information of binders not being used. 

While the trend of benchmarks is consistent with our hypothesis, practically, we may not 

want to use only part of the data just for the purpose of benchmarks, which would sacrifice 

the accuracy of predictions by limiting the chemical space that the models would be able 

to cover. However, such an issue in building the classification models may be partially 

addressed by adjusting the definition of binder or nonbinder, specifically in our modeling 

building process, the pKi or pIC50 range to be excluded. For example, we can shift this 

range to a higher range, which may not affect the purpose to discover compounds that bind 

with nanomolar affinity to DAT.

Overall, the benchmarks and prediction performances of our DAT regression QSAR models 

based on binding data are better than those based on uptake data. However, the models based 

on either rDAT or hDAT binding datasets alone are either not better or significantly worse in 

some cases than the models based on the all-DAT binding dataset. These trends may reflect 

the corresponding coverages of chemical space. Interestingly, using our rDAT regression 

models to predict the hDAT binding data, the models appear to have no predictive power, 

with an R2 of only 0.20. Conversely, the prediction using our hDAT regression models 

on the rDAT data results in an R2 of 0.40 (Figure S8). We found that the rDAT models 

were not well trained with compounds with high pKi values, and therefore making poor 

predictions on the high pKi compounds in hDAT dataset. Thus, the hDAT and rDAT binding 

datasets may be differentially enriched in certain chemical scaffolds, e.g., rDAT dataset has 

more distribution at higher pKi values. In addition, our analysis showed that the rDAT and 

hDAT datasets do not have significant overlap and, importantly, that the binding affinities 

of a given compound at rDAT and hDAT are very similar (Figure S3), which justifies our 

combination of these two datasets in building the final models. Similar impact of high 

affinity training data on the predictive power was also observed for the models trained with 

our in-house DAT binding dataset.

Lee et al. Page 10

J Chem Inf Model. Author manuscript; available in PMC 2022 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One potential application of our DAT and hERG QSAR models is to identify new lead 

DAT inhibitors with novel scaffolds by counter screening. If we plot DAT affinities against 

hERG affinities, the ideal region is the upper left region in Figure 5, i.e., high-affinity DAT 

inhibitors possessing low hERG affinity. In our validation set of compounds, one compound 

appears to be promising, with ~1000-fold affinity difference in favor of DAT over hERG, 

according to our experimental measurements (Figure 5B). Encouragingly, our QSAR model 

predictions of this compound also showed ~63-fold affinity difference in the same direction 

(Figure 5A,C). In order to further evaluate the potential of our models to identify the ideal 

candidates, we then applied these models to screening other databases, such as the NCI open 

database compounds (Release 4; 260,277 compounds), and the results are shown in Figure 

S9. By filtering predicted DAT binders that were likely to have low affinity for hERG, i.e., 

satisfying either of the following two conditions, i) pKiDAT ≥ 7 and pIC50hERG ≤ 5.5, or ii) 

pKiDAT > 7 and pKiDAT - pIC50hERG ≥ 2, we found 161 hits, which account for 0.06% of 

the screened compounds. Thus, when a chemical library is large enough to cover adequate 

chemical space, such virtual counter screening is promising in identifying novel compound 

scaffolds with desired affinity profiles (high DAT and low hERG). However, iterations of 

experimental measurements and refinement of models are required to eventually validate 

hits.

The quality and predictive power of QSAR prediction is associated with the data quality, 

coverage, and size.58 While the upper boundary of data size that can be utilized in 

model building is limited by computer resources, it is not necessarily true that the more 

compounds, the better. On the other hand, at least 40 compounds have been proposed as 

the lower limit of the dataset to build QSAR model with an optimum data size balance 

of 150 to 300 compounds.59, 60 With improved computational powers, the quality and the 

chemical space coverage have significant impact on the final outcome. In this study, we 

used eight datasets of various sizes to build 16 different sets of models (see Tables 1 and 

2). Applicability domain for each model, which is the chemical space on which the training 

set of the model has been developed, cover all the entries in testing or validation datasets 

