Skip to main content
. 2022 Oct 14;28(38):5530–5546. doi: 10.3748/wjg.v28.i38.5530

Table 2.

Application of ultrasound-based artificial intelligence in focal liver lesions

Ref.
Diseases: number of cases
Type of ultrasound
Algorithm of AI
Performance
Xi et al[42] Benign lesions: 300 B-mode CNN All lesions
Accuracy: 84%
Uncertain set of lesions
Malignant lesions: 296 Accuracy: 79%
Yang et al[43] Benign tumor: 427 B-mode CNN AUC for EV: 0.924
Sensitivity: 86.5%
Malignant tumor: 1786
Specificity: 85.5%
Virmani et al[44] HCC: 27 B-mode SVM Accuracy of HCC: 91.6%
Sensitivity
Metastatic liver tumor: 24 HCC: 90%
Metastatic liver tumor: 93.3%
Hwang et al[49] Cyst: 29 B-mode ANN Accuracy: 96%
Cyst vs hemangioma
Cyst vs malignant
Hemangioma: 37
Hemangioma vs malignant
Malignant: 33
Schmauch et al[50] Non-tumorous liver: 258 B-mode CNN AUC
Hemangioma: 17 FLL detection: 0.935
Metastasis: 48
HCC: 6
FLL discrimination: 0.916
Cyst: 30
FNH: 8
Tiyarattanachai et al[51] HCC: 2414 B-mode CNN Detection rate: 87.0%
Cyst: 6600 Sensitivity: 83.9%
Hemangioma: 5374
Specificity: 97.1%
Focal fatty sparing: 5110
Focal fatty infiltration: 934
Gatos et al[47] Benign FLL: 30 CEUS SVM Accuracy: 90.3%
Sensitivity: 93.1%
Malignant FLL: 22 Specificity: 86.9%
Kondo et al[46] Benign FLL: 31 CEUS SVM Benign vs malignant
Accuracy: 91.8%
Sensitivity: 94%
Specificity: 87.1%
Accuracy
Malignant FLL: 67
Benign: 84.4%
HCC: 87.7%
Metastatic liver tumor: 85.7%
Guo et al[48] Benign FLL: 46 CEUS Deep canonical correlation analysis and multiple kernel learning Accuracy: 90.4%
Sensitivity: 93.6%
Malignant FLL: 47 Specificity: 86.8%
Streba et al[52] HCC: 41 CEUS ANN Training accuracy: 94.5%
Hypervascular liver metastasis: 20 Testing accuracy: 87.1%
Hypovascular liver metastasis: 12 Sensitivity: 93.2%
Specificity: 89.7%
Hemangioma: 16
Focal fatty changes: 23
Căleanu et al[53] HCC: 30 CEUS Deep neural network Accuracy: 88%
Hypervascular liver metastasis: 11
Hypovascular liver metastasis: 11
Hemangioma: 23
FNH: 16
Dong et al[56] HCC: 322 B-mode Radiomics AUC: 0.81
Hu et al[57] HCC: 482 CEUS Radiomics AUC: 0.731
Training cohort: 341
Validation cohort: 141
Zhang et al[58] HCC: 313 CEUS Radiomics AUC
Primary cohort: 192 Primary dataset: 0.849
Validation cohort: 121 Validation dataset: 0.788
Liu et al[63] HCC: 130 CEUS Deep learning radiomics AUC: 0.93
Training cohort: 89
Validation cohort: 41
Ma et al[66] HCC: 318 CEUS Radiomics AUC: 0.89
Training cohort: 255
Validation cohort: 63
Liu et al[69] HCC: 419 CEUS Deep learning radiomics C-index
RFA: 214 RFA: 0.726
SR: 0.741
SR: 205

AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the receiver operating characteristic curve; CEUS: Contrast-enhanced ultrasound; CNN: Convolutional neural network; EV: External validation; HCC: Hepatocellular carcinoma; FNH: Focal nodular hyperplasia; FLL: Focal liver lesion; RFA: Radiofrequency ablation; SR: Surgical resection; SVM: Support vector machine.