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Aims GITR—a co-stimulatory immune checkpoint protein—is known for both its activating and regulating effects on T-
cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of
GITR in cardiovascular disease (CVD).

...................................................................................................................................................................................................
Methods
and results

GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular
events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerabil-
ity, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-
chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy
controls. Plaque area in 28-week-old Gitr�/�Apoe�/� mice was reduced, and plaques had a favourable phenotype
with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the
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lymphoid population. RNA sequencing of Gitr�/�Apoe�/� and Apoe�/� monocytes and macrophages revealed
altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr�/�Apoe�/� monocytes
displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen
species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity.

...................................................................................................................................................................................................
Conclusion Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in

atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid
plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the
potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the
arterial wall and impedes atherosclerosis progression.
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Graphical Abstract

Translational perspective
With this study, we demonstrate that high levels of the co-stimulatory immune checkpoint GITR (GITR) in carotid artery atherosclerot-
ic plaques are associated with occurrence of cerebrovascular symptoms in humans. Our experimental data establish GITR as a driving
force in atherosclerosis during both plaque development and progression. Deficiency of GITR reduces monocyte activation and attenu-
ates leucocyte recruitment, thereby slowing down plaque progression. Notably, no effects on the lymphoid population were observed.
Thus, GITR may pose a promising novel therapeutic target in atherosclerosis to slow plaque progression and prevent plaque rupture,
while leaving the adaptive immune system intact.

GITR drives atherosclerosis through leucocyte recruitment 2939
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Introduction

Atherosclerosis, the underlying cause of the majority of cardiovascu-
lar disease (CVD) is a chronic, dyslipidaemia-driven inflammatory dis-
ease resulting from complex local and systemic immune reactions.1,2

Key players modulating these immune interactions are co-
stimulatory and co-inhibitory immune checkpoint proteins.3–6

Glucocorticoid-induced tumour necrosis factor (TNF) receptor
family-related protein (GITR) or TNF-receptor superfamily-18
(TNFRSF18), a 70 kDa homodimeric glycoprotein, is a powerful co-
stimulatory immune checkpoint protein that is expressed on T-cells
[both regulatory (Treg) and effector T-cells],7,8 dendritic cells (DCs),
macrophages,9 and endothelial cells.10 Its ligand, GITR ligand (GITRL),
is found on antigen-presenting cells11 and endothelial cells.12

GITR/GITRL signalling regulates the extravasation and activation
of innate immune cells but is better known for its role in regulating T-
cell activation.13 Increased numbers of GITRhigh Tregs and effector T-
cells, as well as increased soluble plasma GITR levels, have been
reported in inflammatory conditions, including rheumatoid arthritis,14

systemic lupus erythematosus (SLE),15–17 and Sjögren’s syndrome.18

Enhanced numbers of GITR-expressing Tregs were also reported in
the endomyocardium from patients with dilated cardiomyopathy.19

Although the presence of GITR in human atherosclerotic plaques
has been reported,7 its functional role in atherosclerosis remains elu-
sive. Immunohistochemical analyses of small collections of carotid
endarterectomy plaques (6–11 specimens) showed that GITR is pre-
sent in plaque macrophages, smooth muscle cells (SMCs), and endo-
thelial cells,20 solely in macrophages,21 or solely in T-cells.22 Kim et al.
hypothesized GITR to be pro-atherogenic based on the observation
that GITR-activation in macrophages in vitro appears to promote ex-
pression of TNFa and matrix metalloproteinase (MMP)-9, yet statis-
tical tests to confirm this conclusion were not included.21

Remarkably, our previous study using an Apoe�/� mouse model
revealed an atheroprotective function of constitutive GITRL expres-
sion by B-cells: the resulting plaques were smaller and had a more sta-
ble phenotype, a response that appeared to be driven by promotion
of a Treg over an effector T-cell response.23

Though GITR clearly appears to be present during—and likely
plays a role in—atherogenesis, the diverse data reported by previous
studies demonstrate a great need to elucidate the effects of GITR in
atherosclerosis. With this study, we present an extensive report on
the important role of GITR in human atherosclerotic disease, as
explored in endarterectomy plaques from a large patient cohort, and
reveal the main underlying mechanisms using a GITR-deficient mouse
model.