(Figure S10). Among the comparable datasets, the size of the rDAT binding dataset is 

smaller than that of the hDAT binding dataset (Table S1), but the prediction made with 

the rDAT binding models is better than that with the hDAT binding models (Figure S4), 

suggesting that the chemical space that rDAT binding dataset covers may fit the validation 

dataset better. However, combining hDAT binding with the rDAT binding data facilitates 

more adequate chemical space to be covered, resulting in slightly better prediction using 

XGBoost models (R2 = 0.79, Figure 3E). While only the hDAT uptake dataset has less 

than 150 compounds (126 compounds), the R2 of the prediction with the corresponding 

models on the validation dataset are 0.58 and 0.32, using the XGBoost and RF methods, 

respectively, are better than those of the rDAT uptake data based models, which do not have 

any predictive power on the validation dataset (Figure S4).

To evaluate whether any chemical descriptors may be differentially correlated with DAT 

and hERG affinities, we identified the most correlated descriptors for both the DAT 

binding and hERG clamp datasets used in our model building. Interestingly, when 

comparing 10 most positively correlated descriptors for each dataset, a few ring-related 

descriptors, “NumAliphaticHeterocycles”, “NumSaturatedHeterocycles”, “RingCount”, and 
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“NumSaturatedRings” have Pearson correlation coefficient R > 0.4 for DAT binding 

affinity but not for hERG binding (Table S5). These differences likely represent some 

characteristics of a more defined binding site in DAT, while the generally low R values 

of the most correlated descriptors for hERG binding are likely related to its promiscuous 

binding of small compounds. For the validation datasets, some descriptors, such as 

“NumRotatableBonds”, can have high R for both the DAT and hERG affinities, reflecting 

the correlated DAT and hERG binding affinities of this compound set (Figure 5), and 

therefore the challenge in further optimizing the related scaffolds for DAT binding without 

increasing hERG binding (Table S5). In addition, the lack of connections between the most 

correlated descriptors for training and validation datasets, demonstrates the difficulty in 

QSAR modeling with linear regression. Thus, machine learning-based approach is necessary 

to integrate the information encoded in these features in building the QSAR models.

Taken together, we have established a combined platform for targeted compound discovery 

by combining machine learning based QSAR modeling, experimental validation, and 

molecular modeling and simulations. By dividing the training data to subsets that correspond 

to different functional state(s) of the target, we still obtained QSAR models with adequate 

predictive powers. These encouraging results open the door for future work to better 

connect the ligand-based QSAR modeling to protein structure-based molecular modeling 

and simulations in the compound discovery focusing on specific functional states of a target. 

In addition, this platform considers more than one target - while we conducted the counter 

screening of DAT against hERG, the current platform can be easily expanded and adapted 

for other targets of interest, as well as other applications such as synergy screening.

METHODS

Data preparation

Our training datasets were assembled from entries in a locally installed instance 

of ChEMBL (version 25) (March 2019).36 Initially, the target_dictionary, assays, 

activities, compound_structures, docs, source, relationship_type, molecule_hierarchy, and 

molecule_dictionary tables were joined on overlapping primary keys (tid, assay_id, 

molregno, doc_id, src_id, and relationship_type) and the resulting table was queried for 

entries related to the interested target (hERG or DAT). For the evaluations described in text, 

we also prepared specifies-specific filtered the hDAT and rDAT datasets.

The query results were then further cleaned up and filtered using a Python script. First, 

entries having a confidence value of less than 9 and those not arising from binding or 

functional assays were eliminated. Next, the remaining entries were split into IC50 and Ki 

datasets accordingly, followed by removing the entries where the standard_relationship type 

was not ‘=’. At this point, target-specific assay description filters (Table S2) were applied to 

sort the data according to specific experimental conditions. Specifically, the hERG dataset 

was split into binding and clamp dataset, while each of the DAT datasets were divided into 

binding and uptake datasets. Subsequently, all entries were excluded that did not come from 

assays with at least four distinct compounds.
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In the hERG clamp dataset, 55 compounds present in a set of high-quality measurements 

of hERG affinity by gigaseal patch clamp electrophysiology41 were removed (the affinity 

data from that study were then added back to the dataset after applying the filters in Table 

S2). At this point, all salt forms present in the datasets were converted to neutral form, 

and entries with compounds containing unusual elements (defined as boron, deuterium, and 

silicon) were excluded. All entries with a compound having a molecular weight of over 650 

were then excluded. For any entry without a pchembl (defined as: −Log(molar IC50, XC50, 

EC50, AC50, Ki, Kd or Potency)) value, but a numerical value with a compatible unit in 

standard_value and standard_units fields, we calculated the pchembl value accordingly.

