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Abstract
Artificial intelligence (AI), especially deep learning, is gaining extensive attention 
for its excellent performance in medical image analysis. It can automatically make 
a quantitative assessment of complex medical images and help doctors to make 
more accurate diagnoses. In recent years, AI based on ultrasound has been shown 
to be very helpful in diffuse liver diseases and focal liver lesions, such as 
analyzing the severity of nonalcoholic fatty liver and the stage of liver fibrosis, 
identifying benign and malignant liver lesions, predicting the microvascular 
invasion of hepatocellular carcinoma, curative transarterial chemoembolization 
effect, and prognoses after thermal ablation. Moreover, AI based on endoscopic 
ultrasonography has been applied in some gastrointestinal diseases, such as 
distinguishing gastric mesenchymal tumors, detection of pancreatic cancer and 
intraductal papillary mucinous neoplasms, and predicting the preoperative tumor 
deposits in rectal cancer. This review focused on the basic technical knowledge 
about AI and the clinical application of AI in ultrasound of liver and gastroen-
terology diseases. Lastly, we discuss the challenges and future perspectives of AI.
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Core Tip: Artificial intelligence (AI) based on ultrasound has been confirmed to be helpful in diagnosing 
diffuse liver diseases and focal liver lesions, such as analyzing the severity of nonalcoholic fatty liver and 
the stage of liver fibrosis, identifying benign and malignant liver lesions, predicting microvascular 
invasion of hepatocellular carcinoma, curative transarterial chemoembolization effect, and prognoses after 
thermal ablation. AI based on endoscopic ultrasonography has been applied in some gastrointestinal 
diseases. We focused on basic technical knowledge about AI and the aforementioned clinical application 
in the ultrasound of liver and gastroenterology. Additionally, we discuss the challenges and future 
perspectives of AI.
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INTRODUCTION
Liver disease causes two million deaths per year in the world among which cirrhosis is the 11th leading 
cause of death in the world and liver cancer is the 16th leading cause of death[1]. The prevalence of 
nonalcoholic fatty liver disease (NAFLD) is 25.0% and is estimated to be 33.5% by 2030[2]. Gast-
rointestinal diseases affect an estimated 60 to 70 million American citizens annually. It is reported that 
pancreatic cancer (PC) is one of the top five causes of death from cancer, and colorectal cancer accounts 
for 8.5% of cancer-related deaths[3-5]. Therefore, it is of great importance to pay attention to these 
diseases.

In clinical practice, many imaging techniques such as X-ray, computed tomography (CT), magnetic 
resonance imaging (MRI), and ultrasound have played a vital role in the detection and treatment of 
diseases[6]. Ultrasound, a noninvasive and real-time diagnostic technique, is the most commonly used 
method for detecting and diagnosing human digestive diseases[7]. However, the interpretation and 
analysis of ultrasound images depend deeply on the subjective judgment and experience of human 
experts. Radiologists may make mistakes due to exhaustion when dealing with a large number of 
images[8].

Artificial intelligence (AI) is defined as computer algorithms created by humans and improved with 
analogs of the thoughts, judgments, and reactions that take place in the human brain. In recent years, 
radiologists have increasingly embraced the aid of AI-powered diagnoses. AI can make a quantitative 
analysis by recognizing the information of images automatically and is widely applied in the medical 
images of ultrasound in diffuse liver diseases, focal liver lesions, PC, and colorectal cancer. In this 
review, we described the development of AI-based ultrasound in the aforementioned applications. In 
addition, we also discussed the future opportunities and challenges of AI-based ultrasound.

AI
Currently, the algorithms of AI used in medical images mainly include traditional machine learning 
algorithms and deep learning.

Machine learning
Machine learning is described as a kind of data science that offers computers with the capacity to study 
without being programmed with specific rules[9]. It focuses on computer algorithms that are studied 
from the training model and give predictions on another model[10]. Machine learning depends 
primarily on the predefined characteristics that display the regular patterns inherent in models acquired 
from regions of interest with explicit parameters on the basis of expert experience. Then, other medical 
image features, such as various mass shape, size, and echo, can be quantified.

Radiomics, which belongs to traditional machine learning, is a popular field of study related to the 
acquisition and assessment of patterns within medical images, including CT, MRI, and ultrasound. 
These patterns include complicated patterns that are difficult to recognize or analyze by the human eye
[11].

https://www.wjgnet.com/1007-9327/full/v28/i38/5530.htm
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Deep learning
Deep learning is at the leading edge of AI and is developing rapidly. Deep learning is described as a 
group of artificial neural network (ANN) algorithms, which include many hidden layers. Namely, deep 
learning depends on a subset of algorithms that try to model high-level abstractions[12].

Recently, convolutional neural networks (CNNs) are the preferred type of deep learning architecture 
in the assessment of medical images[13]. CNNs consist of an input layer, multiple hidden layers, and an 
output layer (Figure 1). The hidden layers include convolutional layers, pooling layers, connected 
layers, and normalization layers. Convolutional layers and pooling layers can complete feature 
extraction and aggregation[9].

APPLICATION OF ULTRASOUND-BASED AI IN HEPATOLOGY
Diffuse liver diseases
Diffuse liver diseases display a failure in the metabolic and synthesis processes of the liver[14]. Liver 
biopsy is the gold standard for the diagnosis of fibrosis and NAFLD. However, liver biopsy is an 
invasive process that has many complications such as hemorrhage, biliary peritonitis, and pneumo-
thorax[15]. In addition, liver biopsy is not feasible for the long-term management of patients with 
chronic liver diseases. Noninvasive liver imaging methods such as CT, MRI, and ultrasound have been 
extensively studied. Ultrasound is one of most common methods to diagnose liver diseases due to its 
noninvasiveness, inexpensive price, and real-time ability. Machine learning algorithms based on 
ultrasound have been applied for analysis of steatosis and the staging of liver fibrosis. Table 1 shows the 
application of ultrasound-based AI in diffuse liver disease.