Methods

Methods are provided in detail in the Supplementary material online. The
datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request, with the
exception of biobank data of ’the Carotid Plaque Imaging Project’ (CPIP)
and the ’SUrrogate markers for Micro- and Macrovascular hard end
points for Innovative diabetes Tools’ (SUMMIT) cohorts due to limita-
tions specific to each respective ethical permit.

Human studies
Endarterectomy plaques were obtained from 193 patients from the
Carotid Plaque Imaging Project (CPIP, Lund University, Sweden) cohort
and were snap-frozen in liquid nitrogen immediately after surgical re-
moval. One-mm-thick portions from the most stenotic plaque region
were embedded in optimal cutting medium and used for histological anal-
yses. The remainder of the plaque was homogenized and used for protein
quantification, cytokine analysis, and real-time quantitative PCR (RT-
qPCR). The study fully conformed to the principles of the Declaration of
Helsinki and was approved by the local ethics committee. Patient charac-
teristics are summarized in Supplementary material online, Table S1.

Mouse studies
Male and female Gitr�/�Apoe�/�, Apoe�/�, and ldlr�/� mice were bred
and housed at the animal facilities of the Ludwig-Maximilian’s Universität
München (LMU Munich, Germany) and of the Amsterdam Universitair
Medische Centers (location AMC) according to institutional guidelines.
All experiments were approved by the local ethical committees [TV55.2-
1-54-2532-156-2015/AVD1180020171666 (17-1666-1-23)]. Mice were
fed a chow diet or a Western-type diet containing 21% fat and 0.21%
cholesterol (EF TD88137, ssniff-Spezialdiäten GmbH, Soest, Germany).

Results

GITR expression in human carotid
plaques is associated with plaque
vulnerability and cerebrovascular events
All 193 carotid endarterectomy plaques contained GITRþ cells that
were primarily located at the base of the plaque and in the shoulder
regions, with only a few GITRþ cells in the fibrous cap area. Double
immunohistochemistry showed that GITR was predominantly
located in CD68þ and CD11bþ cells (macrophages), CD31þ cells
(endothelial cells), a subset of CD3þ cells (T-cells) and, to a lesser de-
gree, in smooth muscle a-actinþ cells (a-SMA/differentiated vascular
SMCs; Figure 1A–D/Supplementary material online, Figures S1 and S2).
Flow cytometric analysis of cells from human femoral plaques con-
firmed this pattern and revealed the key GITR-expressing cell types
to be T-cells, B-cells, and myeloid cells (Supplementary material on-
line, Figures S3–S5).

Higher levels of the soluble form of GITR (sGITR) were measured
in plasma from subjects with CVD compared with healthy controls
(P < 0.0001; Figure 1E/Supplementary material online, Table S2).
Furthermore, GITR immunoreactivity was significantly higher in ca-
rotid plaques obtained from patients that had cerebrovascular symp-
toms (transient ischaemia attack, amaurosis fugax, or stroke) than in
those from asymptomatic patients (1.63%, IQR 0.83–3.01 vs. 0.90%,
IQR 0.46–2.1; Figure 1F–H, Supplementary material online, Figure S2D,
E). There was no correlation between plaque GITR content and
overall stenosis degree (Spearman’s rho, r = 0.011, P = 0.881).
However, GITR content does correlate with the presence of CD68þ

macrophages, lipids (Oil Red Oþ area), cleaved collagen (type I/II
neoepitope), and with necrotic core size. There was also a correl-
ation between GITR immunoreactivity and Glycophorin A, an intra-
plaque haemorrhage marker. GITR content in the plaque was
negatively correlated with differentiated smooth muscle cells (a-
SMAþ) as well as with collagen type III (Figure 2, Supplementary ma-
terial online, Table S3, Figure S6.
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Moreover, elevated GITR expression in atherosclerotic plaques

correlated with the levels of the pro-inflammatory cytokines and che-
mokines interleukin (IL)-6, chemokine (C-C motif) ligand (CCL)-2,
CCL4, and CCL5, as well as MMP1, MMP9, and tissue inhibitor of
metalloproteinases-1 measured in plaque homogenates (Table 1,
Supplementary material online, Table S3). Correlation was also found
between GITR expression and several plaque components involved
in extracellular matrix remodelling, namely fibromodulin, lumican,
and urokinase receptor (uPAR; Supplementary material online, Table
S3). Finally, GITR content also correlated with mRNA expression of
(helper) T-cells (CD3þ and CD4þ) and regulatory T-cells (FoxP3þ)
(Supplementary material online, Table S3).