Finally, all entries were clustered by the Tanimoto distances between the 2048-bit, 2-

radius Morgan fingerprints of their respective chemical structures. Entries with a Tanimoto 

similarity of greater than 0.99 were considered as having identical structures; for each group 

of identical structures, the entry with the lowest pchembl value was selected to be part of 

the training set. As the chemical structure and pIC50 values for the hERG training set were 

written out, structures and values for the gigaseal patch clamp electrophysiology41 data set, 

described above, were added to the final training dataset.

After cleaning up the dataset with the filters above, the final dataset was used for the QSAR 

regression model construction. The numbers of compounds after each filter applied can be 

found in Table S1.

To prepare the training dataset for the classification models, the final datasets for regression 

were then divided into binary classification. The nonbinders were defined when pIC50 or 

pKi value is smaller than or equal to 5 (i.e., nonbinder). The binders were the log value 

bigger than or equal to 6 (i.e., binder). Molecules with pIC50 or pKi value between 5 and 6 

were excluded.

Building QSAR models with machine learning approach

To predict hERG and DAT binding affinities, machine learning methods of eXtreme gradient 

boosting (XGBoost) and random forest (RF) in scikit-learn61 were used for constructing 

regression and classification QSAR models. Using the RDkit Python package,62 we first 

used all the available 200 descriptors defined in _descList of rdkit.Chem.Descriptors to 

calculate various properties for each compound, as well as the Gobbi 2D pharmacophore to 

calculate pharmacophore descriptors. In building the machine learning based model, we first 

reserve 15% data as the testing dataset for evaluating a model and 85% data as the training 

dataset to construct a model. It is a stochastic process to split the dataset and affect the 

model parameters.

To calculate the applicability domain (Figure S9), we first calculated the Morgan similarities 

of all pairs of compounds in a training dataset. The similarity was then converted into 

distance (1-similarity). The average and standard deviation of the distance distributions from 

all calculation were then used to determine the radius of applicability domain of the training 

dataset. For a testing dataset, the minimum distance of each testing molecule to any entry 

in the training dataset was calculated to confirm the radius of applicability domain is large 

enough to cover all testing molecules.
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During the model training with machine learning approaches, the hyper-parameters space 

was grid-searched with sci-learning kit. 10-fold cross-validation was also used to determine 

the best performance with unique descriptors and optimized parameters. The initial 

parameters of using XGBoost for this grid search included colsample_bytree: [0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 0.9, 1]; subsample: [0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]; max_depth: [2, 3, 4, 

5, 6, 7, 8]; and learning_rate: [0.001, 0.01, 0.02, 0.08, 0.1]. Similarly, the initial parameters 

of using RF was the following: n_estimators: [30, 100, 300, 1000, 3000, 10000, 30000, 

100000], while we set the criterion to be gini (i.e., Gini importance sums over the number 

of tree splittings for each feature, the higher the better) for classification model and mae 

(i.e., mean absolute error) for regression model. Those initial parameters were the same in 

building regression and classification models. To evaluate how many models during training 

were adequate to reduce the stochastic uncertainty from randomly splitting the dataset (85% 

training and 15% testing), we first constructed a set of 35 independent models for each 

dataset. For each set of models, we randomly select certain number (n=1, …, 35) of models 

by a bootstrapping sampling with 100 repeats, and calculated the averages and standard 

deviations of R2 values for n models (Figure S2, left panels). We then calculated the slope 

of the trending curve for the standard deviations (Figure S2, right panels). Our results show 

that 15 models would be adequate to eliminate the stochastic uncertainty in most of cases, 

except for the models based on the hDAT uptake data. Therefore, we included 35 models 

with different random splittings for benchmarking the regression models.