Fatty liver diseases: An excess amount of fat in the liver cells is found in fatty liver diseases (FLD). The 
main causes of FLD include obesity, alcoholism, diabetes, nonalcoholic steatohepatitis, drugs, and toxins
[16,17]. FLD is related to the growing risk of cirrhosis and liver cancer. The most common cause of FLD 
is NAFLD, which ranges in prevalence from 25% to 45%[18]. Several noninvasive imaging methods 
such as CT, MRI, and ultrasound can diagnose NAFLD[19]. Ultrasound is the cheapest diagnostic 
method with 93% sensitivity, while hepatic steatosis is greater than 33%[18].

Conventional ultrasound is commonly used for NAFLD evaluation, but its qualitative nature, doctor 
dependency, and unsatisfactory accuracy limits the application. Moreover, the ultrasound images of 
fatty liver and early cirrhosis have many common features, making it hard to distinguish the two 
diseases by the human eye[20].

In recent years, ultrasound-based AI has demonstrated high accuracy for detection of steatosis and 
represents excellent reproducibility and reliability.

Byra et al[21] created a CNN model to acquire features from B-mode ultrasound image. It was 
reported that they could assess the amount of steatosis present in the liver with the area under the 
receiver operating characteristic curve (AUC) of 0.98, and their approach may assist the doctors in 
automatically assessing the amount of fat in the liver clinically[21].

Biswas et al[22] revealed that a deep learning-based algorithm reached a superior performance for 
FLD identification and risk stratification with 100% accuracy and AUC of 1.0 when compared with a 
conventional machine learning system support vector machine (SVM) (accuracy: 82%, AUC: 0.79) and 
extreme learning machine (accuracy: 92%, AUC: 0.92).

Deep learning has also been applied to quantitatively evaluate NAFLD. The radiofrequency data of 
ultrasound displays much more information of hepatic microstructure than that of gray-scale B-mode 
images[23]. Han et al[24] developed a deep learning algorithm that used radiofrequency data for 
NAFLD assessment. The results revealed that the sensitivity, specificity, and positive predictive value 
(PPV) for NAFLD diagnosis were 97%, 94%, and 97%, respectively. They confirmed that the quantitative 
analysis of raw radiofrequency ultrasound signals showed the potential of identifying NAFLD and 
quantifying hepatic fat fraction[24].

Liver fibrosis and cirrhosis: Patients with chronic liver disease may have no clinical symptoms for an 
extended period, or it may develop to fibrosis and cirrhosis[25]. The activation of the resting hepatic 
stellate cell into an activated myofibroblast plays an important role in the progression of liver fibrosis. 
The activated myofibroblast expresses abundant a-smooth muscle actin and collagen[26].

Cirrhosis, which consists of various nodules and is harder than the normal liver, is the advanced 
period of fibrosis[27]. Liver fibrosis and early cirrhosis are confirmed to be partly reversible. Therefore, 
the precise diagnosis of liver fibrosis is vital for the treatment and management of chronic liver disease 
patients.

In clinical practice, liver biopsy is the gold standard for the diagnosis of liver fibrosis. Various 
noninvasive modalities such as ultrasound and elastography have been used as alternatives to liver 
biopsy. Some studies suggest that AI models based on ultrasound and elastography have great potential 
for the classification of liver fibrosis.



Liu JQ et al. Ultrasound AI in gastroenterology and hepatology

WJG https://www.wjgnet.com 5533 October 14, 2022 Volume 28 Issue 38

Table 1 Application of ultrasound-based artificial intelligence in diffuse liver diseases

Ref. Diseases: number of cases Type of ultrasound Algorithm of AI Performance

Sensitivity: 100%

Specificity: 88%

Accuracy: 96%

Severely obese patients: 55Byra et al[21]

Fatty liver disease: 38

B-mode CNN

AUC: 0.98

Normal patients: 27 Accuracy: 100%Biswas et al[22]

Fatty liver disease: 36

B-mode Deep learning

AUC: 1.0

Sensitivity: 97%

Specificity: 94%

NAFLD: 140 

Accuracy: 96%

Han et al[24]

Control: 64

B-mode CNN

AUC: 0.98

F2 accuracy: 91%

F3 accuracy: 85%

F4 accuracy: 81%

Yeh et al[28] Postsurgical human liver samples: 
20

B-mode SVM

F6 accuracy: 72% 

Sensitivity: 95%Liver fibrosis or cirrhosis: 239

Training group: 179 Specificity: 85%

Zhang et al[29]

Validation group: 60

Duplex ANN

Accuracy: 88%

S0: 4 S0 accuracy: 100%

S1 accuracy: 90%

S2 accuracy: 70%

S1: 16

S3 accuracy: 90%

S2: 8

S3: 5

Gao et al[30]

S4: 4 

B-mode ANN

S4 accuracy: 100%

Patients: 3446

Internal validation set: 263

Internal test set: 266

Lee et al[31]

External test set: 572

B-mode CNN AUC: 0.86

Chronic liver disease: 70 Sensitivity: 94%

Specificity: 81%

Gatos et al[34,35]

Healthy: 56

Shear-wave elastography SVM

Accuracy: 87%

Liver fibrosis: 398

Training group: 266

F4 AUC: 0.97

F3 AUC: 0.98

Wang et al[36]

Validation group: 132

Shear-wave elastography Deep learning radiomic

F2 AUC: 0.85

S2 AUC: 0.95Liver fibrosis: 401

S3 AUC: 0.93

Xue et al[38]

Patient without fibrosis: 65

Elastography CNN by TL radiomics

S4 AUC: 0.93

AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the receiver operating characteristic curve; CNN: Convolutional neural 
network; NAFLD: Nonalcoholic fatty liver disease; SVM: Support vector machine; TL: Transfer learning.
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Figure 1 Framework of convolutional neural networks. Blue dots represent multiple hidden layers.

