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Abstract 

Introduction and objectives:  hepatocellular carcinoma (HCC) is the major form of liver cancer with a poor progno-
sis. Amino acid metabolism has been found to alter in cancers and contributes to malignant progression. However, 
the asparagine metabolism status and relevant mechanism in HCC were barely understood.

Methods:  By conducting consensus clustering and the least absolute shrinkage and selection operator regression of 
HCC samples from three cohorts, we classified the HCC patients into two subtypes based on asparagine metabolism 
level. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis of 
the differentially expressed genes between two subgroups were conducted. Immune cell infiltration was evaluated 
using CIBERSORT algorithm. The prognostic values of genes were analyzed by univariate and multivariate cox regres-
sion, ROC curve and Kaplan–Meier survival estimate analyses. Cell types of sing-cell RNA sequencing (scRNA-seq) data 
were clustered utilizing UMAP method.

Results:  HCC patients with higher asparagine metabolism level have worse prognoses. Moreover, we found the dis-
tinct energy metabolism patterns, DNA damage response (DDR) pathway activating levels, drug sensitivities to DDR 
inhibitors, immune cell compositions in the tumor microenvironment and responses to immune therapy between 
two subgroups. Further, we identified a potential target gene, glutamic-oxaloacetic transaminase 2 (GOT2). GOT2 
downregulation was associated with worse HCC prognosis and increased infiltration of T regulatory cells (Tregs). 
ScRNA-seq revealed the GOT2 downregulation in cancer stem cells compared with HCC cells.

Conclusions:  Taken together, HCC subtype which is more reliant on asparagine and glutamine metabolism has a 
worse prognosis, and a core gene of asparagine metabolism GOT2 is a potential prognostic marker and therapeutic 
target of HCC. Our study promotes the precision therapy of HCC and may improve patient outcomes.
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Introduction
Hepatocellular carcinoma (HCC) accounts for 90% of 
primary liver cancer. Its aggressive clinical behavior and 
few effective therapeutic options induce a poor prognosis 

[1]. Sorafenib had once been the only systemic therapy 
option for a decade, before the application of tyrosine 
kinase inhibitors, monoclonal antibodies against vascu-
lar endothelial growth factor receptor-2 (VEGF-2) and 
immune checkpoint blockers (ICBs) [2, 3]. The combi-
nation of atezolizumab with bevacizumab is a new refer-
ence standard in frontline systemic treatment for HCC 
[4]. However, the response rate of HCC patients is only 
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one-third [5], which is even twice as the programmed 
death 1 (PD-1) monotherapy [6, 7]. Low response rate 
and lack of treatment guiding biomarkers are the main 
issues remaining unsolved. Better therapeutic strategies 
and biomarkers are still in urgent need.

Amino acids (AAs) build protein, sustaining cell pro-
liferation. Cancer cells are mostly characterized by aber-
rated amino acid metabolism. Due to the increased 
proliferation rate, cancer cells need more nutrients to 
supply their hasty energy production and rushed protein 
synthesis processes [8]. Targeting amino acid acquisition 
and utilization is a promising therapeutic strategy. Aspar-
tate is a significant metabolic hub and is required for the 
synthesis of purines and pyrimidines [8]. Tumors rely on 
aspartate for continued growth in hypoxic environments 
[9, 10]. Asparagine synthetase (ASNS) catalyzes the syn-
thesis of the non-essential amino acid asparagine from 
aspartate. Acute lymphoblastic leukemia (ALL) barely 
expresses ASNS and is thus sensitive to asparagine deple-
tion therapy by asparaginase (ASNase). ASNase has also 
greatly improved the outcome of NK/T cell lymphoma 
(NKTCL) [11]. Despite the successful application in ALL 
and NKTCL patients, ASNase has not been proved to 
be effective in many other cancers, due to their reduced 
dependency on circulating asparagine [12]. Tumors with 
elevated ASNS activity may acquire proliferation advan-
tage and chemotherapy resistance. Pancreatic ductal car-
cinomas with higher ASNS expression are more resistant 
to cisplatin [13]. Upregulated ASNS expression was also 
observed in gastric cancer compared with normal tis-
sue, which predicts worse survival outcomes [14]. ASNS 
expression is an independent prognostic factor of HCC 
[15], even though the mechanism of ASNS maintain-
ing the cellular homeostasis remains largely unknown. 
ASNase treatment is therapeutically explorable, with its 
molecular mechanism under investigated [12].