Taken together, these data suggest that in human atherosclerosis,
increased expression of GITR is associated with a vulnerable athero-
sclerotic plaque phenotype that is prone to cause cerebrovascular
events.

GITR-deficiency in atherosclerotic mice:
general characteristics
To further investigate how GITR affects atherogenesis, Gitr�/�

Apoe�/� mice, and Apoe�/� littermates were generated, deficiency of
GITR was confirmed (Supplementary material online, Figure S7A–C)
and mice were aged until 28 weeks. Deficiency of GITR did not affect
body weight, cholesterol, or triglyceride levels (Supplementary ma-
terial online, Figure S7D–F), nor did it cause abnormalities in any of
the organs investigated (see Supplementary material online).
Haematologic parameters were similar in both genotypes
(Supplementary material online, Figure S7G–M).

Flow cytometric analysis showed no abnormalities in the lymphoid
(including B-cells, T-cells, and its subsets) and myeloid (including
DCs, neutrophils, and monocytes) populations of blood and lymph
nodes of Gitr�/�Apoe�/� mice (Supplementary material online, Figure
S8). In spleen, Gitr�/�Apoe�/�mice displayed decreased dendritic cell
and altered CD8þ T-cell fractions (Supplementary material online,
Figure S9A–D). There were no changes in T-cell content or subsets in
the atherosclerotic aorta (Supplementary material online, Figure S9E–
G). Furthermore, bone marrow haematopoietic stem and progenitor
cell populations were also unaffected by GITR deficiency
(Supplementary material online, Figure S9H–J). GITR deficiency thus
does not markedly affect systemic inflammation.

GITR-deficiency in mice reduces
atherosclerosis and promotes a
favourable plaque phenotype
The pattern of GITR immunoreactivity in mouse atherosclerotic pla-
ques mirrored that of human plaques, with GITR expression found in
CD3þ T-cells, CD31þ endothelium, some a-SMAþ SMCs and pre-
dominantly in CD68þ and Mac2þ macrophages (Figure 3A–D,
Supplementary material online, Figures S10–S11A–H).

Female Gitr�/�Apoe�/� mice developed smaller atherosclerotic
lesions in the aortic root (Figure 3E) with reduced CD68þ macro-
phage content (Figure 3F) and smaller necrotic core sizes (Figure 3G)
and thicker fibrous caps compared (Supplementary material online,
Figure 11I) to Apoe�/� littermates. This phenotype was confirmed in
male mice (Supplementary material online, Figure S11 J,K).
Furthermore, aortic cd68 expression was reduced in Gitr�/�Apoe�/�

Figure 1 GITR is expressed in human carotid artery plaques and associated with cerebrovascular events. Expression of GITR (blue chromogen in
A and D, pink in B and C) co-localized with expression of CD3 (A; pink), CD68 (B; blue), CD31 (C, blue), and with a-smooth muscle actin (D; pink).
Co-localization is marked by black arrows, GITR expression by white arrows, and CD68/CD31/a-smooth muscle actin expression by arrowheads.
Higher levels of soluble GITR (sGITR) were measured in plasma from subjects with cardiovascular disease compared with healthy controls (E).
Expression of GITR was higher in endarterectomy plaques from symptomatic than asymptomatic patients (F). Representative immunohistochemical
detection of GITR is shown in plaques from asymptomatic (G, n = 100) and symptomatic (G, n = 93) patients. Scale bars represent 50mm in (A–D)
and 100mm in (F, G)—all insets are 2 mm. Statistical comparisons were performed using the unpaired t-test in (E) and the Mann–Whitney U test
in (F).
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compared to Apoe�/� mice (Supplementary material online, Figure
S12A). Collagen, aSMAþ SMC content, the amount of CD3þ T-cells,
Ki67þ proliferating cells, TUNELþ apoptotic cells, intraplaque haem-
orrhage, and lipid content were not different (Supplementary mater-
ial online, Figure 12B–H), although the amount of intraplaque
haemorrhage tended to decrease in plaques of Gitr�/�Apoe�/� mice.
In order to better compare the degrees of vulnerability in Apoe�/�

and Gitr�/�Apoe�/� mice, a vulnerability-index was calculated.24,25

The vulnerability indices calculated were 0.66 (SD 0.21) for Apoe�/�

mice and 0.30 (SD 0.23) for Gitr�/�Apoe�/� mice (Figure 3H).
Furthermore, applying the Virmani lesion classification scheme26

revealed a higher ratio of fibrous cap atheroma (FCA) compared to
thin FCA among plaques from Gitr�/�Apoe�/� compared to Apoe�/�

mice (Supplementary material online, Figure S12I). Total gelatinase ac-
tivity (mainly MMP-2 and -9) analysed in plaques by in situ zymography
did not differ in Gitr�/�Apoe�/� and Apoe�/� plaques and there was
no difference in aortic mmp-2 or -9 expression measured by qPCR
(Supplementary material online, Figure S12J–L).

