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Background
A major goal of modern precision medicine is to accurately predict individual health 
risks based on genetic data [1]. Alongside the advent of next-generation sequencing 
(NGS) technologies has come a plethora of discoveries linked to genome-wide associa-
tion studies (GWAS) [2]. The large amount of data generated by these studies has ena-
bled researchers to apply statistical techniques in order to generate polygenic risk scores 
(PRS) [3].

These scores can be used to predict an individual’s genetic risk of a particular health 
condition. An example of a method that can generate PRS is PUMAS. PUMAS uses 
trait-specific GWAS summary statistics files for training, in order to fine-tune its 
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predictive model [4]. The core limitation of these techniques is the availability of high-
quality GWAS summary statistics.

Summary statistics are used to convey key GWAS data such as variant ID (rsID), chro-
mosome number (Chr), base pair position (BP), effect allele (EA), other allele (OA), 
minor allele frequency (MAF), t-statistics, p-value and standard error (StdErr). How-
ever, summary statistics from GWAS are often not shared, and there is no universally 
standardized format, even with regards to what data is reported and what is not [5–7]. 
GWAS summary statistic files are also often presented in a multitude of tabular formats, 
including plink, CTA, BOLT-LMM, GEMMA, Matrix eQTL, METAL, and VCF [6, 7]. 
As a result, some of the information needed for meta-analysis or downstream GWAS 
applications—rsID, Chr, BP, OA, EA, MAF, StdErr, Beta, p-value—may be missing from 
the files [6]. Additionally, variation in methodologies of genotyping arrays and quality 
control filters used by different research groups may contribute to missing SNP identifi-
cation or association data [8].

Missing columns of data may influence the predictive power of techniques used to 
generate a PRS, or even render the GWAS file unusable. This can be a particular prob-
lem if there are a limited number of high-power studies for a particular trait of interest, 
which is often the case with the majority of GWAS publications not publicly sharing 
their data [5]. For these files, restoration would be particularly prudent.

To date, there are no tools which restore this data perfectly. Murphy et  al. recently 
developed MungeSumstats, an R software package, which manually standardizes and 
performs quality control on different GWAS summary statistic files [7]. This tool per-
forms several quality control steps in order to ensure all key data is present and consist-
ently formatted. Part of this quality control includes restoration of some incomplete data 
columns, though this is not the main function of the tool. Additionally, the quality of 
restoring rsID using MungeSumstats is limited by the most recently curated version of 
the SNPlocs database [9]. To our knowledge, no tool currently attempts to restore miss-
ing standard error, Beta, or p-values.

In order to address these issues, we developed SumStatsRehab. This tool is able to 
perform restoration of rsID, chromosome, base pair position, effect allele frequencies, 
back-calculation of t-statistics from p-values, beta value restoration, and standard error 
calculations and corrections. Once restored, the output is presented in a consistent tab-
ular form. Additionally, SumStatsRehab can diagnose cases where critical data cannot be 
restored in a given GWAS summary statistics file, and can thus be used for both qual-
ity control and cleanup of files. In this paper, we describe SumStatsRehab, its features 
and utility. We also provide a comparison with the only current alternative for summary 
statistics restoration, MungeSumstats. The source code for SumStatsRehab is found at 
https://​github.​com/​Kukus​ter/​SumSt​atsRe​hab.

Methods
Implementation

SumStatsRehab is written in Python3, and utilizes several native Linux executables. 
The key functions of SumStatsRehab are assessment, validation and restoration (Fig. 1; 
Table  1). These functions can be implemented for chromosome, base pair position, 
rsID, effect allele, other allele, allele frequency, standard error, beta, and p-value. Each 

https://github.com/Kukuster/SumStatsRehab
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category of data in the input GWAS summary statistic file is assessed, validated, and 
restored independently. SumStatsRehab accepts GWAS summary statistic files with sin-
gle nucleotide polymorphisms (SNPs) which reference human genome build 36, build 
37, and build 38, and can output restored summary statistics files in reference builds 37 
and 38. SumStatsRehab uses a.json header file to correctly read and interpret the col-
umns in the input summary statistic file.