Asparagine has been found to regulate tumorigeneses 
signaling pathways. Asparagine activates the mechanis-
tic target of rapamycin complex 1 (mTORC1) and the 
activating transcription factor 4 (ATF4) in tumor cells 
in response to mitochondrial electron transport chain 
(ETC) inhibition [16]. Moreover, asparagine inhibits the 
AMP-activated protein kinase (AMPK) by directly bind-
ing to its upstream suppressor LKB1 [17]. However, the 
biological significance of asparagine regulating these 
pathways is still unclear. Whether or how this is related 
to protein synthesis, nucleotide synthesis and energy sup-
ply needs further investigation. Interestingly, asparagine 
enhances the T cell receptor (TCR) signaling to promote 
CD8 + T cell activation and its anti-tumor responses [18].

The asparagine and glutamine metabolism are unde-
tachable. Glutamine is often found limited in the tumor 
microenvironment, due to preferentially depletion by 

tumor [19]. Tumors tend to employ adaptive mechanisms 
to maintain cellular glutamine level. Blocking cellular 
glutamine intake or inhibiting glutamine metabolism 
enzymes are promising therapeutic strategies [20]. Inhib-
iting glutaminase function are preclinically effective for 
non-small cell lung cancer [21]. Extracellular supplemen-
tation of asparagine can support tumor cell survival when 
exogenous glutamine is depleted [19]. Targeting aspara-
gine bioavailability can prevent tumor cells from adapting 
to the glutamine lacking environment [19]. Asparagine 
directly supports protein synthesis under glutamine-dep-
rivation and promotes epithelial-mesenchymal transition 
(EMT) to initiate tumor metastasis [19, 22]. Asparagine 
restriction limits the EMT process [22]. The metabo-
lomics study revealed that HCC has altered aspartate 
metabolism [23]. However, the exact mechanism of its 
cause and influence has been poorly understood.

Previous studies have demonstrated that some spe-
cific asparagine metabolism genes are critical for HCC 
progression and prognosis. For example, ASNS is an 
independent prognostic factor of HCC [15]. Moreover, 
SLC25A12 upregulation promotes the growth of HCC 
cells [24]. In addition, SLC25A13 gene mutations may 
concern the susceptibility of HCC [25]. Nonetheless, the 
holistic status of asparagine metabolism in HCC has not 
been clearly depicted. Here we utilized the bioinformat-
ics methods to investigate the asparagine metabolism of 
HCC, seeking to identify new biomarkers for HCC prog-
nosis and targets for clinical treatment.

Materials and methods
Datasets
The RNA-sequencing expression profiles and corre-
sponding overall survival (OS) and disease-free sur-
vival (DFS) data of HCC were acquired from the Cancer 
Genome Atlas (TCGA), International Cancer Genome 
Consortium (ICGC) database and GSE84598 data-
set in the Gene Expression Omnibus (GEO) database 
[26–29]. A total of 371 HCC patients was retrieved from 
the TCGA database. The inclusion criteria of TCGA 
were patients that were diagnosed with HCC, and had 
not received prior treatment for their disease (ablation, 
chemotherapy, or radiotherapy). Also, 240 primary HCC 
cases contributed by Institute of Physical and Chemical 
Research (RIKEN) in the ICGC database (project code: 
LIRI-JP) were retrieved. The GSE84598 dataset contained 
22 confirmed HCC cases undergoing resection at the 
Department of Surgery, University of Mainz, Germany. 
The single-cell RNA sequencing (scRNA-Seq) data of 
HCC were acquired from GSM3064824 sample in the 
GEO database [30]. The samples with no missing vari-
ables information were analysed, and if the selected vari-
able is missing, the sample is deleted.



Page 3 of 18Bai et al. BMC Medical Genomics          (2022) 15:222 	

Prognostic signature construction
We acquired the human asparagine metabolism gene 
set “REACTOME_ASPARTATE_AND_ASPARA-
GINE_METABOLISM” from Reactome (identifier: 
R-HSA-8963693) [31, 32]. Then we conducted consen-
sus clustering using R software to identify subtypes of 
HCC in TCGA database and GSE84598 dataset based 
on the expression pattern of asparagine metabolism gene 
set. Cluster map was plotted using R. The least abso-
lute shrinkage and selection operator (LASSO) regres-
sion algorithm was performed for the HCC samples in 
the ICGC database using R [33]. To analyse the OS and/
or DFS of different subgroups, p-values and hazard ratio 
(HR) with 95% confidence interval (CI) were generated 
by log-rank tests and univariate cox proportional hazards 
regression. Time ROC analysis was conducted by R pack-
age to investigate the predictive accuracy of the gene set 
and the risk score.