To substantiate the role of haematopoietic GITR in atheroscler-
osis, we generated bone marrow chimeras. In line with our results in
Gitr�/�Apoe�/� mice, plaque macrophage content (mac3þ) and nec-
rotic core sizes were reduced, while minimal fibrous cap thickness
was increased in atherosclerotic plaques from ldlr�/� mice trans-
planted with Gitr�/� bone marrow (Gitr�/� ! ldlr�/�) compared to
ldlr�/� mice transplanted with Gitrþ/þ bone marrow (Gitrþ/þ!

ldlr�/�, P = 0.0029, Supplementary material online, Figure S13A–D). In
addition, Gitr�/� ! ldlr�/� mice contained more fibrous FCA and
less thin FCA than Gitrþ/þ! ldlr�/� mice. Plaque T cell content did
not differ. Although plaque composition phenocopied the results of

Figure 2 GITR is associated with a vulnerable plaque phenotype. Table showing Spearman correlations between plaque GITR expression (visual-
ized by immunohistochemistry) and plaque components in human endarterectomy samples (B, n = 193, with the exception of necrotic core, n = 32).
Representative histology shown for asymptomatic (B–E, J–M) and symptomatic plaques (F–I, N–Q) stained for GITR (B, F, J, N) Oil Red O (C, G), a-
smooth muscle actin (D, H), cleaved collagen (E, I), CD68 (K, O), glycophorin A (L, P), and collagen type III (M, Q) in consecutive sections of endarter-
ectomy plaques. Scale bars represent 1 mm. Statistical comparisons were performed using the Mann–Whitney U test.

............................

.................................................................................................

Table 1 Spearman correlations between GITR (%
area) and cytokines (pg/g wet weight plaque)

Cytokine GITR

R P-value

Interleukin (IL)-6 0.182 0.011

IL-10 -0.010 0.894

Interferon c 0.050 0.494

Chemokine (C-C motif) ligand (CCL)-4 0.240 0.001

CCL2 0.143 0.047

Tumour necrosis factor a 0.113 0.119

Regulated on activation, normal

T-cell expressed and secreted (RANTES)

0.164 0.023

sCD40L 0.076 0.294

Vascular endothelial growth factor -0.001 0.979

Eotaxin -0.140 0.072

n = 193 patients. Statistical comparisons were performed using Spearman’s rank
correlation and the Mann–Whitney U test.
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the Gitr�/�Apoe�/� mice, plaque area did not differ, most likely due
to an increase in serum cholesterol levels, induced by the bone mar-
row transplant procedure (BMT) (Supplementary material online,
Figure S13E–G).

GITR-deficient monocytes display
impaired recruitment and limited react-
ive oxygen species production
The reduction in atherosclerotic plaque size, the decrease in the
number of plaque macrophages in GITR-deficient mice and the
strong correlation of GITR expression to plaque macrophage and
lipid content in human atherosclerotic plaques prompted us to fur-
ther elucidate the role of GITR in myeloid cells.

As the spleen contributes to the pool of circulating monocytes
that infiltrate atherosclerotic lesions and matures into macrophages
giving rise to foam cells to the same extent as monocytes/macro-
phages of medullary origin,27–29 we performed RNA sequencing on

splenic classical and non-classical monocytes (as defined by
CD11bþLy6G-CD115þLy6Cþ and CD11bþLy6G-CD115þLy6C-,
respectively) obtained from Apoe�/� and Gitr�/�Apoe�/�mice.