Assessment and validation of summary statistics files

SumStatsRehab can be used to identify any invalid SNPs in a GWAS summary statistic 
file (“fix” command in Fig. 1); invalid SNPs are those which are missing any of the key 
GWAS data listed in the Background section. This enables users to determine the num-
ber and cause of missing or invalid SNPs (Fig. 2).

Fig. 1  SumStatsRehab implementation pipeline
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To demonstrate this command, we tested it on an example GWAS summary sta-
tistics file (GWAS blood pressure [11]). As shown, SumStatsRehab identified that 
less than 1% of entries for GW-significant SNPs were missing Fig. 2A), and that the 
majority of missing entries were rsIDs (Fig. 2B). The resultant plots derived using the 
diagnostic tools assess the number of invalid SNPs by significance level, showing the 
potential impact of the incomplete data columns on downstream calculations. The 
results of this diagnostic are used internally to guide and optimize restoration.

Restoration of summary statistics files

SumStatsRehab only attempts to restore entries identified as invalid, with one excep-
tion. When either the base pair position or chromosome is invalid, SumStatsRehab 

Table 1  Comprehensive list of the steps implemented by SumStatsRehab

Step # Description Stage

1 Check if the input file is a zip or a gzip archive. If so, extract the raw file Formatting

2 Pick and reorder the columns to the internal format, based on the corresponding *.json 
config file

3 Cut the ‘chr’ prefix in the chromosome column, if present

4 Calculated the weighted average of EAF columns into one EAF column, if multiple were 
specified

5 Check if a chromosome entry is an integer from 1 to 23, or X, Y, M. If an entry is not, mark 
it as invalid

Validation

6 Check if a base pair position entry is a non-negative integer. If an entry is not, mark it as 
invalid

7 Check if an rsID entry is a non-negative integer with ‘r’ prefix. If an entry is not, mark it as 
invalid

8 Check if an effect allele or other allele entry is either a dash or composed of letters ATCG. If 
an entry is not, mark as invalid

9 Check if a p-value or an EAF entry is a real value between 0 and 1 inclusively. If an entry is 
not, mark as invalid

10 Check if a standard error or a beta entry is a real value. If an entry is not, mark as invalid

11 Calculate statistics and save the report about correctness of the data

12 Analyze the report, If no resolvable issues were found, finish the execution Analysis and 
preparation13 If resolvable issues were found, prepare the restoration algorithm depending on the 

issues

14 Perform the liftover to build 38 if needed

15 Sort the sumstats file either by ChrBP or by rsID, depending on the restoration algorithm

16 If a chromosome or a BP entry was marked as invalid, and the sumstats file is sorted by 
rsID, then restore both entries by a lookup in the dbSNP for matching rsID

Restoration

17 If an rsID entry was marked as invalid, and the sumstats file is sorted by ChrBP, then restore 
rsID entry by a lookup in the dbSNP for matching Chr and BP

18 If from EA and OA entries only one is invalid then restore the invalid allele as the most 
likely allele from known by a lookup in the dbSNP either for matching rsID and valid allele, 
if sumstats is sorted by rsID, or for matching Chr, BP, and valid allele, if sumstats is sorted 
by ChrBP

19 If an EAF entry was marked as invalid, then EAF is restored by a lookup in the dbSNP either 
for matching rsID and effect allele, if sumstats is sorted by rsID, or for a matching Chr, BP, 
and effect allele, if sumstats is sorted by ChrBP

20 If a standard error, beta, or p-value entry was marked as invalid, and the other two entries 
as valid, then restore the invalid using the formula s = β/z, where s is the standard error, β 
is beta, and z is z-score that corresponds to the p-value in the two-tailed test [10]

21 Go back to step #5 (Validation stage)
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restores both by looking up the rsID associated with that entry, and overwriting the 
chr and base pair position entries.