AI based on conventional ultrasound: AI based on conventional ultrasound has been applied to 
improve their performance for the diagnosis and grading of liver fibrosis.

Yeh et al[28] built an SVM model to analyze liver fibrosis. B-mode images of 20 fresh postsurgical 
human livers were used to assess ultrasound capacity in evaluating the stage of fibrosis. The study 
indicated the best classification accuracy of two, three, four, and six classes were 91%, 85%, 81%, and 
72%, respectively[28]. The results confirmed that the SVM model may be suggested to assess diverse 
liver fibrosis stage.

Other than the B-mode ultrasound, duplex ultrasound has also been applied to diagnose liver 
fibrosis. Using an ANN model based on duplex ultrasound, Zhang et al[29] demonstrated that their 
model reached the accuracy, sensitivity, and specificity were 88.3%, 95.0%, and 85.0%, respectively. The 
ANN model included five ultrasonographic parameters: thickness of spleen, liver vein waveform, the 
hepatic parenchyma, liver artery pulsatile index, and hepatic damping index. The study suggested that 
their ANN model has the potential to diagnose liver fibrosis noninvasively[29].

Studies confirmed that radiomics show great performance in the grading of liver fibrosis. By the use 
of texture analysis to analyze ultrasound liver images, the study found the accuracies of S0-S4 were 
100%, 90%, 70%, 90%, and 100%, respectively[30].

It was reported that deep learning has great potential for liver fibrosis evaluation. Lee et al[31] built a 
deep CNN and trained a four-class model (F0 vs F1 vs F23 vs F4) to predict METAVIR scores. They used 
13608 ultrasound images of 3446 patients who accepted surgery, liver biopsy, or transient elastography 
to train the deep CNN model. The model achieved a higher AUC of 0.857 for the classification of 
cirrhosis compared with five radiologists (AUC range, 0.656-0.816; P < 0.05) using the external test set
[31].

AI based on ultrasound elastography: ultrasound elastography has been performed to acquire 
quantitative assessment of liver tissue stiffness, which is related to the grades of fibrosis. These techno-
logies include strain elastography and shear wave elastography (SWE)[32]. Recently, some studies 
confirmed that the AI based on SWE has great value to identify and stage liver fibrosis.

Compared to conventional radiomics, a multiparametric ultrasonic model using machine learning 
algorithms demonstrated better manifestation in fibrosis assessment[33]. By quantifying color 
information from SWE images, Gatos et al[34,35] created an SVM model that could differentiate patients 
with liver diseases from controls with accuracy, sensitivity, and specificity of 87.3%, 93.5% and 81.2%, 
respectively.

Deep learning has also been applied in the assessment of liver fibrosis. A multicenter study used deep 
learning radiomics on 2D-SWE ultrasound images for the classification of liver fibrosis[36]. 2D-SWE 
ultrasound images had higher AUCs of 0.97 for F4, 0.98 for ≥ F3, and 0.85 for ≥ F2 fibrosis when 
compared with standard 2D-SWE.

It is necessary to contain a large training dataset for deep learning. However, it is difficult and 
expensive to get abundant medical images in clinics. One method to solve this problem is the 
employment of transfer learning (TL), which can enhance the performance by TL from other areas to the 
ultrasound area[37]. A study developed a CNN model by TL radiomics to assess ultrasound images of 
gray-scale modality and elastogram modality for the grade of accurate liver fibrosis. TL in gray-scale 
modality and elastogram modality revealed much higher diagnostic accuracy of AUCs compared with 
non-TL. Multimodal gray-scale modality + elastogram modality was confirmed to be the most precise 
diagnostic model with AUCs of 0.930, 0.932, and 0.950 for classifying ≥ S2, ≥ S3, and S4, respectively. It 
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was suggested that this TL model had excellent performance in liver fibrosis staging in clinical applic-
ations[38].

Focal liver lesion
Focal liver lesions (FLLs) are described as an abnormal part of the liver mainly coming from 
hepatocytes, biliary epithelium, and mesenchymal tissue[39]. Due to its cheap price, noninvasiveness, 
and real-time imaging, ultrasound is the preferred method for the diagnosis of FLLs. Based on this 
trend, the AI models using ultrasound images have more advantages over CT and MRI in routine 
clinical applications[40]. Table 2 shows the application of ultrasound-based AI in FLLs.

The application of AI in the diagnosis of benign and malignant FLLs: Hepatocellular carcinoma 
(HCC) is the fifth most common malignancy worldwide and accounts for the second leading cause of 
cancer-related deaths[41]. It is vital to identify benign and malignant FLLs for patients in the early stage.