The random_state in both XGBoost and RF is a stochastic element as well. Our benchmarks 

show that the random_state has some impact in model building, but far less than that 

in randomly splitting the dataset into training and testing datasets. Thus, we used fixed 

random_state in optimizing the parameters to build the final models. In building the 

final model set using 100% data for a condition, we build 10 models each with different 

random_state.

Metrics for model evaluation

The coefficient of determination (R2) and root mean square error (RMSE) are the metrics 

for evaluating the regression model performance. We used the toolkits implemented in 

scikit-learn to calculate R2 and RMSE between the model predicted and experimentally 

measured pIC50/pKi values.

The performance of a classification model can be described by a confusion matrix 

containing true positives (TP), true negatives (TN), false positives (FP), and false negatives 

(FN), which are used to assess accuracy, sensitivity, and specificity. Accuracy is the most 

common model evaluation metric in classification validation.

Accuracy = TP+TN
TP+FP + FN + TN

Sensitivity (true positive rate or recall) is the ratio of correct positive prediction to the total 

positive prediction.
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Sensitivity = TP
TP+FN

Specificity (true negative rate) is the ratio of correct negative prediction to the total negative 

prediction.

Specificity = TN
TN+FP

F-Score (F1 score) is the harmonic mean of precision and recall, where precision is defined 

as TP
TP+FP .

F1 = 2 ⋅ precision⋅recall
precision+recall

Molecular docking and modeling of hDAT

The representative human DAT (hDAT) model was selected from our previous hDAT 

models47 with outward-open conformations. Based on our established structure-activity 

relationship of DAT inhibitors and our previous modeling and simulation studies with 

hDAT models,47 from the resulting docking poses of JJC8-016 using AutoDock Vina,63 we 

chose the pose with the bisphenyl moiety occupying the S1 site and the charged nitrogen 

forming an ionic interaction with Asp79 of hDAT. The model of hDAT/JJC8-088 complex 

has been reported in our previous study.13 The pKa predictions of both JJC8-088 and 

JJC8-016 were performed using both Jaguar and Epik programs in Schrodinger suite (2019–

2) and force field parameterization from force field builder in Schrodinger suite (2019–2) 

was carried out for JJC8-016. The protein/ligand complexes were then embedded with 

explicit 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid bilayer (POPC) with the 

same orientation of dDAT/nortriptyline structure (PDB ID 4M48 from the Orientation of 

Proteins in Membranes database).64 The systems were then solvated using simple point 

charge (SPC) water model65 and neutralized with 0.15 M NaCl. The final model system 

contained ~131,000 atoms.

Molecular docking and modeling of hERG

The molecular dynamics flexible fitting (MDFF)-refined cryo-EM structure of hERG (PDB 

ID 5VA2) was used for molecular docking, as described below. The details of the structure 

refinement can be found in Khan et al.48 The missing loops built using ROSETTA loop 

modelling, were minimized and briefly equilibrated to avoid steric clashes, and did not 

contain the Per-Arnt-Sim (PAS) domain.66 The selected hERG models above were then 

used as the model for docking. The docking of JJC8-016 and JJC8-088 to hERG model 

was performed using Glide package in Schrodinger suite. The Glide-XP (extra-precision)67 

from the Maestro suite in Schrödinger was used for all docking calculations with a ligand 

vdW scale factors set to 0.80 and a RMSD cut-off of 2.0 Å. JJC8-016 and JJC8-088 were 
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docked to the primary binding pocket identified in a number of studies: the internal central 

cavity. The position of the docking grid was set to 0,0,Z, where Z corresponds to the position 

of a center of mass for residue F656 in distal S6.53, 56, 68 As hERG1 biological assembly 

is tetrameric, all four subunits were considered to build receptor grids. The receptor grid 

dimensions were then sub-divided into inner and outer cubes. The length of the inner cube 

box edge was set to 10 Å and represents the space explored by Glide as acceptable positions 

for the geometrical center of the drugs. The outer box edge, representing the total space 

explored by all atoms comprising ligand was set to 26 Å. Only poses with energy score 