The extent of restoration possible is dependent on the inputs to SumStatsRehab. If only 
the summary statistics file is provided as input, SumStatsRehab will be able to perform 
restoration of the p-values, betas and standard errors given two out of three of these 
values are present. The additional input of a dbSNP file in the target human genome 
reference build is optimal for restoration. SumStatsRehab preprocesses the dbSNP file, 
organizing it by rsID, chromosome, base pair position, alleles, ref/alt, and frequencies 

Fig. 2  A stacked histogram plot—the core plot produced by the “diagnosis” command. It maps all SNPs 
against their p-value, with the valid portion of SNPs colored blue and invalid SNPs colored red, allowing 
assessment of the distribution of invalid SNPs by significance. B One of several bar charts produced by the 
“diagnosis” command. This plot is generated for each bin of the stacked histogram plot A and reports the 
number of issues that invalidate the SNP entries in a particular bin
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associated with each SNP, sorted by chromosome and base pair position, and by rsID. If 
the target build and the GWAS summary statistic file builds are different, an additional 
third input, the ‘chain file’ is needed for liftover from the summary statistic file build to 
the target build. With these inputs, SumStatsRehab is able to restore GWAS data files, 
and include effect allele frequencies (EAF), missing t-statistics, rsID or chromosome 
numbers and base pair positions, effect allele (EA) and other allele (OA).

Preparation of test case files

To assess the utility of our tool and the extent of restoration it can achieve, we chose 
publicly available and complete summary statistics files from three different GWAS as 
test cases: (1) blood pressure, (2) C-reactive protein, (3) allergies [11–13]. These files 
were preprocessed by removing one specific column of data per file at a time: rsID, 
chromosome number, base pair position, effect or other allele, allele frequency, p-value, 
beta, and standard error. After removing each column from the three different GWAS 
summary statistics files to generate a total of 9 test files per GWAS, with a total of 27 
test files, we ran each file through SumStatsRehab using dbSNP versions 144 and 155 
for comparison, as well as the only current alternative, MungeSumstats. Version 144 of 
dbSNP was chosen as it matched the same build utilized by MungeSumstats due to this 
being the most up to date SNPlocs database; dbSNP155 was chosen due to it being the 
most up to date dbSNP database at the time the work was carried out.

In order to be run through MungeStumstats, test files required an extra round of 
extensive preprocessing. For the blood pressure test files, all columns were renamed in 
accordance with the MungeSumstats documentation [7]. For the GWAS allergies test 
files, all fields containing ‘NA’ had to be replaced with a placeholder dot, and all rows 
with any non-numeric value in BP fields had to be removed. In both cases, necessary 
preprocessing required manual deletion of SNPs, for which the missing or invalid data 
could be restored, to allow MungeSumstats to proceed with restoration for the remain-
der of the test files. Additionally all non-traditionally formatted rsIDs e.g. “esv3584976”, 
were removed to prevent the automatic failure of the program.

Assessment of SumStatsRehab and comparison with MungeSumstats

To assess the restoration of both tools, two different metrics were used. For qualitative 
attributes, accuracy was assessed in terms of concordance with the original summary 
statistics file. This was used for the chromosome, base pair location, effect allele, and 
other allele columns. For quantitative attributes, we calculated the difference between 
the predicted values and the original, masked values using Formula 1, which yields an 
accuracy score between 0 and 1. This was used to calculate the relative accuracy for the 
allele frequency, beta, standard error, and p-value columns, in order to account for float-
ing point arithmetic and rounding errors.

where xo and xr are the original and restored values, and k is a fudge factor/an error 
term, which is different for each column. For allele frequency column: k = 2, for beta col-
umn: k = 6, for standard error column: k = 4, for p-value column: k = 3.

(1)1−min (k|x0 − xr |, 1)



Page 7 of 12Matushyn et al. BMC Bioinformatics          (2022) 23:443 	

The overall accuracy for each column was calculated as the average of the accuracy 
metrics for each entry. These results were then used to assess and compare the restora-
tion process of both SumStatsRehab and MungeSumstats.