In non-classical monocytes, GITR deficiency resulted in significant
down-regulation of 460 genes and up-regulation of 292 genes
(Supplementary material online, Figure S14, Table SI). Ingenuity path-
ways analysis (IPA) canonical pathway analysis revealed that GITR de-
ficiency affected pathways of mitochondrial function and immunity
and inflammation, while IPA downstream effects analysis also indi-
cated effects on cell homing (Figure 4A–C). In classical monocytes, the
number of differentially expressed genes was only 174, and involved
pathways with few common patterns (e.g. translation, cell division,
melatonin degradation and cholesterol biosynthesis) (Supplementary
material online, Figure S15A,B, Table SII).

Validation experiments confirmed that GITR drives mitochondrial
ROS production in non-classical, but not in classical, isolated blood
monocytes (Figure 4D,E). However, mitochondrial mass or

Figure 3 GITR expression and plaque phenotype in murine aortic root plaques. Expression of GITR in aortic root plaques (brown chromogen in
A, pink in B, blue in C, D) co-localized with expression of CD3 (A; blue), CD68 (B; blue), CD31 (C, pink), and with a-smooth muscle actin (D; pink).
Co-localization (dark brown in A, purple in B–D) is marked by black arrows, GITR expression by white arrows, and CD68/CD31/a-smooth muscle
actin expression by arrowheads. In Gitr�/�Apoe�/� mice aortic root plaque size (E; representative plaques stained by haematoxylin and eosin, n = 10
mice) and CD68þmacrophages (F; n = 9 mice) was reduced. Necrotic regions of aortic root plaques were smaller in Gitr�/�Apoe�/�mice compared
to Apoe�/�mice (G; Apoe�/�, n = 16 plaques from six mice, Gitr�/�Apoe�/�, n = 20 plaques from eight mice). The vulnerability-index was lower in aor-
tic root plaques of Gitr�/�Apoe�/� than in Apoe�/� mice (H; Apoe�/�, n = 6, Gitr�/�Apoe�/�, n = 8 mice). Scale bars represent 50mm in (A–D) (with
200mm in insets), 200mm in (E, F) and 1 mm in (G). Analyses were performed on female mice and statistical comparisons were performed using the
unpaired t-test.
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.
transmembrane potential were not affected by GITR deficiency (data
not shown).

IPA downstream effects analysis also showed that GITR affected
biological functions related to homing and trans-endothelial leuco-
cyte migration (Figure 4C). Pursuing these findings, we tested whether
GITR-deficient monocytes displayed hampered recruitment to the
arterial wall. Carotid arteries of Apoe�/� and Gitr�/�Apoe�/� mice
were perfused ex vivo with Green CMFDA- and Deep Red-labelled
bone marrow-derived leucocytes obtained from Gitr�/�Apoe�/� or
Apoe�/� mice, respectively. Leucocyte adhesion to the arterial wall
was studied using an arterial adhesion assay and multi-photon micros-
copy. Significantly less Gitr�/� leucocytes adhered to both GITRþ and
GITR- endothelium compared to Gitrþ/þ-derived leucocytes
(Figure 5A). Accordingly, expression of the integrins CD11b and L-
selectin (CD62L) were reduced in circulating classical and non-
classical monocytes (Figure 5B). Similar effects were observed in
splenic classical monocytes through reduced CD11a and L-selectin
expression, and in non-classical monocytes from bone marrow
through reduced L-selectin expression. Classical monocytes in bone
marrow exhibited increased expression of CD18 (integrin b2;
Figure 5B). GITR did not affect integrin and CD62L expression on
granulocytes (Supplementary material online, Figure S16).

Finally, to explore whether an altered endothelium activation state
may also contribute to decreased adhesion of Gitr�/� leucocytes,
immunohistochemical staining of ICAM-1 and vascular cell adhesion
molecule-1 (VCAM-1) was performed on atherosclerotic aortic root
lesions from the female 28-week-old cohort. Their expression was
not confined to the endothelium (as visualized by positive immunor-
eactivity for CD31 in an adjacent tissue section) and content of both
molecules was similar in plaques from Apoe�/� and Gitr�/�Apoe�/�

mice, both taking the whole plaque into account and in endothelial
regions only (Supplementary material online, Figure S17).

GITR-deficient macrophages display
decreased mitochondrial activation and
inflammation
In a follow-up experiment, bone marrow-derived macrophages
(BMDMs) of Gitr�/�Apoe�/� and Apoe�/�mice were cultured,
matured, stimulated with the agonistic GITR antibody DTA-1 and
subjected to RNA sequencing. GITR activation resulted in significant
up-regulation of 487 genes and down-regulation of 164 genes
(Supplementary material online, Figure S18A, Table SIII). IPA revealed
that GITR deficiency affected pathways of immunity and inflamma-
tion, migration, and mitochondrial function (Figure 6A,B).