(Gscore) of ≤ −3 kcal/mol were used in further analysis. The absence of the membrane 

phase in docking studies represents a natural challenge to the direct interpretations of the 

binding scores, and therefore we only use these scores to assess a relative likelihood (relative 

to the most favorable binding score) of different binding poses. Hence, coordinates of 

hERG-ligand from molecular docking were used to seed MD simulations with explicit lipid 

bilayer. After docking poses were selected, we immersed the hERG/ligand complexes in 

explicit POPC lipid bilayer and water environment. The orientation of the complexes in 

the membrane was guided by that calculated for the cryo-EM structure of hERG (PDB 

ID 5VA152) in the Orientation of Proteins in Membranes database.64 Similar to hDAT, 

the model systems of hERG complexes were then solvated using SPC water model65 and 

neutralized with 0.15 M KCl. The final simulated system contained ~247,000 atoms.

MD simulations and analysis

MD simulations of hDAT/JJC8-016, hDAT/JJC8-088, hERG/JJC8-016 and hERG/JJC8-088 

complexes were performed using Desmond MD engine (D. E. Shaw Research, New York, 

NY) and OPLS3e force field.69 Langevin dynamics was performed with NPγT ensemble 

at constant temperature (310 K) and 1 atm constant pressure with the hybrid Nose-Hoover 

Langevin piston method70 on an anisotropic flexible periodic cell, and a constant surface 

tension (x-y plane). The systems were first minimized and equilibrated with restraints on 

the ligand heavy atoms and protein backbone atoms. The restraints were removed during the 

production phase of the simulations. Seven independent trajectories of hDAT/JJC8-016 and 

five of hDAT/JJC8-088 complexes were collected with the aggregated simulation time of 

15.5 and 11.1 μs, respectively (Table S6). For hERG, we collected six hERG/JJC8-016 and 

three hERG/JJC8-088 trajectories with accumulated lengths of 4.86 and 3.6 μs, respectively 

(Table S6). The analysis was performed using MDAnalysis71, VMD72 and in-house Python 

scripts.

Radioligand binding assay of rDAT

Frozen striatal membranes, dissected from male Sprague−Dawley rat brains (supplied on 

ice by Bioreclamation, Hicksville, NY), were homogenized in 20 volumes (w/v) of ice 

cold modified sucrose phosphate buffer (0.32 M sucrose, 7.74 mM Na2HPO4, and 2.26 

mM NaH2PO4, pH adjusted to 7.4) using a Brinkman Polytron (Setting 6 for 20 s) and 

centrifuged at 48,400 × g for 10 min at 4 °C. The resulting pellet was resuspended in buffer, 

recentrifuged, and suspended in ice cold buffer again to a concentration of 20 mg/mL, 

original wet weight (OWW). Experiments were conducted in 96-well polypropylene plates 

containing 50 μL of various concentrations of the inhibitor, diluted using 30% DMSO 

vehicle, 300 μL of sucrose phosphate buffer, 50 μL of [3H]WIN 35,428 (final concentration 
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1.5 nM; PerkinElmer Life Sciences, Waltham, MA), and 100 μL of tissue (2.0 mg/well 

OWW). All compound dilutions were tested in triplicate and the competition reactions 

started with the addition of tissue, and the plates were incubated for 120 min at 0–4 °C. 

Nonspecific binding was determined using 10 μM indatraline.