We did not use any accuracy metrics with respect to evaluating restoration of rsIDs, as 
the rsID restoration is dependent on the publication timeframe of the GWAS. For earlier 
GWAS, rsID names do not correspond well to more current dbSNPs databases; the dif-
ferences in rsID may not reflect differences in accuracy of restoration but differences in 
dbSNP versions.

Results
Restoration using SumStatsRehab

SumStatsRehab was able to successfully restore rsID, effect/other alleles, chromosome, 
base pair position, effect allele frequencies, beta, standard error, and p-values for all 
27 test files. These restorations occurred without any SNP loss (Table 2). As the origi-
nal c-reactive protein (CRP) file was missing variant ID data, Chr and BP restoration 
could not be assessed and was input as N/A. SumStatRehab managed to restore on aver-
age 97.6% and 95.6% of rsIDs accurately when using dbSNP155 and 144 respectively 
(Fig. 3). The discrepancy in rsID accuracy may be attributed to slight variations found 
in the earlier dbSNP dataset version used in the original GWAS’. Restoration accuracy 
was also greater than 93.7% for chromosome, base pair position, other allele, standard 
error, and p-values, while EA, EAF, and beta had restoration accuracies of 77.61%, 72.3% 
and 54.2%, respectively (Fig. 3). The quality of EA restoration using SumStatsRehab was 
largely dependent on the version of dbSNP used. When using dbSNP155, a newer ver-
sion of the dbSNP database to restore older data, the greater number of alternate allele 
possibilities present in the newer database meant fewer direct restoration matches to 
the older data; however, when restoring EA data using the older dbSNP version 144, the 
number of direct matches was greatly increased to 93.4%. The reduced restoration accu-
racy of EAF is a function of population-dependent differences in EAF; restored EAFs are 
a naive approximation of the EAF as we don’t know the population-specific composition 
of the GWAS samples. Beta restoration at 54.2% can be attributed to unsigned standard 

Table 2  Total % of SNPs removed per GWAS summary statistics file for restoration runs by 
SumStatsRehab and MungeSumstats

MungeSumStats SumStatsRehab

Allergies Blood pressure CRP Allergies (%) Blood 
pressure (%)

CRP

rsID 6.00% 12.05% 11.40% 0 0 0%

Chr 6.50% Fail N/A 0 0 N/A

BP 6.50% Fail N/A 0 0 N/A

EA 8.70% Fail Fail 0 0 0%

OA 6.50% Fail Fail 0 0 0%

MAF N/A N/A N/A 0 0 0%

t-statistics N/A N/A N/A 0 0 0%

p-value N/A N/A N/A 0 0 0%

StdErr N/A N/A N/A 0 0 0%
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error values, leading to inverse beta scores which prevented an exact match (https://​
github.​com/​Kukus​ter/​SumSt​atsRe​hab#​suppl​ement​ary-​infor​mation). Caution should be 
taken to only attempt beta restoration when signed standard error data is provided.

Comparison of SumStatsRehab and MungeSumstats

As MungeSumstats is the only current alternative tool for data restoration, we also 
attempted restoration runs with MungeSumstats on the prepared test files. This com-
parison was performed using all 27 previously described test files derived from 3 GWAS, 
in order to compare the efficiency of restoring 9 data categories (Table 3). We assessed 
the comparison on the basis of restoration accuracy and data loss.

MungeSumstats was initially unable to restore any of the test files associated with the 
blood pressure and CRP GWAS’. Despite significant preprocessing to prevent automatic 
failures, MungeSumstats still failed to restore all columns with the exception of rsID for 
these files (Table 2).