AI based on conventional ultrasound: deep learning based on B-mode ultrasound has been 
demonstrated to be helpful in the diagnosis of benign and malignant FLLs. A CNN model was used to 
distinguish benign and malignant FLLs and achieved a higher accuracy than two experts[42]. Yang et al
[43] developed a multicenter study to improve the B-mode ultrasound diagnostic performance for FLLs. 
The CNN of ultrasound performed  high sensitivity and specificity in detecting FLLs, and it may be 
helpful for less-experienced doctors to enhance their judgment in liver cancer diagnosis.

AI based on B-mode ultrasound images has also been applied for the diagnosis of primary or 
secondary malignant liver tumors. A study proposed machine learning for discriminating HCC and 
metastatic liver tumors using SVM. The results revealed a classification accuracy of 91.6% with a 
sensitivity of 90.0% for HCCs and 93.3% for metastatic liver tumors[44].

AI based on contrast-enhanced ultrasound (CEUS): Recently, CEUS has become a commonly used 
ultrasound modality for the detection of FLLs[45]. Many studies have indicated that CEUS images had 
better sensitivity and specificity for the differentiation of malignant and benign tumors compared with 
B-mode images. One of the advantages of CEUS is that the images can be analyzed quantitatively. Time 
intensity curve (TIC) is a common quantitative analysis tool for CEUS[46]. Recently, AI based on CEUS 
images was reported to have great performance for the discrimination of FLLs.

Gatos et al[47] created a pretrained SVM algorithm to distinguish benign and malignant FLLs. In this 
model, a complex segmentation method based on TIC was used to detect lesions and process contours 
of 52 CEUS images. The accuracy, sensitivity, and specificity were 90.3%, 93.1%, and 86.9%, respectively
[47]. Another study using SVM revealed that the sensitivity, specificity, and accuracy of benign and 
malignant grading were 94.0%, 87.1%, and 91.8%, respectively, while the classification accuracy of HCC, 
metastatic liver tumor, and benign were 85.7%, 87.7%, and 84.4%, respectively[46].

In addition to TIC, extracting features except TICs from a region of interest on CEUS images and 
videos was also applied in AI. A two-stage multiview learning framework, which was the integration of 
deep canonical correlation analysis and multiple kernel learning for CEUS-based computer-aided 
diagnosis, was proposed to identify liver tumors. The deep canonical correlation analysis-multiple 
kernel learning framework achieved performance for discriminating benign from malignant liver 
tumors with the accuracy, sensitivity, and specificity of 90.4%, 93.6%, and 86.8%, respectively[48].

The application of AI for the differential diagnosis of FLLs: With the development of AI, AI based on 
B-mode ultrasound images has great performance on the diagnosis of different FLLs. Hwang et al[49] 
extracted hybrid textural features from ultrasound images and used an ANN to diagnose FLLs. They 
indicated that the model revealed enormous potential with the diagnosis accuracy of over 96% among 
all FLLs groups (hemangioma vs malignant, cyst vs hemangioma, and cyst vs malignant)[49].

Deep learning was also applied in the distinction of different FLLs. Schmauch et al[50] created an 
algorithm that simultaneously detected and characterized FLLs. Although the amount of training data 
was relatively small, the average AUC of FLL detection and characterization was 0.935 and 0.916, 
respectively.

A CNN model was developed and validated for tumor detection and 6-class discrimination (HCC, 
focal fatty sparing, focal fatty infiltration, hemangiomas, and cysts)[51]. This model reached 87.0% 
detection rate, 83.9% sensitivity, and 97.1% specificity in the internal evaluation. In external validation 
groups, the model achieved 75.0% detection rate, 84.9% sensitivity, and 97.1% specificity.

CEUS also had excellent potential for AI to distinguish different FLLs. An ANN was applied to study 
the role of TIC analysis parameters of 4-class discrimination of liver tumors. The neural network had 
94.45% training accuracy and 87.12% testing accuracy. The automatic classification process registered 
93.2% sensitivity and 89.7% specificity[52].

Căleanu et al[53] reported the 5-class classification of liver tumors using deep neural networks with 
an accuracy of 88%. In this study, deep neural network algorithms were compared with state-of-the-art 
architectures, and a novel leave-one-patient-out evaluation procedure was presented.

All these studies indicated that AI based on conventional ultrasound and CEUS played a vital role in 
the detection and distinction of FLLs.

The application of AI in the management of HCC patients: Because of the development of new 
treatments, the management of HCC patients has become much more complicated. Radiomics can offer 
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Table 2 Application of ultrasound-based artificial intelligence in focal liver lesions

Ref. Diseases: number of 
cases Type of ultrasound Algorithm of AI Performance

All lesions

Accuracy: 84%

Benign lesions: 300

Uncertain set of lesions

Xi et al[42]

Malignant lesions: 296

B-mode CNN

Accuracy: 79%

AUC for EV: 0.924Benign tumor: 427

Sensitivity: 86.5%

Yang et al[43]

Malignant tumor: 1786

B-mode CNN

Specificity: 85.5%

Accuracy of HCC: 91.6%HCC: 27

Sensitivity

HCC: 90%

Virmani et al[44]

Metastatic liver tumor: 24

B-mode SVM

Metastatic liver tumor: 
93.3%

Accuracy: 96%

Cyst vs hemangioma

Cyst: 29

Cyst vs malignantHemangioma: 37

Hwang et al[49]

Malignant: 33 

B-mode ANN

Hemangioma vs malignant

Non-tumorous liver: 258 AUC

Hemangioma: 17

Metastasis: 48

FLL detection: 0.935

HCC: 6

Cyst: 30

Schmauch et al[50]