Identification of differentially expressed genes (DEGs) 
and functional analyses
The DEGs between HCC subgroups were assessed utiliz-
ing R. The threshold for differential mRNA expression 
was “P-adjust < 0.05 and |fold change|> 2”. The volcano 
plot and heatmap were constructed using the fold change 
values and P-adjust. Gene Ontology (GO) term and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were conducted using R [34–37]. Gene 
Set Enrichment Analysis (GSEA) analysis was conducted 
with GSEA software (V4.1.0).

Chemotherapeutic response prediction
We predicted the half-maximal inhibitory concentration 
(IC50) of each HCC sample in the TCGA database to 
different drugs based on the Genomics of Drug Sensitiv-
ity in Cancer (GDSC) database [38]. The prediction was 
implemented by R.

Immune cell infiltration analysis and prediction 
of immunotherapy response
We analysed the immune cell infiltration in the two sub-
groups of HCC in TCGA database by CIBERSORT algo-
rithm [39]. The heatmap of infiltrating immune cells’ 
percentage in each sample were plotted by R. Potential 
responses to immune checkpoint blockade (ICB) therapy 
of the two HCC subgroups were predicted with TIDE 
algorithm and were plotted using R [40]. The association 
between GOT2 expression and the infiltration of Treg 
cells of HCC in the TCGA database was analysed by 
CIBERSORT algorithm [39], CIBERSORT-ABS [41] and 
QUANTISEQ [42] algorithm. The correlation between 
the expression of GOT2 and eight immune checkpoint 
genes were plotted by R.

Evaluation of the prognostic value of asparagine 
metabolism related genes
Univariate and multivariate cox regression analyses of the 
genes involved in asparagine metabolism were performed 
using R. A nomogram was developed based on the results 
of multivariate cox proportional hazards analyses to pre-
dict the 1-, 3- and 5-year overall recurrence by R. The 
OS, progression-free interval (PFI) and disease-specific 
survival (DSS) analyses of HCC patients with high or low 
GOT2 expression in the TCGA database were conducted 
by R. To estimate the diagnostic value of GOT2, we per-
formed the ROC analysis using R software [43]. Also, 
we used KM Plotter (http://​kmplot.​com) website tool to 
analyze whether the prognostic value of GOT2 was asso-
ciated with Treg infiltration in HCC [44]. A total of 371 
HCC samples from TCGA database was stratified into 
two groups, Treg enriched or decreased. Then we ana-
lyzed the OS and recurrence-free survival (RFS) of high 
and low GOT2 cases separated by the median expression 
in each group.

ScRNA‑seq data analysis
We re-annotated the cell cluster of GSM3064824 sample 
by UMAP method, which was different from the t-SNE 
method in the original report [30]. We performed cell 
clustering using the FindClusters function by R. The 
marker gene for cell typing were described previously 
[45–47]. Then we evaluated the GOT2 expression in 
HCC cell and cancer stem cell.

Statistical analysis
Data were expressed as mean ± SD. Analyses were per-
formed in GraphPad Prism (version 8.0) or R software 
(v3.4.4). P < 0.05 were considered statistically significant.

Results
Asparagine metabolism‑based subclasses of HCC in TCGA 
and ICGC database
The asparagine metabolism gene set consists of 
ASNS, ASPA, ASPG, FOLH1, GADL1, GOT1, GOT2, 
NAALAD2, NAT8L, SLC25A12 and SLC25A13. The 
interaction between proteins of these genes were shown 
by PPI network (Additional file 1: Fig. S1). Based on the 
expression pattern of asparagine metabolism genes, 
we classified the HCC patients in the TCGA database 
into two subtypes after performing k-means clustering 
(Fig.  1A, B). Group 1 was defined as the high aspara-
gine metabolism subgroup, as characterized by higher 
expression of asparagine synthesis gene ASNS, and 
lower expression of asparagine degradation gene ASPG 
compared with Group  2, the low asparagine metabo-
lism group (Fig.  1C). Moreover, GOT2 was lower in 
Group 1. GOT2 transits oxaloacetate and glutamate to 
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aspartate and α-ketoglutaric acid (αKG), and vice versa 
[48]. That indicated less active tricarboxylic acid (TCA) 
cycle and more active protein synthesis using asparagine 
in Group 1, the high asparagine metabolism subgroup 
(Additional file  2: Fig. S2). High asparagine metabolism 
subgroup has worse OS (3.1 VS 5.6  years) and worse 
DFS (1.3 VS 3  years) than low asparagine metabolism 
subgroup (Fig. 1D, E). The characteristics of HCC cases 
in the TCGA database were described (Additional file 4: 
Table S1).

