Skip to main content
. 2022 Oct 14;28(38):5530–5546. doi: 10.3748/wjg.v28.i38.5530

Table 3.

Application of ultrasound-based artificial intelligence in gastrointestinal disease

Ref.
Diseases: number of cases
Type of ultrasound
Algorithm of AI
Performance
Kim et al[76] GISTs: 125 B-mode EUS CNN Sensitivity: 83.0%
Leiomyomas: 33 Specificity: 75.5%
Accuracy: 79.2%
Schwannomas: 21
Norton et al[80] Chronic pancreatitis: 14 B-mode EUS Basic neural network Sensitivity: 89%
Pancreatic cancer: 21 Accuracy: 80%
Das et al[81] Chronic pancreatitis: 12 B-mode EUS ANN Sensitivity: 93%
Pancreatic cancer: 22
Specificity: 92%
Normal patient: 22
AUC: 0.93
Zhu et al[82] Chronic pancreatitis: 126 B-mode EUS SVM Sensitivity: 96.25%
Specificity: 93.38%
Accuracy: 94.2%
Pancreatic cancer: 262
Zhang et al[83] Pancreatic cancer: 153 B-mode EUS SVM Sensitivity: 94.32%
Specificity: 99.45%
Normal patient: 63
Accuracy: 97.98%
Ozkan et al[84] Pancreatic cancer: 202 B-mode EUS ANN Sensitivity: 83.3%
Specificity: 93.3%
Normal patient: 130 Accuracy: 87.5%
Tonozuka et al[85] Chronic pancreatitis: 34 B-mode EUS CNN Sensitivity: 90.2%
Pancreatic cancer: 76
Normal patient: 29
Specificity: 74.9%
Săftoiu et al[88] Chronic pancreatitis: 47 EUS elastography ANN Sensitivity: 87.59%
Specificity: 82.94%
Pancreatic cancer: 211
Săftoiu et al[90] Chronic pancreatitis: 55 Contrast-enhanced EUS ANN Sensitivity: 94.64%
Pancreatic cancer: 122 Specificity: 94.44%
Kuwahara et al[94] IPMN: 50 B-mode EUS CNN Sensitivity: 95.7%
Specificity: 92.6%
Accuracy: 94.0%
Zhang et al[95] Training: 291 B-mode EUS CNN Accuracy: 90.0%
Testing: 181
Chen et al[101] Rectal cancer: 127 Endorectal ultrasound ANN Sensitivity: 72.7%
Specificity: 75.9%
Shear-wave elastography
AUC: 0.743

AI: Artificial intelligence; ANN: Artificial neural network; CNN: Convolutional neural network; GISTs: Gastrointestinal stromal tumors; IPMN: Intraductal papillary mucinous neoplasm; EUS: Endoscopic ultrasonography; SVM: Support vector machine.