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Abstract

In this study we investigated the impact of parental language input on language development 

and associated neuroscillatory patterns in toddlers at risk of Autism Spectrum Disorder (ASD). 

Forty-six mother-toddler dyads at either high (n=22) or low (n=24) familial risk of ASD 

completed a longitudinal, prospective study including free-play, resting electroencephalography, 
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and standardized language assessments. Input quantity/quality at 18 months positively predicted 

expressive language at 24 months, and relationships were stronger for high-risk toddlers. 

Moderated mediations revealed that input-language relationships were explained by 24-month 

frontal and temporal gamma power (30–50 Hz) for high-risk toddlers who would later develop 

ASD. Results suggest that high-risk toddlers may be cognitively and neurally more sensitive to 

their language environments, which has implications for early intervention.
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Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by 

persistent deficits in social communication and social interaction across multiple contexts 

(American Psychiatric Association, 2013). However, children with ASD exhibit vast 

heterogeneity in the developmental trajectories and ultimate attainment of broader receptive 

and expressive language skills such as vocabulary and grammar (Tager-Flusberg, 2006; 

Tager-Flusberg et al., 2005). It is estimated that 75 percent of children diagnosed with 

ASD have some level of language impairment, including 30 percent who are minimally 

verbal (Anderson et al., 2007; Tager-Flusberg & Kasari, 2013), yet other children with 

ASD exhibit age-appropriate or even above-average language skills (Tager-Flusberg et al., 

2011). Even younger siblings of affected children who will not develop ASD are at higher-

than-average risk of language delay (Marrus et al., 2018). Given that early language skills 

in children with ASD predict later life outcomes, such as educational attainment and adult 

independence (Billstedt et al., 2005; Gotham et al., 2012; Howlin et al., 2004; Miller et al., 

2017), it is critical to better understand the factors influencing, and mechanisms underlying, 

heterogeneity of language development within this population.

The Role of Language Experience in Autism

One exogenous factor associated with children’s language development is the language input 

they are exposed to from caregivers. In typically developing children, both the quantity 
(e.g., number of words) and quality (e.g., content of speech) of early language input 

predicts trajectories of language development across childhood (for review, see Rowe & 

Weisleder, 2020). Similar input-skill relationships are found both in children with ASD 

diagnoses as well as toddlers at high risk of developing ASD due to having an affected older 

sibling (henceforth referred to as “high risk toddlers”), and relationships follow expected 

developmental trajectories (for review, see Naigles, 2013; Swanson, 2020). For example, 

amongst children diagnosed with ASD and pre-diagnosis high-risk toddlers, better language 

development is predicted by the quantity of words heard in the first year of life (Swanson et 

al., 2019), the grammatical complexity of input in toddlerhood (Choi et al., 2020), the use of 

expansions in response to speech by preschool age children (Swensen et al., 2007), and the 

frequency of responsive, synchronized utterances across childhood (Siller & Sigman, 2002).
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Alternatively, several studies have aimed to determine whether diagnosed/high-risk children 

may experience systematically different language input than typically developing children. 

These studies find little to no difference in the quantity of speech directed to children 

with/without ASD diagnoses (Bang & Nadig, 2015; Siller & Sigman, 2002; Warren et al., 

2010) and with/without familial risk of ASD (Leezenbaum et al., 2014; Swanson et al., 

2019; Talbott et al., 2016). In contrast, a few studies suggest that the language directed 

to children with ASD may be less grammatically complex than that directed to typically 

developing children (Choi et al., 2020; Fusaroli et al., 2019). However, it is critical to note 

that this research does not suggest that the quantity and/or quality of caregiver speech in any 

way increases the risk for the child developing autism. Rather, it is likely that child-level 

developmental differences that are already under way invite quantitatively and qualitatively 

different input, which leads to reciprocal influences between caregiver and child (Bottema-

Beutel & Kim, 2020; Tager-Flusberg, 2016). Instead, these findings highlight the importance 

of supporting caregiver interaction in children already at risk of developmental disorders to 

help prevent further language delay or impairment (Swanson, 2020).

Neurodevelopment of Language in Autism

Inquiry into the mechanisms underlying the vast heterogeneity in language development in 

both typically and atypically developing children is guided by the rapid neurodevelopment 

of language systems early in life (Skeide & Friederici, 2016). Electroencephalography 

(EEG) is a non-invasive method of measuring brain activity well-suited for infants and 

toddlers (Nelson & McCleery, 2008; Saby & Marshall, 2012; Xie & Nelson, 2021). While 

many EEG studies have examined brain responses to linguistic stimuli (see Friederici, 

2005 for review), brain oscillations in the absence of language provide a unique window 

into neural function underlying language development (Benitez-Burraco & Murphy, 2019). 