FNH: 8

B-mode CNN

FLL discrimination: 0.916

HCC: 2414 Detection rate: 87.0%

Cyst: 6600 Sensitivity: 83.9%

Hemangioma: 5374

Focal fatty sparing: 5110

Tiyarattanachai et al[51]

Focal fatty infiltration: 934

B-mode CNN

Specificity: 97.1%

Accuracy: 90.3%Benign FLL: 30

Sensitivity: 93.1%

Gatos et al[47]

Malignant FLL: 22

CEUS SVM

Specificity: 86.9%

Benign vs malignant

Accuracy: 91.8%

Sensitivity: 94%

Specificity: 87.1%

Benign FLL: 31

Accuracy

Benign: 84.4%

HCC: 87.7%

Kondo et al[46]

Malignant FLL: 67

CEUS SVM

Metastatic liver tumor: 
85.7%

Accuracy: 90.4%Benign FLL: 46

Sensitivity: 93.6%

Guo et al[48] CEUS Deep canonical correlation 
analysis and multiple kernel 
learning 
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Malignant FLL: 47 Specificity: 86.8%

HCC: 41 Training accuracy: 94.5%

Hypervascular liver 
metastasis: 20

Testing accuracy: 87.1%

Sensitivity: 93.2%Hypovascular liver 
metastasis: 12

Hemangioma: 16

Streba et al[52]

Focal fatty changes: 23

CEUS ANN

Specificity: 89.7%

HCC: 30

Hypervascular liver 
metastasis: 11

Hypovascular liver 
metastasis: 11

Hemangioma: 23

Căleanu et al[53]

FNH: 16

CEUS Deep neural network Accuracy: 88%

Dong et al[56] HCC: 322 B-mode Radiomics AUC: 0.81

HCC: 482

Training cohort: 341

Hu et al[57]

Validation cohort: 141

CEUS Radiomics AUC: 0.731

HCC: 313 AUC

Primary cohort: 192 Primary dataset: 0.849

Zhang et al[58]

Validation cohort: 121

CEUS Radiomics

Validation dataset: 0.788

HCC: 130

Training cohort: 89 

Liu et al[63]

Validation cohort: 41

CEUS Deep learning radiomics AUC: 0.93

HCC: 318

Training cohort: 255

Ma et al[66]

Validation cohort: 63

CEUS Radiomics AUC: 0.89

HCC: 419 C-index

RFA: 0.726RFA: 214

Liu et al[69]

SR: 205

CEUS Deep learning radiomics

SR: 0.741

AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the receiver operating characteristic curve; CEUS: Contrast-enhanced 
ultrasound; CNN: Convolutional neural network; EV: External validation; HCC: Hepatocellular carcinoma; FNH: Focal nodular hyperplasia; FLL: Focal 
liver lesion; RFA: Radiofrequency ablation; SR: Surgical resection; SVM: Support vector machine.

accurate assessment of great numbers of image features from medical images. These features that are 
difficult to detect by the human eye can be detected by machine learning or deep learning. AI models 
based on radiomics has also been reported to be applicable for the management of HCC, such as the 
prediction of microvascular invasion (MVI), curative transarterial chemoembolization (TACE) effect, 
recurrence after thermal ablation, and prognosis.

Predicting MVI: MVI is described as the invasion of tumor cells within a vascular space lined by 
endothelium. It has been proven that MVI is a predictor of early recurrence of HCC and poor survival 
outcomes[54]. The only way to confirm MVI is via histopathology after surgery. Patients with HCC can 
receive a great benefit when MVI is identified noninvasively and accurately before surgery[55]. The 
application of AI based on gray-scale ultrasound images and CEUS indicated good performance in 
predicting preoperative MVI.

A study indicated that the radiological features of gray-scale ultrasound images of gross tumoral area 
predicted preoperative MVI of HCC with an AUC of 0.81[56]. A CEUS-based radiomics score was built 
for preoperative prediction of MVI in HCC[57]. The radiomics nomogram revealed great potential in the 
detection of MVI with an AUC of 0.731 compared with the clinical nomogram with an AUC of 0.634. It 
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was indicated that the radiomics data based on ultrasound was a single predictor of MVI in HCC. Our 
group created a radiomics model based on CEUS to evaluate MVI of HCC patients before surgery. The 
model revealed a better detection in the primary group with an AUC of 0.849 vs 0.690 as well as the 
validation group with an AUC of 0.788 vs 0.661 when compared with the clinical model. We confirmed 
that the portal venous phase, delay phase, tumor size, rad-score, and alpha-fetoprotein level were single 
predictors related to MVI[58].

Predicting curative TACE effect: Pathways participating in important cancer-related progression, 
such as cell proliferation and angiogenesis, are major goals for the treatment of HCC patients. 
Additionally, transcription factors and cell cycle regulators are also considered to be interesting for anti-
HCC drugs[59].

TACE is a widely used first-line therapy for HCC patients diagnosed at the intermediate stage. The 
tumor response to the first TACE treatment is highly different and obviously related to the subsequent 
therapies as well as the patients’ survival[60]. Hence, the exact prediction of HCC responses after the 
first TACE treatment is vital for patients.

The prediction of tumor responses to TACE heavily depends on MRI and serological biomarkers[61,
62]. But these methods achieved unsatisfactory accuracy of prediction. The application of AI based on 
both B-mode ultrasound and CEUS demonstrated better prediction efficacy.