Electrophysiology of hERG blockade

The extracellular solution contained (in mM) NaCl 140, KCl 5.4, CaCl2 1, MgCl2 1, 

HEPES 5, glucose 5.5, and was kept at pH 7.4 with NaOH. Micropipettes were pulled from 

borosilicate glass capillary tubes on a programmable horizontal puller (Sutter Instruments, 

Novato, CA). The pipette solution contained the following: 10 mM KCl, 110 mM K-

aspartate, 5 mM MgCl2, 5mM Na2ATP, 10 mM EGTA - ethylene glycol-bis(-aminoethyl 

ether)-N,N,N,N tetra-acetic acid, 5 mM HEPES, and 1mM CaCl2. The solution was 

adjusted to pH 7.2 with KOH. Standard patch-clamp methods were used to measure the 

whole cell currents of hERG mutants expressed in HEK 293 cells using the AXOPATCH 

200B amplifier (Axon Instruments). The holding potential was −80 mV. The amplitudes 

of tail currents were measured when the voltage was returned to −100 mV after + 50 mV 

1-second depolarization. The compounds were dissolved in Tyrode solution immediately 

before the experiments and the solutions were used for the next two hours during the 

experiments.

Statistical analysis of electrophysiology data

The data are presented as the mean +/− S.D. One-way ANOVA test was used to analyze the 

data. P < 0.05 was designated as being significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of the pIC50 and pKi values of hERG ligands retrieved from ChEMBL.
We divided the initially retrieved dataset into “binding” and “clamp” datasets according to 

the experimental methods used (see text and Table S2) and further filtered them (Table S1). 

The included data for these two panels are the final datasets to be used for training. The peak 

values for each dataset are indicated.
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Figure 2. Distribution of the pIC50 and pKi values of DAT ligands retrieved from ChEMBL.
Similar to the hERG datasets, we divided the initially retrieved dataset into “binding” and 

“uptake” datasets according to the experimental methods used (see text and Table S2); in 

addition, we evaluated the situations for species specific datasets, i.e., hDAT and rDAT. We 

further filtered them similarly as the hERG dataset (Table S1). The included data for these 

panels are the final datasets to be used for training. The peak values for each dataset are 

indicated.
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Figure 3. Correlations between the predicted and experimentally measured hERG and DAT 
affinities.
The models in the upper row (A, C, E, G) used XGBoost and those in bottom row (B, D, F, 

H) used RF in training. The specific datasets used for training, i.e., binding and clamp for 

hERG and binding and uptake for DAT, are indicated on top of each column. The results of 

classification prediction are color-coded. The blue and red represent binder and non-binder, 

respectively. The compounds that have been experimentally measured to have pIC50 or pKi 

between 5 and 6 are colored in black. The red lines indicate the regions that <5 and >6 are 

defined as non-binder and binder, respectively. Note that among 18 compounds in this set, 

ten of them have been published previously13, 45, 46.

Lee et al. Page 24

J Chem Inf Model. Author manuscript; available in PMC 2022 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. JJC8-016 and JJC8-088 forms distinct interactions with DAT but not with hERG.
Panels A and D show the overviews of the DAT and hERG models viewed parallel to the 

membrane plane, and the locations of their binding sites (dotted boxes). Panels B-F show the 

representative binding poses of bound JJC8-016 and JJC8-088 in DAT (B and C) and hERG 

(E and F) resulting from the MD simulations. The critical residues in the binding sites are 

shown, including Val152 in DAT and one of Phe656 in hERG that are in close contact with 

the bisphenol moieties of the ligands.
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Figure 5. The predicted differences between DAT pKi and hERG pIC50 for the validation 
compound set show a similar trend as those based on experimental measurements.
(A) the computationally predicted DAT pKi are plotted against hERG pIC50 for each 

compound in the validation set. The results from XGBoost-trained all-DAT (binding) and 

hERG (clamp) models were used. (B) The experimentally measured DAT pKi are plotted 

against the hERG pIC50 for each compound. The red shades are desired regions as hERG 

nonbinder and DAT binder. (C) The differences of DAT pKi and hERG pIC50 for each 

compound are plotted against the corresponding differences of the experimentally measured 

values. The red circle marks the compound with the highest affinity difference between DAT 

and hERG based on experimentally measured values. Pearson correlation coefficient R is 

0.58 for the DAT versus hERG predicted affinities (A) and 0.69 for their experimentally 

measured affinities (B).
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Table 1.

Benchmarks of the hERG regression and classification models.