Fig. 3  Comparison of average restoration accuracy using SumStatsRehab with dbSNP versions 144 and 
155, as well as using MungeSumstats with dbSNP144. The noise threshold represents the expected level of 
accuracy achieved by restoring with a random value, and is intended to correct for correct restoration by 
chance

https://github.com/Kukuster/SumStatsRehab#supplementary-information
https://github.com/Kukuster/SumStatsRehab#supplementary-information


Page 9 of 12Matushyn et al. BMC Bioinformatics          (2022) 23:443 	

MungeSumstats removed 12.05% and 11.4% of SNPs, for the blood pressure and 
C-reactive protein files respectively, relative to the 0% loss achieved by SumStatsRehab 
(Table 2). Removed entries included rows where all entries were correct. For the allergy 
GWAS test files, MungeSumstats removed up to 8.7% of SNP entries, while restoring 
chromosome number, base pair position, rsID and allele columns. MungeSumstats does 
not restore missing allele frequencies, standard error, beta values and p-values; we were 
thus unable to compare our tool against MungeSumstats for these test cases. For all runs 
on the GWAS test files, SumStatsRehab had greater restoration accuracy than Munge-
Sumstats (Fig. 3).

Comparison of computational load

We also compared SumStatsRehab and MungeSumstats on the basis of execution time 
and memory usage. MungeSumstats had significantly lower run time for all restorations. 
When running tests sequentially or in parallel, the average execution time of Munge-
Sumstats was around 6 min 53 s. Execution times for SumStatsRehab were significantly 
higher, with an average of 18 min 5 s, when running up to 6 tests in parallel, and 35 min 
when running all tests sequentially. The current implementation of SumStatsRehab runs 
processes sequentially, although its architecture leaves room for introducing parallelism 
in the future updates, while MungeSumstats architecture currently allows parallelization.

To compare memory usage, as SumStatsRehab can only be run sequentially, we chose 
to also run MungeSumstats sequentially to allow for equitable comparison. MungeSum-
stats used 12–16 GB of RAM during execution with rare drops into the 1–5 GB range, 
with a peak memory usage of 25  GB while unsuccessfully trying to restore the blood 
pressure GWAS effect allele test file. MungeSumstats’ system cache usage was 1–2 times 
the size of the input file, which varied between 0.5 and 1.5 GB. In contrast, SumStatsRe-
hab used a maximum of 800 MB of RAM, and cache equivalent to the unpacked input 
file size.

Discussion
A recent workshop set up to outline the best practice of sharing and standardizing 
GWAS summary statistics recommended that the following should be mandatory when 
sharing this data: a form of variant identifier, p-value, effect allele, other allele, effect 
allele frequency, effect and standard error [14]. While these recommendations will assist 

Table 3  Comparison of supported restoration categories for SumStatsRehab and MungeSumstats

Column restored MungeSumstats SumStatsRehab

rsID Yes Yes

Chr Yes Yes

BP Yes Yes

EA Yes Yes

OA Yes Yes

MAF No Yes

t-statistics No Yes

p-value No Yes

StdErr No Yes
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researchers going forward, there still remain thousands of incomplete GWAS summary 
statistics which may be able to provide insightful information for lesser studied health 
traits had they adhered to the aforementioned suggestions.

One potential avenue to address this issue lies in the restoration of incomplete col-
umns of data. SumStatsRehab was able to restore this data in GWAS summary statistics, 
including the chromosome, base pair position, rsID, allele frequency, effect and other 
alleles, beta, p-value and standard error, more accurately and with less loss than any 
other currently available tool. These entries are key to generating robust polygenic risk 
score (PRS) models.

References to GWAS variants and their incorporation into PRS often relies upon 
correct identification of these variants by rsID [4, 15, 16]; SumStatsRehab is able to 
accurately restore rsID entries by overcoming several challenges associated with stand-
ardizing and inferring rsIDs. As SNP databases are updated, many rsIDs have been 
renamed across the different reference builds and versions, such that several different 
identifiers may refer to the same SNPs [17]. This may pose an issue when combining 
multiple GWAS which utilize different reference builds [17]. By rewriting rsID data 
using a specified reference database version, SumStatsRehab allows users to combine 
GWAS summary statistics which were generated using different databases. The ability 
to reliably combine GWAS as a result of proper rsID updating and restoration allows the 
identification of variants that were individually deemed insignificant in individual stud-
ies, but may play some role in disease or trait determination with increased power [18, 
19].