We further validated the asparagine metabolism-based 
classification utilizing the HCC samples in the ICGC 
database. A signature of 9 genes related with asparagine 
metabolism were developed for the prediction model in 
the LASSO regression analysis. The correlation among 
risk score, survival status and the signature gene expres-
sion were plotted, revealing the association between high 
signature risk score and worse survival status (Fig.  1F). 
The OS of high asparagine metabolism subgroup was 
significantly worse than low asparagine metabolism sub-
group, as shown by the KM analysis (Fig. 1G). The ROC 
curve of the gene signature was plotted, and the area 
under the curve (AUC) values for 1-, 2- and 3- year ROC 
curves were 0.762, 0.677 and 0.705, respectively (Fig. 1H). 
The risk score model was developed on the algorithm: 
Risk score = (− 0.0963) × ASPG + (− 2e − 04) × FOLH1 
+ (− 1.8193) × GADL1 + (− 0.1856) × GOT1 + (− 0.068
3) × GOT2 + (0.2245) × NAALAD2 + (− 0.254) × NAT8
L + (− 0.0721) × SLC25A12 + (0.0152) × SLC25A13, 
lambda.min = 0.0199 (Fig. 1I).

DEGs between subgroups and function analyses
To better understand the mechanisms causing prog-
nosis difference between HCC subgroups, we inves-
tigated the DEGs between two subgroups in TCGA 
database (Fig.  2A, B). GO and KEGG analyses of the 
DEGs revealed the upregulated VEGF signaling path-
way, TNF signaling pathway, IL-17 signaling pathway, 
response to reactive oxygen species, response to nutri-
ent levels, regulation of Wnt signaling pathway, positive 
regulation of cell growth in high asparagine metabolism 
subgroup, compared with low asparagine metabolism 
subgroup (Fig.  2C, D). While the steroid hormone bio-
synthesis, PPAR signaling pathway, metabolism of xeno-
biotics by cytochrome P450, drug metabolism, small 

molecule catabolic process, organic acid catabolic and 
fatty acid metabolic process were downregulated in high 
asparagine metabolism subgroup, compared with low 
group (Fig. 2E, F).

To further explore the functions of the DEGs between 
two HCC subgroups, GSEA analysis was conducted. 
GSEA analysis results showed that DEGs mainly enriched 
in DNA damage response (DDR) pathway (including 
DNA repair, transcriptional regulation of TP53, DNA IR 
damage and cellular response via ATR, aurora B path-
way, and PLK1 pathway), immune response (including Fc 
gamma R mediated phagocytosis, MHC II antigen pres-
entation, IL-18 signaling pathway), glutamine metabo-
lism (including glycolysis/gluconeogenesis, TCA cycle 
and deficiency of pyruvate dehydroge), and fatty acid 
metabolism (including fatty acid, mitochondrial fatty 
acid beta oxidation, fatty acid beta oxidation, nuclear 
receptors in lipid metabolism and toxic, and PPAR alpha 
pathway) (Fig. 2G).

Metabolic characteristics of HCC subclasses
As indicated by the function analyses, energy metabolism 
differs in the two HCC subgroups. We extracted the core 
genes’ expressions involved in glutamine metabolism, 
glucose aerobic oxidation and fatty acid metabolism of 
HCC samples in the TCGA database. The core genes of 
glutamine metabolism, for example, ASCT2, were upreg-
ulated in high asparagine metabolism HCC subgroup 
(Fig.  3A; Additional file  2: Fig. S2). The GLS2 gene was 
responsible for catalyzing the glutamine into glutamate, 
which was downregulated in high asparagine metabolism 
subgroup (Fig.  3A; Additional file  2: Fig. S2). While the 
genes concerning fatty acid metabolism and TCA cycle 
enzyme complex were downregulated in high asparagine 
metabolism HCC subgroup (Fig.  3B, C). These results 
indicated an energy resource preference shift from glu-
cose and fatty acid to asparagine and glutamine in the 
HCC subgroup with higher asparagine metabolism level 
and worse prognosis.

Validation of asparagine metabolism‑based classification 
of HCC in the GEO database
To further validate the energy metabolism pattern shift 
between HCC subgroups separated by asparagine metab-
olism levels, we classified the HCC patients in GSE84598 

Fig. 1  Identify asparagine metabolism subtypes of HCC in TCGA database and validation in ICGC database. A Consensus Cumulative Distribution 
Function (CDF) Plot and relative change in the area under the CDF curve (CDF Delta area). B Consensus matrices of the TCGA cohort for k = 2. C The 
expression of asparagine metabolism genes in two HCC subgroups. D, E OS and DFS analyses of the two HCC subgroups in the TCGA database. F 
A 9-gene signature was constructed for the HCC cases in the ICGC database by Lasso Cox analysis. Risk scores distribution, survival status of each 
patient in the ICGC database, and heatmaps of signature gene expression were plotted. G OS analysis of the two HCC subgroups in the ICGC 
database. H The 1-, 3- and 5-year ROC curves of the gene signature. The AUC was indicated. I The relationship between partial likelihood deviation 
and log (λ), and the LASSO coefficient profiles of the fractions of 9 genes were plotted