Models Metrics Dataset
XGBoost Random Forest

Ave. S.D. Best Ave. S.D. Best

Regression

R 2
binding 0.66 0.04 0.76 0.59 0.04 0.70

clamp 0.65 0.08 0.80 0.54 0.08 0.67

RMSE
binding 0.58 0.03 -- 0.64 0.03 --

clamp 0.59 0.06 -- 0.62 0.06 --

Classification

Accuracy
binding 0.89 0.03 -- 0.90 0.02 --

clamp 0.87 0.03 -- 0.89 0.03 --

Sensitivity
binding 0.89 0.04 -- 0.89 0.04 --

clamp 0.71 0.06 -- 0.75 0.07 --

Specificity
binding 0.88 0.03 -- 0.90 0.03 --

clamp 0.96 0.02 -- 0.97 0.02 --

F Score
binding 0.88 0.03 -- 0.89 0.03 --

clamp 0.80 0.05 -- 0.83 0.05 --

Ave., averages of 35 models for each dataset for the regression modeling, or 25 models for each dataset for the classification modeling (see 
Methods and Figure S2); S.D., standard deviation.
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Table 2.

Benchmarks of the DAT regression and classification models.

Models Metrics Dataset
XGBoost Random Forest

Ave. S.D. Best Ave. S.D. Best

Regression

R 2

all-DAT
binding 0.71 0.04 0.80 0.66 0.05 0.75

uptake 0.66 0.11 0.83 0.64 0.11 0.78

hDAT
binding 0.70 0.05 0.79 0.68 0.05 0.76

uptake 0.35 0.37 0.76 0.35 0.33 0.80

rDAT
binding 0.69 0.10 0.85 0.67 0.08 0.80

uptake 0.62 0.14 0.84 0.60 0.14 0.84

RMSE

all-DAT
binding 0.65 0.04 -- 0.70 0.04 --

uptake 0.60 0.08 -- 0.63 0.08 --

hDAT
binding 0.68 0.06 -- 0.71 0.06 --

uptake 0.58 0.15 -- 0.58 0.14 --

rDAT
binding 0.61 0.10 -- 0.68 0.10 --

uptake 0.63 0.09 -- 0.65 0.09 --

Classification Accuracy

all-DAT
binding 0.96 0.02 -- 0.96 0.02 --

uptake 0.95 0.03 -- 0.95 0.03 --

hDAT
binding 0.95 0.02 -- 0.96 0.02 --

uptake 0.79 0.17 -- 0.77 0.17 --

rDAT
binding 0.97 0.02 -- 0.96 0.03 --

uptake 0.99 0.02 -- 0.99 0.02 --

Sensitivity

all-DAT
binding 0.99 0.01 -- 0.99 0.01 --

uptake 0.99 0.02 -- 0.99 0.02 --

hDAT
binding 0.98 0.02 -- 0.99 0.01 --

uptake 0.96 0.12 -- 0.94 0.14 --

rDAT
binding 0.99 0.01 -- 0.99 0.01 --

uptake 1.00 0.01 -- 1.00 0.01 --

Specificity

all-DAT
binding 0.63 0.13 -- 0.61 0.11 --

uptake 0.52 0.32 -- 0.56 0.27 --

hDAT
binding 0.68 0.16 -- 0.70 0.15 --

uptake 0.00 0.00 -- 0.00 0.00 --

rDAT
binding 0.52 0.31 -- 0.40 0.33 --

uptake 0.84 0.30 -- 0.87 0.30 --

F Score

all-DAT
binding 0.98 0.01 -- 0.98 0.01 --

uptake 0.97 0.02 -- 0.97 0.02 --

hDAT
binding 0.97 0.01 -- 0.98 0.01 --

uptake 0.87 0.11 -- 0.86 0.11 --

rDAT
binding 0.98 0.01 -- 0.98 0.01 --

uptake 0.99 0.01 -- 1.00 0.01 --

Ave., averages of 35 models for each dataset for the regression modeling, or 25 models for each dataset for the classification modeling (see 
Methods and Figure S2); S.D., standard deviation.
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