An AI-based radiomics was established and validated to predict the personalized responses of HCC 
to the first TACE session. The deep learning radiomics-based CEUS model showed better performance 
compared with the machine learning radiomics-based B-mode model and machine learning radiomics-
based time intensity curve of CEUS model with AUCs of 0.93, 0.80, and 0.81, respectively[63]. They 
suggested that the deep learning-based radiomics could benefit TACE candidates in clinical work.

Predicting recurrence after thermal ablation: Thermal ablation has been confirmed to be an available 
therapy for early-stage HCC patients who are unsuitable for operation or recurrence after surgery[64]. 
In addition, the recent 2-year recurrence rates of HCC patients who underwent thermal ablation were 
reported as 2%-18%[65]. The accurate preoperative prediction of thermal ablation outcomes is of great 
importance for HCC patients. Compared with other imaging modalities, CEUS is radiation-free and has 
better temporal resolution when revealing the blood supply of the tumor. The application of AI based 
on CEUS could be performed for the preoperative prediction of thermal ablation outcomes.

A radiomics model was created to predict the early and late recurrence of HCC patients who accepted 
thermal ablation[66]. The combined model including CEUS, ultrasound radiomics, and clinical factors 
showed better performance for early recurrence with an AUC of 0.89 and for late recurrence prediction 
with a C-index of 0.77.

Predicting the prognoses: Surgical resection (SR) and radiofrequency ablation (RFA) are common 
curative strategies for HCC patients diagnosed at the early stage[64]. Some studies have compared the 
long-term survival of RFA and SR for early-stage HCC patients[67,68]. However, the conclusions were 
sharply different. Hence, it is necessary to find useful predictive means to select the optimal patients 
who are suitable for RFA or SR before surgery. AI models based on CEUS had great performance for the 
prediction of progression-free survival (PFS).

A deep learning-based radiomics from CEUS images was built to predict the PFS of SR and RFA for 
HCC patients. Both SR and RFA models achieved high prediction accuracy of 2-year PFS. They also 
identified that a higher average probability of 2-year PFS may be acquired while some RFA and SR 
patients exchange their choices[69]. By utilizing conventional ultrasound images and CEUS, these AI 
prediction models can be applied in the individualized management of HCC patients.

APPLICATION OF ULTRASOUND-BASED AI IN UPPER GASTROINTESTINAL DISEASE 
Gastric mesenchymal tumors 
The majority of gastric mesenchymal tumors are occasionally found during routine esophagogastroduo-
denoscopy examinations. The incidence of gastric mesenchymal tumors is uncertain, but the prevalence 
of subepithelial tumors identified under endoscopy in Korea was reported as 1.7%[70]. Most gastric 
mesenchymal tumors are gastrointestinal stromal tumors (GISTs), which may metastasize to the liver 
and peritoneum after surgery[71,72]. Hence, distinguishing GISTs from benign mesenchymal tumors 
such as leiomyomas or schwannomas is of great importance in clinic practice. Endoscopic ultrasono-
graphy (EUS) is a common method to assess gastric mesenchymal tumors. It helps doctors evaluate the 
detailed size, shape, origin, and border of the lesions[73-75]. But the interpretation of EUS images by 
endoscopists is subjective and has poor interobserver agreement. Recently, EUS image interpretation 
using AI has developed rapidly and is applied to distinguish GISTs from benign mesenchymal tumors.

A convolutional neural network computer-aided diagnosis (CNN-CAD) model based on EUS images 
was developed to assess gastric mesenchymal tumors. They reported the model distinguished GISTs 
from non-GIST tumors with 83.0% sensitivity, 75.5% specificity, and 79.2% accuracy[76]. The CNN-CAD 
model had the potential to provide diagnostic assistance to endoscopists in the future.
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Pancreatic diseases
EUS is currently a common tool to diagnose pancreatic diseases in clinical practice. However, the 
specificity for the diagnosis of pancreatic diseases using EUS images is low and deeply depends on the 
subjective judgment of endoscopists. Studies have confirmed that AI based on EUS improves their 
performance for the diagnosis of pancreatic diseases. Recently, AI using EUS images has been applied in 
the differential diagnosis of PC, distinguishing intraductal papillary mucinous neoplasms (IPMNs) and 
detecting pancreatic segmentation.

Pancreatic cancer: PC is relatively uncommon, with an incidence of 8-12 per 100000 per year. PC is 
attributed to hereditary germline or somatic acquired mutations in some genes such as tumor 
suppressor genes and cell cycle genes. These mutations are also associated with the progression and 
metastasis of PC. Moreover, shortened telomerase, cell turnover, and genomic instability have an 
important role in the development of PC[77].

The early diagnosis and surgery of PC, especially for lesions less than 1 cm, can achieve long-term 
prognoses with a 5-year survival rate of 80.4%[78]. However, PC is most frequently detected at an 
advanced stage, and the 5-year survival rate remains as low as 3%-15%[79]. Hence, early detection is 
vital for the treatment of PC patients. Studies have reported that AI based on EUS has great 
performance for the diagnosis of PC.

AI based on B-mode EUS: AI models based on B-mode EUS have been applied to improve their 
performance for the diagnosis of PC. Norton et al[80] first reported the use of CAD utilizing EUS images 
in pancreatic diseases in 2001. The study included 14 patients with focal chronic pancreatitis and 21 
patients with PC. They showed the diagnostic sensitivity of the two diseases was 89%, and the overall 
accuracy was 80%[80]. However, this study cannot be referred to as AI-CAD in current applications as 
the number of patients was limited and the resolution of images were very low.