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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dataset into two subgroups based on the expression pat-
tern of asparagine metabolism genes (Fig. 4A, B). Further 
we analyzed the DEGs between two subgroups (Fig. 4C, 
D). The DEGs upregulated in high asparagine metabo-
lism subgroup were involved in GO biological processes 
including organelle fission, nuclear division, chromosome 
segregation and double-strand break repair, etc. (Fig. 4E). 
On the contrary, the small molecule catabolic process, 
fatty acid metabolic process, glucose metabolic process, 
2-oxoglutarate metabolic process, acetyl-CoA metabolic 
process and regulation of immune effector process were 
downregulated in high asparagine metabolism subgroup 
(Fig. 4F). KEGG analysis revealed upregulated pathways 
including cell cycle, nucleocytoplasmic, DNA replication 
and ubiquitin mediated proteolysis in high asparagine 
metabolism subgroup (Fig. 4G). While the carbon metab-
olism, peroxisome, fatty acid degradation, PPAR signaling 
pathway and glycolysis/gluconeogenesis pathways were 
down-regulated in high asparagine metabolism subgroup 
(Fig. 4H). These results confirmed that HCC with active 
asparagine metabolism had a distinct energy resource 
with lowered glutamine and fatty acid consumption.

Targeting DDR pathway in HCC
The aberration of DDR pathway contributes to tumo-
rigenesis. Lots of DNA repair molecules are potential 
antitumor targets. Since DNA damage and repair related 
processes and pathways were enriched in the DEGs 
between two HCC subgroups, we further evaluated 11 
core molecules of DNA repair process to determine their 
potential value as treatment targets. The expression of 
ATM, ATR, TP53, CHEK1. CHEK2, MRE11, PARP1, 
PARP2, BRCA1, and BRCA2 were significantly higher in 
high asparagine metabolism subgroup of HCC (Fig. 5A). 
Sorafenib is one of the first line therapy of HCC, which 
shows no therapeutic effect difference on two subgroups 
(Fig.  5B). However, CHEK1 inhibitor AZD7762 and 
PARP 1/2 inhibitor ABT-888 were predicted to have bet-
ter therapeutic effect on high-asparagine metabolism 
subgroup, as shown by the lower IC50 value (Fig.  5C). 
This indicated that the worse prognosis of high aspara-
gine metabolism HCC subgroup under current treatment 
could be ameliorated by the DDR inhibitors.

HCC subgroup with high level of asparagine metabolism 
has suppressive immune microenvironment
As implied by the function analyses of DEGs between 
HCC subgroups in TCGA database, immune response 

may alter in two subgroups. We analyzed the cell com-
position in the immune microenvironment of two HCC 
subgroups using the CIBERSORT algorithm. To our 
notice, the high-asparagine metabolism subgroup has 
more Treg cells, T follicular helper cells, M0 macrophage 
cells and memory B cells infiltration, but less resting 
memory CD4 + T cells, mast cell, M1 macrophage cells, 
naïve B cells and gamma delta T cells infiltration in 
immune microenvironment (Fig. 6A). The percentage of 
different kinds of immune cells in every sample was plot-
ted (Fig. 6B).

Immune checkpoints and their ligands expressed on 
HCC cells or immune cells contribute to immune eva-
sion. The immune checkpoint gene markers’ expressions 
(including CTLA4, HAVCR2, LAG3, PDCD1, TIGHT) 
were higher in high asparagine metabolism HCC sub-
group (Fig.  6C). The expression levels of immune 
checkpoint genes are relevant to the tumor response 
to immune checkpoint blockade therapy. Consistently, 
high asparagine metabolism subgroup had higher TIDE 
score, which predicted a worse immune therapy response 
(Fig.  6D). More gene signatures that predict the ICI 
response of HCC patients were analyzed in two sub-
groups of HCC samples in TCGA (Additional file 3: Fig. 
S3; Additional file 6: Table S3).

Prognostic value of asparagine metabolism genes
Given the distinct characteristics of two HCC subgroups 
classified by the expression of 11 asparagine metabo-
lism genes, we seek to identify the most important gene 
concerning patients’ fate among the gene set. Univariate 
and multivariate Cox regression analyses revealed the 
prognostic value of the 11 asparagine metabolism genes 
in predicting the OS of HCC patients in TCGA database 
(Fig.  7A, B). GOT2 gene showed significant OS predic-
tion ability (Fig. 7A, B). Nomogram provided the graphi-
cal risk calculation for the 1-, 3-, and 5- year OS of HCC 
patients, using the independent expressions of ASPA, 
GOT2, NAALAD2 and SLC25A12 gene (Fig.  7C). The 
predicting ability of the nomogram was visualized by the 
calibration curve (Fig. 7D).