Validation experiments indeed confirmed decreased mitochon-
drial membrane potential (DWm), mitochondrial mass, and nitric
oxide (NO) production in Gitr�/�Apoe�/� BMDMs (Figure 6C–E),
while ROS production was unaltered (Supplementary material on-
line, Figure S18B). Moreover, BMDMs from Gitr�/�mice migrated to a
lower degree than BMDMs from GITR-expressing mice in a transwell
assay (Supplementary material online, Figure S18C). Macrophage
foam cell formation and cytokine secretion are other significant con-
tributors to plaque burden. Though in vitro uptake of acetylated low-
density lipoprotein, and consequently foam cell formation, was simi-
lar between BMDMs from Gitr�/�Apoe�/� and Apoe�/� mice
(Supplementary material online, Figure S18D), Gitr�/�Apoe�/�

BMDMs exhibited decreased capacity for chemokine and cytokine
production. Multiplex cytokine analysis revealed decreased levels of
CCL3, CCL4, CXCL2, IL-6, IL-10, and IL-17A in Gitr�/�Apoe�/�

BMDMs (Supplementary material online, Figure S18E), and qPCR ana-
lysis showed decreased levels of ccr5, ccl5, ccl3, Il-6, and Il-10 in lipo-
polysaccharide (LPS) and IFNc-treated Gitr�/�Apoe�/� BMDMs
compared to Apoe�/� controls, while levels of ccl2, ccl7, ccl4, and
cxcl2 were unaltered (Supplementary material online, Figure S18F).
GITR-deficient macrophages thus exhibited a decreased capacity for
promoting an inflammatory response.

Discussion

Immune checkpoint proteins, especially co-stimulatory proteins from
the TNFRSF, including CD40L-CD40, CD27-CD70, OX40L-OX40,
and CD137-CD137L, are important drivers of atherosclerosis.3,30–36

Each member impacts atherosclerosis via distinct pathways, ranging
from macrophage or T-cell activation, antibody production to Treg
development. Interventions targeting these molecules have shown to
be promising therapeutic targets for atherosclerosis.33,37

In the present paper, data on human material and experimental
models revealed a prominent role for the co-stimulatory immune
checkpoint protein GITR in atherosclerosis. Not only was GITR ex-
pression higher in carotid plaques from patients with previous cere-
brovascular symptoms, a high plaque GITR content was also
associated with an inflammatory, vulnerable plaque phenotype.
Moreover, we found that sGITR plasma levels had increased in
patients suffering from CVD when compared to healthy controls. Via
mechanistic studies we discovered that GITR is an important medi-
ator of monocyte recruitment and macrophage migration and activa-
tion, thereby driving atherosclerosis.

The role of GITR in human pathologies has often been related to
T-cells. Increased numbers of GITR-expressing Tregs are observed in
dilated cardiomyopathy,19 SLE,15 and rheumatoid arthritis,14 where
numbers of GITR-expressing effector T-cells were also increased.14

Surprisingly, activation of GITR via an agonistic antibody caused a de-
crease in Tregs and an enhanced Th1 and Th2 responses in a model
of hapten-induced colitis or experimental autoimmune thyroiditis in
mice,38,39 whereas B-cell specific overexpression of GITRL promoted
a Treg response, thereby delaying the onset and severity of experi-
mental autoimmune encephalomyelitis.40 In oncology, treatment
with the agonistic GITR antibody TRX518 also reduced the amount
of Tregs in patients but failed to induce a sufficient anti-tumour re-
sponse. In mice, a similar pattern was seen, and GITR agonism caused
cytolytic T cell exhaustion, which could be overcome by using a com-
bination therapy with PD-1 blockade.41 The fate of T cells upon
GITR triggering thus appears to be heavily context dependent, and
seems to depend on the type of disease, the effector or regulatory T-
cell response, and severity of inflammation (acute vs. chronic).

Interestingly, GITR-deficient mice harboured normal T-cell and B-
cell numbers. Mahmud et al. found that Treg development was col-
lectively driven by TNFRSF members: while deletion of any one
TNFRSF family member alone, including GITR, had only modest
effects on the development of Tregs, neutralization of three or four
members imposed a substantial reduction in the frequency of mature
Tregs.42 These observations may in part explain why deficiency of
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.only GITR did not significantly affect T-cell subsets in our GITR-
deficient Apoe�/�mouse model.