With the development of AI, ANN and SVM presented good performance in the diagnosis of PC[81-
83]. Das et al[81] developed an ANN model to distinguish chronic pancreatitis from PC. The results 
achieved 93% sensitivity, 92% specificity, 87% PPV, 96% negative predictive value (NPV), and 0.93 AUC
[81]. By using a multilayered neural network, the study confirmed the first machine learning results for 
the EUS images of the pancreas. But the sample size was small and lacked pathological evidence in the 
chronic pancreatitis and normal pancreas groups.

By selecting better texture features that included multifractal dimensional features, a quantitative 
measure of fractality (self-similarity), and complexity from EUS images, a SVM prediction model was 
created to identify PC and non-PC patients[83]. The model reached 97.98% accuracy, 94.32% sensitivity, 
99.45% specificity, 98.65% PPV, and 97.77% NPV. The study demonstrated that SVM using EUS images 
is a useful tool for diagnosing PC and pancreatic diseases.

It was reported that AI was also applied for the age-dependent pancreatic changes on EUS images of 
PC cases. Ozkan et al[84] suggested a high-performance CAD model applying ANN to discriminate PC 
and noncancer patients in three age groups. In the under 40-year-old group, the accuracy, sensitivity 
and specificity were 92.0%, 87.5%, and 94.1%, respectively. In the 40-year-old to 60-year-old group, the 
accuracy, sensitivity, and specificity were 88.5%, 85.7%, and 91.7%, respectively. In the > 60-year-old 
group, the accuracy, sensitivity, and specificity were 91.7%, 93.3%, and 88.9%, respectively. The total 
performance of this model showed the accuracy, sensitivity, and specificity were 87.5%, 83.3%, and 
93.3%, respectively.

Besides machine learning, deep learning has been applied to B-mode EUS images for analysis of PC. 
A CNN model using EUS images was developed for the detection of PC[85]. The sensitivity, specificity, 
PPV, and NPV were 90.2%, 74.9%, 80.1%, and 88.7%, respectively. The CNN model included six normal-
ization layers, seven convolution layers, four max-pooling layers, and six activation layers. The EUS-
CNN application was first reported to have the potential to detect PC from EUS images.

AI based on EUS elastography: Real-time EUS elastography can provide more information about the 
features of pancreatic masses by the use of strain assessment. It was reported that EUS elastography has 
been applied in the differential diagnosis of pancreatic lesions. However, the accuracy and reprodu-
cibility were unstable[86,87].

The application of AI improves their performance in the diagnosis of PC. A prospective, blinded, 
multicentric study using EUS elastography by ANN was performed in focal pancreatic lesions[88]. They 
demonstrated the sensitivity, specificity, PPV, and NPV values for the diagnosis of PC were 87.59%, 
82.94%, 96.25%, and 57.22%, respectively. The study suggested that the ANN model may provide fast 
and accurate diagnoses in the clinical.

AI based on contrast-enhanced EUS: Contrast-enhanced EUS has been used to enhance the detection 
of pancreatic lesions[89]. AI based on contrast-enhanced EUS has great performance for the diagnosis of 
PC. An ANN model based on the TIC analysis from contrast-enhanced EUS images was designed to 
diagnose PC and chronic pancreatitis. The study reached 94.64% sensitivity, 94.44% specificity, 97.24% 
PPV, and 89.47% NPV[90]. The study suggested that the model could provide additional diagnostic 
value to CEUS interpretation and EUS fine needle aspiration results.

IPMNs: IPMNs are considered to be precursor lesions of pancreatic adenocarcinoma. Early surgical 
resection of IPMNs can provide a survival benefit for patients[91]. EUS is often used to assess the 
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malignancy of IPMNs in clinics. Several predictive techniques were used to diagnose the malignancy of 
IPMNs with no satisfactory results (70%-80%)[92,93].

Compared with human diagnosis and conventional EUS features, AI via deep learning algorithms 
was confirmed to be a more exact and objective way for the differential diagnosis of malignant IPMNs. 
Kuwahara et al[94] performed a predictive CNN model using EUS images to detect malignant IPMNs. 
The model reached 95.7% sensitivity, 94.0% accuracy, and 92.6% specificity. The accuracy was higher 
compared with the diagnosis of a radiologist (56.0%). The author suggested that the application of AI 
can evaluate malignant IPMNs before surgery.

Pancreatic segmentation: AI using EUS images has also been applied in pancreatic segmentation. A 
deep learning-based classification system was created to utilize the “station approach” in EUS of 
pancreas[95]. The system obtained 90.0% accuracy in classification and 0.770 and 0.813 in blood vessel 
and pancreas segmentation, respectively. The results were similar to that of EUS experts. Thus, this 
study revealed that AI has the feasibility to detect the station and segmentation of the pancreas.

APPLICATION OF ULTRASOUND-BASED AI IN LOWER GASTROINTESTINAL DISEASE 
Colorectal tumors
Colorectal cancer is the third most common cancer worldwide and accounts for the second leading 
cause of cancer-related deaths. Moreover, a growing number of patients diagnosed with rectal cancer 
are under 50-years-old[96]. Colorectal cancer is attributed to gene mutations of epithelial cells, such as 
oncogenes, tumor suppressor genes, and DNA repair genes. The specific molecular mechanisms 
implicated in this type of cancer may include the instability of chromosomes and microsatellites[97].

Recently, some researchers studied tumor deposits (TDs) of rectal cancer. TDs are described as focal 
aggregates of adenocarcinoma located in the surrounding fat of the colon or rectum. They are discon-
tinuous with the primary tumor and unrelated to a lymph node[98,99].