Low GOT2 expression predicts worse prognosis of HCC
Since GOT2 has profound prognostic value, and its func-
tion was poorly understood in HCC, we further investi-
gated its expression and function. We first accessed the 
pan-cancer expressions of GOT2 in the TCGA database. 
GOT2 was downregulated in glioblastoma multiforme 

(See figure on next page.)
Fig. 2  Identification of differentially expressed genes (DEGs) between two subgroups in the TCGA database. A Volcano plot of the DEGs between 
high and low asparagine metabolism subgroups in the TCGA database. The threshold was set as |log2 Fold change|> 1 and p < 0.05. B Heatmap 
shows the gene expression profile in high and low asparagine metabolism subgroups. C, D Up-regulated GO and KEGG terms of the DEGs. E, F 
Down-regulated GO and KEGG terms of the DEGs. G GSEA analysis of the DEGs
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Fig. 2  (See legend on previous page.)
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Fig. 3  Expression comparison of metabolic-related genes between two HCC subgroups in the TCGA database. Glutamine metabolism genes (A), 
lipid metabolism genes (B) and TCA cycle enzyme complex genes (C) were acquired from Wikipathway, the expression of which in HCC subgroups 
were plotted. *p < 0.05; **p < 0.01; ***p < 0.001
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(GBM), brain lower-grade glioma (LGG), kidney renal pap-
illary cell carcinoma (KIRP), pan-kidney cohort (KIPAN), 
prostate adenocarcinoma (PRAD), kidney renal clear cell 
carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), 
thyroid carcinoma (THCA), cholangiocarcinoma (CHOL) 
(Fig. 8A). Low GOT2 level was correlated with worse OS, 
PFI, and DSS of HCC in the TCGA database (Fig. 8B). San-
key diagram visualized the variables’ distribution of every 
HCC sample including age, pTNM stage, grade, GOT2 
expression and patient status (Fig.  8C). In addition, the 
patients’ information detached by GOT2 median expres-
sion were shown in Additional file  5: Table  S2. The ROC 
curve evaluated the predictive performance of GOT2 
(Fig. 8D). The AUC was 0.724 (Fig. 8D). These results con-
firmed the association between low GOT2 expression and 
HCC prognosis.

The prognostic value of GOT2 relies on Treg abundance
Treg cell modulates tumor immune evasion. We analyzed 
the pan-cancer correlation between GOT2 expression 
and Treg cell infiltration in the TCGA database. CIB-
ERSORT, CIBERSORT-Abs and QUANTISEQ analyses 
showed that GOT2 expression was negatively related with 
Treg cell infiltration in HCC/LIHC, and many other can-
cers including ACC, ESCA, HNSC-HPV + , KIRC, KIRP, 
PRAD, STAD, TGCT, THCA, etc. (Fig. 9A). Then we inves-
tigated whether GOT2 exert influence on HCC prognosis 
through modulating Treg cell infiltration. We separated the 
HCC patients in the TCGA database into Treg enriched or 
decreased groups, and analyzed the OS and RFS of patients 
with high or low GOT2 expression in these two groups. 
We found that in Treg enriched cases, low GOT2 expres-
sion was associated with worse OS and RFS (Fig.  9B, C). 
The median OS for Treg enriched HCC patients with high 
or low GOT2 expression (divided by median expression) 
were 71.03 and 46.2  months, respectively (p = 0.0023). 
While in Treg decreased HCC patients, high or low GOT2 
expression subgroups have the median OS of 84.73 and 
25.6  months (p = 0.087). The RFS of the Treg enriched 
cases with high or low GOT2 expression were 21.3 and 
7.97  months (p = 0.0019), while the Treg decreased cases 
were 9.1 and 6.5  months, respectively (p = 0.32). These 
results indicated that GOT2 was related with HCC prog-
nosis only when Treg cells were abundant in the immune 
microenvironment. GOT2 may modulate Treg cell infiltra-
tion to shape the immune microenvironment and influence 
HCC prognosis.

Single cell sequencing reveals GOT2 expression 
and differential pathways in HCC cells and cancer stem 
cells
Upon analyzing the single cell sequencing data of a HCC 
sample GSM3064824 from the GEO database, we classified 
the cell population and identified HCC cell, DC, CD8+ T 
cell, endothelial cell, Treg cell, fibroblast, NK cell, cancer 
stem cell and B cell (Fig. 10A). Cell distribution was visual-
ized (Fig. 10B). GOT2 expression was lower in cancer stem 
cells than in HCC cells (Fig. 10C).