Although GITR was previously reported to be expressed in plaque
T-cells22 and the proportion of circulating GITRþFoxp3þ Tregs was
increased by statin treatment,43 we found that besides T-cells, GITR
is also expressed in macrophages, vascular SMCs, and the endothe-
lium of the arterial wall. We demonstrate in our study that mono-
cyte- and macrophage-expressed GITR have a key role in driving
atherosclerosis—a role that does not rule out, but seemingly out-
weighs parallel (and even opposite) effects that may be occurring in
other cell types such as T-cells. Similar results were observed in a
model of acute pleurisy and pancreatitis, where deficiency of GITR
predominantly reduced the amount of macrophages and neutrophils
in the lungs and pancreas.44,45

GITR signalling was also ascribed a central role in promoting ex-
pression of ICAM-1 and VCAM-1. GITR-deficient splenocytes adhere
less to endothelial cells, and pre-treatment of the endothelium with
an agonist GITR-Fc fusion protein enhanced the expression of

endothelial ICAM-1 and VCAM-1.46 Zymosan induced shock
resulted in a decrease in ICAM-1 expression in lungs and intestines of
GITR�/� mice.47 Macrophages obtained from rheumatoid arthritis
patients that are cultured with an agonistic GITR antibody express
high levels of ICAM and exhibit increased cell-cell adhesion.48

However, we did not observe any decrease in ICAM-1 or VCAM-1
expression in plaques—in the lesion as a whole or specifically in the
endothelial regions—and no decrease in leucocyte adhesion when
GITR is absent in the arterial wall. Therefore, although we found ex-
pression of GITR on the endothelium, these considerations support
our notion that myeloid GITR is a more important driver of
atherosclerosis.

The central role of myeloid GITR in atherogenesis is also affirmed
by the present study, reflected by the lack of any pronounced dysre-
gulation of CD4þ T-cells or Tregs in our GITR-deficient Apoe�/�

mouse model. Accordingly, no difference in the plaque content
of CD3þ T-cells was observed. Nevertheless, in a previous study
using a transgenic, dyslipidaemic mouse with B-cell-restricted

Figure 4 Mitochondrial dysfunction in non-classical monocytes Gitr�/�Apoe�/�. Dysregulated canonical pathways in Gitr�/�Apoe�/� mice com-
pared to Apoe�/� mice identified by IPA (A). Genes of the mitochondrial dysfunction pathway shown as a heatmap with each column representing
one sample/mouse (B). Top affected functions in Gitr�/�Apoe�/� mice acquired via IPA downstream effects analysis are shown in (C). Activation Z-
score is calculated by the IPA software and predicts whether a specific function is increased (positive z-score) or decreased (negative z-score) based
on the experimental dataset. Production of reactive oxygen species (ROS) in classical (D) and non-classical (E) blood monocytes from Gitr�/�Apoe�/

� compared to Apoe�/� mice as measured via flow cytometry. Statistical comparisons were performed using the unpaired t-test in (D, E). n = 3 mice
in (A–C), and n = 5 replicates from a total of three mice in (D, E).

GITR drives atherosclerosis through leucocyte recruitment 2945
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overexpression of GITRL, we found that such continuous GITRL-
GITR stimulation between B- and T-cells confers atheroprotection
via regulation of both effector CD4þ T-cells and Tregs.23 The present
study using a model with global GITR deficiency allowed us to assess
the role of GITR in atherosclerosis in a more physiological system
where effects on all cell types are considered. This approach thus
suggests that GITR activation by antigen-presenting cells other than
B-cells, such as macrophages and DCs, could be most crucial in pro-
moting atherosclerosis. Moreover, the opposite effects shown on
plaque growth further support the idea of distinctive cell-specific
mechanisms promoted/inhibited by GITR in atherogenesis.
Constitutive GITR triggering on T-cells is atheroprotective, most like-
ly through the effect of enhanced Treg presence. However, as
revealed by our GITR-deficiency mouse model, GITR signalling in leu-
cocytes is required for proper endothelial adhesion in order to initi-
ate plaque growth, a dependency that outweighs the lack of
(suppressive effects from) GITRþ Tregs. Intriguingly, this facet of

GITR signalling in driving inflammation proposed by the present study
may also play a role in other inflammatory conditions where GITR
correlates with disease severity.