It was reported that a patient who is TD-positive has more malignant tumors, with decreased disease-
free survival and overall survival[100]. However, TDs are often diagnosed by pathology only after 
surgery. Hence, the noninvasive preoperative prediction of TDs is important for rectal cancer patients. 
EUS is currently a common tool to detect rectal masses. Recently, ultrasound-based radiomics have been 
applied to predict the status of TDs.

Chen et al[101] developed an ANN system using ultrasound radiomics and clinical factors to predict 
TDs. Endorectal ultrasound and SWE examinations were conducted for 127 patients with rectal cancer. 
The accuracy was 75.0% in the validation group. The model reached 72.7% sensitivity, 75.9% specificity, 
and 0.743 AUC. The study suggested that ultrasound-based radiomics has the potential for the 
prediction of TDs before treatment. Table 3 shows the application of ultrasound-based AI in 
gastrointestinal disease.

CONCLUSION
In recent years, AI models using ultrasound images have developed rapidly. They can offer a more 
precise and efficient diagnosis and ease the burden of doctors. AI based on ultrasound has been 
confirmed to be helpful in diffuse liver diseases and FLLs, such as assessing the severity of NAFLD and 
the grade of liver fibrosis, distinguishing benign and malignant liver lesions, predicting the MVI of 
HCC, curative TACE effect, and prognoses after thermal ablation. In addition, AI based on EUS has 
great performance in gastrointestinal diseases, such as distinguishing gastric mesenchymal tumors, 
differential diagnosis of PC, distinguishing IPMNs, and predicting the status of TDs in rectal cancer.

However, the application of AI based on ultrasound in clinical practice has some limitations. The 
main reason may be due to the high variability between radiologists in ultrasound image acquisition 
and interpretation[102]. Hence, it is necessary to unify the ultrasonic image acquisition process as well 
as the standard of ultrasonic data measurement during the ultrasound examination.

In addition, some studies of AI-powered ultrasound were retrospective and trained on limited data 
offered by a single hospital with potential data selection bias, and the amount of data in the training set 
was not enough. Abundant multicenter prospective studies should assure the efficiency and stability of 
these AI models. Additionally, deep learning needs a large number of images, so it is necessary to 
establish an abundant database with common collaborative efforts.

In addition, the application of AI based on EUS has some limitations. The number of EUS examin-
ations is overwhelmingly low compared to other examinations such as endoscopy and CT, especially in 
gastrointestinal diseases.

In the future, AI based on ultrasound may be used to develop highly accurate and more efficient 
models for more digestive diseases such as peptic ulcers, stomach neoplasms, inflammatory bowel 
disease, and so on. These models may heavily reduce the workload for doctors by automatic identi-
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Table 3 Application of ultrasound-based artificial intelligence in gastrointestinal disease

Ref. Diseases: number of cases Type of ultrasound Algorithm of AI Performance

GISTs: 125 Sensitivity: 83.0%

Specificity: 75.5%Leiomyomas: 33

Kim et al[76]

Schwannomas: 21

B-mode EUS CNN

Accuracy: 79.2%

Chronic pancreatitis: 14 Sensitivity: 89%Norton et al[80]

Pancreatic cancer: 21

B-mode EUS Basic neural network

Accuracy: 80%

Chronic pancreatitis: 12 Sensitivity: 93%

Pancreatic cancer: 22 Specificity: 92%

Das et al[81]

Normal patient: 22

B-mode EUS ANN

AUC: 0.93

Sensitivity: 96.25%

Specificity: 93.38%

Chronic pancreatitis: 126Zhu et al[82]

Pancreatic cancer: 262

B-mode EUS SVM

Accuracy: 94.2%

Sensitivity: 94.32%Pancreatic cancer: 153

Specificity: 99.45%

Zhang et al[83]

Normal patient: 63

B-mode EUS SVM

Accuracy: 97.98%

Sensitivity: 83.3%Pancreatic cancer: 202

Specificity: 93.3%

Ozkan et al[84]

Normal patient: 130

B-mode EUS ANN

Accuracy: 87.5%

Chronic pancreatitis: 34

Pancreatic cancer: 76

Sensitivity: 90.2%Tonozuka et al[85]

Normal patient: 29

B-mode EUS CNN

Specificity: 74.9%

Sensitivity: 87.59%Chronic pancreatitis: 47Săftoiu et al[88]

Pancreatic cancer: 211

EUS elastography ANN

Specificity: 82.94%

Chronic pancreatitis: 55 Sensitivity: 94.64%Săftoiu et al[90]

Pancreatic cancer: 122

Contrast-enhanced EUS ANN

Specificity: 94.44%

Sensitivity: 95.7%

Specificity: 92.6%

Kuwahara et al[94] IPMN: 50 B-mode EUS CNN

Accuracy: 94.0%

Training: 291Zhang et al[95]

Testing: 181

B-mode EUS CNN Accuracy: 90.0%

Sensitivity: 72.7%Endorectal ultrasound

Specificity: 75.9%

Chen et al[101] Rectal cancer: 127

Shear-wave elastography

ANN

AUC: 0.743

AI: Artificial intelligence; ANN: Artificial neural network; CNN: Convolutional neural network; GISTs: Gastrointestinal stromal tumors; IPMN: Intraductal 
papillary mucinous neoplasm; EUS: Endoscopic ultrasonography; SVM: Support vector machine.

fication of disease on radiologic and histopathologic images. Moreover, the application of AI can enable 
building individual management for patients as well as predicting disease progression and complic-
ations in clinics. Additionally, AI may improve distance teaching by remote monitoring and enhance 
medical services in undeveloped areas.
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