Discussion
Targeting asparagine metabolism is a promising antitumor 
strategy. Notably, we firstly establish a novel metabolic clas-
sifier for three HCC cohorts (TCGA, ICGC and GSE84598) 
based on asparagine metabolism. The HCC subgroup with 
higher asparagine metabolism level has elevated glutamine 
metabolism and down-regulated glucose aerobic oxidation 
and fatty acid metabolism, compared with the other sub-
group with lower level of asparagine metabolism. GOT2 
hypo-expression may contribute to the metabolism pattern 
shift and thus worsen the prognosis of HCC patients. The 
variations between two subgroups also include the DDR 
pathway activation and the infiltration of immunosuppres-
sive cells (e.g., Treg cells). Higher asparagine metabolism 
group has overactivated DDR pathway, and are more sen-
sitive to DDR inhibitors. Treg cells are more enriched in 
HCC with higher asparagine metabolism level, predicting 
worse responses to ICB therapy. Importantly, through sin-
gle-cell transcriptomic analysis, we confirmed that GOT2 
was down-regulated in cancer stem cells compared with 
HCC cells. Our study promotes the understanding of the 
metabolic heterogeneity in HCC which should be consid-
ered when developing personalized therapies.

Metabolic reprogramming drives HCC tumorigeneses 
and equips HCC with rapid progression ability, which also 
creates a vulnerability and may be potently exploited [49]. 
Studies keep focusing on the abnormal metabolism mecha-
nisms and their therapeutic potential, concerning glucose, 
fatty acids and amino acids metabolism. Increased glu-
tamine catabolism and absorbance from extracellular envi-
ronment are critical features of HCC, and therapies based 
on which have been proposed as potential strategies for 
HCC treatment [50]. V-9302 is a small molecule antago-
nist of transmembrane glutamine flux which selectively 
and potently inhibits ASCT2-mediated glutamine uptake. 
V-9302 was proved to inhibit HCC growth both in  vitro 

(See figure on next page.)
Fig. 4  Signature validation using GSE84598 dataset in the GEO database and subgroup characteristics comparison. A The cumulative distribution 
function (CDF) curve and the delta area curve of consensus clustering. B Consistency of clustering results heatmap (k = 2). C Volcano plot of the 
DEGs between two HCC subgroups in the GSE84598 dataset. The threshold was set as |log2 Fold change|> 1 and p < 0.05. D Gene expression profile 
heatmap of two subgroups. E–H GO and KEGG analyses of DEGs
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Fig. 4  (See legend on previous page.)
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and in vivo, and sensitizes glutamine-dependent HCC cells 
to glutaminase inhibitor CB-839 treatment [51, 52]. Our 
study found that HCC patients with higher ASCT2 expres-
sion have worse prognosis. This indicates us with new 
insights on personalized medication. Patients with higher 
asparagine and glutamine metabolism may benefit extra 
from the combined treatment of ASCT2 inhibitor and first-
line therapy. Notably, our study found that HCC patients 
with higher asparagine metabolism level have worse prog-
noses. Among the asparagine metabolism genes, GOT2 
downregulation may be a critical factor that led to drug 
resistance and poor prognosis of HCC. The underlying 
mechanism may involve regulation of DDR and immune 

microenvironment. However, our study has limitations. In 
this study, we did bioinformatic exploration, yet not testify 
our findings in large scale clinical research or in biological 
research. The driving metabolic mechanism of HCC ini-
tiation and progression remain largely unknown and are 
under further investigation.

Cancer cells are characterized with alterations in DDR 
pathway and metabolism reprograming [53]. The links 
between these two fundamental processes have yet been 
clearly understood. The DNA reparation process relies 
on the cellular nucleotide level. Amino acids including 
glutamine and aspartate are essential for de novo nucleo-
tide synthesis, thus exerting influence on the nucleotide 

Fig. 5  DNA damage response pathway in the two subgroups and relative drug sensitivity analyses of HCC in the TCGA database. A The expressions 
of representative genes of DNA damage response pathway in high asparagine metabolism HCC subgroup were significantly higher than the 
low asparagine metabolism group. B The IC50 of two subgroups in response to sorafenib showed no difference. C The IC50 of high asparagine 
metabolism subgroup in response to CHEK1 inhibitor AZD7762 and PARP 1/2 inhibitor ABT-888 were lower than the low asparagine metabolism 
subgroup
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availability, DNA replication and reparation. Glutamine 
is essential for inosine monophosphate synthesis, while 
aspartate is essential for the synthesis of pyrimidines 
[54, 55]. Previous studies showed that glioblastoma cells 

increase the glutamine synthesis by driving the αKG out 
of the TCA cycle, thus promoting the de novo purine 
synthesis [56]. This is in accordance with our study that 
the HCC subgroup with more glutamine intake and less 