Another key component of GWAS summary statistics is allele frequency data. One 
key use of this data is the identification of effect alleles [20]. The accurate restoration of 
missing minor allele frequencies poses a specific challenge, particularly when the ethnic-
ity of the study cohort is not explicitly clear. The most straightforward method to restore 
this data, and the method implemented in SumStatsRehab, is to use allele frequencies 
contained within a genomic database such as dbSNP as a proxy, however genetic vari-
ability between the cohort of the target study and the data contained in these databases 
means that data restored this way will seldom provide an exact match to the original. 
As a result, users should be mindful of the limitations of EAF data restoration in down-
stream applications.

Beyond rsID and allele frequency, Standard error, p-values and beta are also important 
in the estimation of effect sizes when generating polygenic risk scores [15]. This data is 
often omitted from non-standardized publicly available GWAS summary statistic files, 
rendering the files unusable. To date, no tool currently allows for any of these three types 
of data to be restored. However, by utilizing the relationship between these three types 
of data [10], SumStatsRehab is able to closely predict the missing values, given that at 
least two of the three types of data are present. To our knowledge, SumStatsRehab is the 
only currently available tool which allows users to restore this type of data.

Before data can be restored, first the researcher must identify whether there are any 
issues with the dataset. While in most cases, incomplete identification and association 
data such as rsID or standard error may be obvious, this is not always the case. Manually 
identifying incomplete data entries can be a time-consuming and labor-intensive pro-
cess, with GWAS summary statistic files now typically containing more than 8 million 
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genetic variants [14]. The diagnose command implemented within the SumStatsRehab 
workflow provides visual aids, considerably increasing the speed at which issues with 
these files can be identified, and reducing the overall time spent processing data.

To our knowledge, SumStatsRehab represents the only tool which currently solely 
addresses data restoration to this extent. Alternative tools which also attempt partial 
data restoration, such as MungeSumstats, are primarily focused on data standardization. 
In order to assess the restoration quality of SumStatsRehab, we performed a comparison 
between this tool and MungeSumstats with regards to data restoration.

One of the major benefits of restoring non-standard GWAS summary statistic files 
using SumStatsRehab is the ability to specify column names using a JSON file input. This 
in turn allows users to utilize files with non-standardized layouts and headers. In com-
parison, MungeSumstats requires column headers to be in a specific format based on 
the standard input format of IEU GWAS VCF files. When this is not the case, it is unable 
to identify the effect allele column causing the process to fail.

One area in which SumStatsRehab underperformed was in the restoration of effect 
alleles when using dbSNP155. More recent dbSNP datasets contain additional alterna-
tive alleles, reducing the likelihood of an exact match between the newly restored file 
and the older original dataset which may have relied on an earlier dbSNP dataset release. 
MungeSumstats performed well when restoring EA data, however MungeSumstats relies 
on the most up-to-date SNPlocs dataset. These curated datasets inevitably lag behind 
the release of NCBI’s dbSNP datasets, and contain fewer SNPs. SumStatsRehab allows 
users to implement any build and version of the dbSNP database. So in instances such 
as this where restoration accuracy may be reduced when using newer dbSNP databases, 
users should take care to choose the most appropriate dbSNP build for their target data. 
In doing so, the restoration accuracy for effect alleles may be greatly increased. This is 
shown by contrasting the restoration accuracy for EA when using dbSNP144 compared 
with dbSNP155 in Fig. 3, with a 15.8% increase.

For all tested data categories, SumStatsRehab outperformed MungeSumstats in data 
restoration. However, it must be noted that if the researcher’s goal is performing meta 
analyses or other types of analysis which require standardized data, MungeSumstats is a 
more appropriate tool.

Conclusion
Overall, SumStatsRehab offers a highly maintainable tool which can easily be optimized 
for specific use cases with minimal modifications. This tool incorporates functional pro-
gramming in addition to pipeline-like architecture, to define a flexible framework that 
is suitable for working on massive scales with various cloud computing platforms with 
minimal to no refactoring. The combined effect of this is a unique bioinformatics offer-
ing which allows users interested in generating PRS a method to increase the likelihood 
of being able to use GWAS summary statistics for any given health trait.
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