It is important to note that the murine and human plaques analysed
in this study feature different stages of atherosclerosis; the murine
plaques have developed over months and correspond to relatively
early lesions, whereas the human plaques have grown over decades
and constitute complex advanced, late stages of the disease including
plaque ruptures (that do not spontaneously occur in mice). We
observed a prominent role for leucocyte GITR in murine athero-
sclerosis strongly affecting leucocyte recruitment and their infiltration
into the atherosclerotic plaque. The elevated GITR content in
rupture-prone plaques in human disease may indicate an additional
role for GITR within the advanced plaque. The variety of correlations
with traditionally inflammatory plaque features—relating to cell
types, cytokines, and plaque components—suggests a role for GITR
in promoting an overall inflammatory plaque profile. Such a role

Figure 5 Altered leucocyte recruitment in GITR-deficient mice. Adherence to carotid arteries ex vivo was reduced in Gitr�/�Apoe�/� leucocytes
to both GITRþ/þ and GITR�/� endothelium (A, Apoe�/� cells are green and Gitr�/�Apoe�/� cells are red, n = 5 mice/10 carotid arteries per group, ex-
periment repeated twice). Flow cytometric analysis showing altered expression of activation markers on classical and non-classical monocytes among
circulating cells in the blood, in the spleen and in the bone marrow in Gitr�/�Apoe�/� compared to Apoe�/�mice (B, n = 3 mice). Scale bar represents
100mm. Statistical comparisons were performed using Student’s unpaired t-test (A) or a multiple t-test (B).
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..could be exerted via effects on activation of plaque macrophages, for
example to promote lipid-uptake, cytokine production, MMP release,
and to affect SMC differentiation and collagen-synthesis. It is import-
ant to note that association does not necessarily indicate causation,
and we cannot exclude the possibility that GITR is upregulated in
rupture-prone plaques due to stimulatory actions from another up-
stream destabilizing effector as part of overall increased inflammatory
response or even as a defence mechanism in ongoing repair attempts.
Finally, while GITRL expression patterns appear similar in humans
and mice, tendencies for multimer formation differ as a result of
structural differences in the human and murine orthologues which
turn affect the multimerization state of GITR.49,50 Though our results
from both human and murine atherosclerosis indeed seem to imply
similar expression patterns and effects of GITR triggering within the
scope of the current study, minor differences of actions cannot be
excluded.

In conclusion, we have identified GITR as a driving force for leuco-
cyte recruitment in atherosclerosis and found GITR expression to be

associated with plaque vulnerability and cerebrovascular symptoms
in human atherosclerosis. Thus, our data identify GITR as a promising
novel therapeutic target in atherosclerosis. As such, blocking GITR
signalling may attenuate arterial leucocyte recruitment, in turn slow-
ing lesion progression and promoting a plaque phenotype less prone
to be rich in macrophages and destabilizing necrotic regions. As our
data confirm that lack of GITR has a profound effect on monocyte ac-
tivation, no effects were found on T-cell or B-cell numbers or activa-
tion status. This presents an opportunity to develop strategies for
inhibiting GITR through therapeutic intervention while leaving the
adaptive immune system intact. Accordingly, GITR antagonists bear
an imminent potential as safe cardiovascular immunotherapies.

Supplementary material

Supplementary material is available at European Heart Journal online.

Figure 6 RNA sequencing of bone marrow-derived macrophages show mitochondrial dysfunction and altered cell migration. Dysregulated canon-
ical pathways in Apoe�/� mice compared to Gitr�/�Apoe�/� mice as identified via IPA (A). Top affected functions in DTA-stimulated GITR-deficient
bone marrow-derived macrophages acquired via IPA downstream effects analysis are shown in (B). Activation z-score is calculated by the IPA soft-
ware and predicts whether a specific function is increased (positive z-score) or decreased (negative z-score) based on the experimental dataset.
Mitochondrial membrane potential (DWm, C), mass (D), and nitric oxide (NO) production (E) was decreased in Gitr�/�Apoe�/� mice compared to
Apoe�/� mice. Statistical comparisons were performed using the unpaired t-test in (C–E). n = 3 mice (A, B). n = 4 replicates in (C, D), and n = 3 repli-
cates in (E) (each from three mice in total).
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