Fig. 6  The immune landscape of high and low asparagine metabolism HCC subgroups in the TCGA database. A The immune cell infiltration in 
high and low asparagine metabolism subgroups. B Immune cell proportion in each HCC cases. C The expressions of most immune checkpoint 
molecules in high asparagine metabolism subgroup were significantly higher than the low asparagine metabolism group. D The TIDE score of the 
HCC cases predicted that high asparagine metabolism subgroup had better response to immune checkpoint blockers (ICBs) than low asparagine 
metabolism group
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Fig. 7  Evaluation of the prognostic value of every single gene in the asparagine metabolism gene set. A, B The univariate and multivariate Cox 
regression of genes involved in asparagine metabolism in term of OS. C Nomograms predicting the 1-, 2- and 3-year OS of HCC based on the 
expression of ASPA, GOT2, NAALAD2 and SLC25A12. D Calibration curve for the OS nomogram model
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entrance of αKG into TCA cycle has more active DNA 
reparation as revealed by higher expression of DDR mol-
ecules. The DDR pathway also contributes to the tumor 
metabolism reprogramming. The core molecule of DDR, 
p53, also plays roles in the metabolic reprogramming. 
p53 inhibits glycolysis through inhibiting the transcrip-
tional activation of the TP53-induced glycolysis and 
apoptosis regulator (TIGAR) protein [57]. Moreover, 
p53 can also bind to G6PD and prevent its active dimer 

formation, which inhibits the pentose phosphate path-
way (PPP) process [58]. Our study finds that in HCC 
cells with higher level of asparagine and glutamine, the 
DDR pathway is more active, with increased expression 
of DDR core molecules. Given that the first-line therapy 
sorafenib has no therapeutic difference over these two 
HCC subgroups, DDR inhibitors could be introduced 
into treatment to improve the prognosis of patient with 
relatively over-activated DDR pathway.

Fig. 8  GOT2 down-expression predicts worse prognosis of HCC patients in the TCGA database. A The pan-cancer analysis of GOT2 expression. B 
The association between GOT2 expression and the OS, PFI, and DSS of HCC patients. C The Sankey diagram showing the distribution of age, pTNM 
stage, grade, GOT2 expression and survival status of HCC samples. D The ROC curve of GOT2 gene, with the AUC value indicated
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The tumor immune microenvironment (TME) plays 
a role in metabolic plasticity, and vice versa. The tumor 
metabolic reprogramming regulates the differentiation 
and activation of Treg cells in TME. Treg cells in the TME 
of HCC contribute to the resistance to immunotherapy 
[59]. As tumor cells depleted the glutamine in TME, glu-
tamine deficiency impairs the differentiation ability of T 
cell toward Th1, Th2, and Th17 cells, but have a less effect 
on Treg cells [60]. Accordingly, the decreased intracellular 
αKG, caused by the limited availability of extracellular glu-
tamine, also promotes the generation of Treg cells rather 
than Th1 cells [61]. Amino acid availability restriction in 
the TME suppresses the antitumor activity of T effector 
cells, due to increased infiltration of Treg cells. Moreover, 
Tregs are more flexible in energy resource intake, allow-
ing them to survive relatively harsh conditions in the TME 
[62]. In addition, the immune checkpoint signals may also 
regulate metabolic activity of tumor and immune cells [63]. 

Taken together, Treg cells gain advantage in the TME by 
its metabolic adaptability. Our study firstly found that Treg 
cells are more enriched in the TME of HCC patients with 
higher level of asparagine metabolism. Moreover, GOT2 
gene expression is closely related with the Treg infiltra-
tion. The down-regulated GOT2 may be responsible for the 
increased Treg infiltration and the worse prognosis of HCC 
subgroup with higher level of asparagine metabolism. The 
underlying mechanism demands our further exploration.

In conclusion, we construct and validate an asparagine 
metabolism-based prognostic signature of HCC. We also 
highlight the changes in energy metabolism, DDR path-
way activation, and TME composition in the two HCC 
subtypes. Moreover, we propose the GOT2 gene as a 
potential prognostic and treatment targeting biomarker 
of HCC. These findings may benefit the personalized 
treatment for HCC patients.

Fig. 9  GOT2 expression and Treg cell infiltration. A Pan-cancer correlation analysis of the GOT2 expression and the infiltration of Treg cells. 
Correlation of GOT2 expression with OS (B) and RFS (C) in Treg enriched and decreased HCC subgroups
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