Oscillations reflect synchronized fluctuations in neuronal firing, which facilitates the 

development of efficient neural networks (Uhlhaas et al., 2010), and are grouped by the 

frequencies of fluctuations. The gamma band, which includes frequencies from 30–50 

Hz, signifies a balance of excitation and inhibition that regulates experience-dependent 

neuroplasticity (Levin & Nelson, 2015). Power in the gamma band rapidly increases in 

the first year of life (Gabard-Durnam et al., 2019; Pivik et al., 2018; Pivik et al., 2019), 

peaks between 3–5 years of age, particularly over frontal regions (Takano & Ogawa, 1998), 

and decreases thereafter (Tierney et al., 2013). Thus, higher gamma power in infancy and 

early childhood may indicate neural maturity and processes that promote efficient cognitive 

development (Anderson & Perone, 2018; Gou et al., 2011).

Resting (or baseline) gamma power has been associated with linguistic and cognitive 

development across early childhood. In typically developing children, higher frontal gamma 

power from 16–36 months is associated with higher concurrent and later language skills 

(Benasich et al., 2008; Gou et al., 2011), and frontal gamma power in newborns also 

positively predicts language scores at 15 months of age (Tarullo et al., 2012). Additionally, 

frontal and parietal gamma power in socioeconomically disadvantaged infants and children 

is associated with receptive language skills as well as nonlinguistic cognitive skills such 

as memory and executive functioning (Brito et al., 2016; Tarullo et al., 2017). Further, left-

central gamma power in infants mediates the well-established effect of socioeconomic status 
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on language skills (Cantiani et al., 2019). Together, these results suggest that gamma-band 

oscillations may reflect synchronization in developing language networks (Tomalski et al., 

2013) and support attunement to and integration of the perceptual components of language 

(Csibra et al., 2000; Fries, 2009; Ortiz-Mantilla et al., 2016).

Gamma dysregulation has also been implicated in language development in children 

with/at risk for ASD. Atypical evoked gamma activity has been found during linguistic 

processing in children with ASD (Kolesnik et al., 2019; Ortiz-Mantilla et al., 2019), and 

gamma fluctuations during speech processing is correlated with verbal scores in adults 

(Jochaut et al., 2015). Further abnormalities are seen in EEG at rest. For example, in the 

same prospective study from which the current data are drawn, high-risk infants (ages 

3 and 6 months) exhibit lower baseline gamma power than low-risk infants (Levin et 

al., 2017; Tierney et al., 2012), and reduced gamma power growth predicts later ASD 

diagnoses (Gabard-Durnam et al., 2019), which may indicate insufficient neural inhibition 

and atypical neuroplasticity. Also from this study, baseline frontal gamma power in high-

risk two-year-olds was negatively associated with concurrent expressive language scores 

(i.e., lower gamma power predicts better language scores; Wilkinson et al., 2019). Similar 

reverse relationships have been documented between gamma power and measures of overall 

developmental delay (Orekhova et al., 2007) and verbal impairment (Jochaut et al., 2015). 

This suggests that the neuroscillatory underpinnings of language and cognitive development 

may differ in children at risk of and/or diagnosed with ASD (Wilkinson et al., 2020).

The Present Study

This study aims to integrate findings regarding input-driven language development and the 

neurophysiological mechanisms underlying language development. Several recent studies 

using magnetic resonance imaging have begun to identify functional (King et al., 2021; 

Romeo, Leonard, et al., 2018) and structural (Merz et al., 2020; Romeo et al., 2020; Romeo, 

Segaran, et al., 2018) brain mechanisms linking characteristics of caregiver language 

input to language development in typically developing infants and children. Additionally, 

recent EEG studies with socioeconomically disadvantaged infants have found that greater 

quantities of language input in the first year of life is related to greater gamma power as well 

as lower frequency bands (Brito et al., 2020; Pierce et al., 2020). However, it is currently 

unknown whether these neural mechanisms may differ in children with ASD, who may be 

disproportionately sensitive to their early language environments.

The present study addresses this gap by investigating whether the neuroscillatory 

mechanisms that longitudinally link toddlers’ language input to their receptive and 

expressive language skills vary by ASD risk and/or diagnosis. We specifically focus on 

development from 18–24 months, because it is prior to diagnosis and because input during 

this window has been found to have the strongest effects on long-term language outcomes 

(Gilkerson et al., 2018). Furthermore, we investigate gamma power over both frontal 

and temporal regions as potential mechanisms, given the importance of both regions for 

receptive and expressive language and their rapid development in early life (Skeide & 

Friederici, 2016). As illustrated in Figure 1, we hypothesize that (1) resting gamma power 

in language-related frontal and temporal regions will mediate the relationship between 
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toddlers’ language input and their language development, (2) risk status and diagnostic 

outcome will moderate the direct relationship between input and language development, 

with affected toddlers showing stronger input-language relationships, and (3) familial risk 

and diagnostic outcome will moderate the indirect relationship through frontotemporal 

gamma power, which would indicate that the neural mechanisms for experience-dependent 

language development differ according to ASD risk/diagnosis.

Methods

Participants

The present study included a subsample of 46 mother-toddler dyads (23 male) drawn 

from a larger prospective, longitudinal study of 3–36-month-old children at high or low 

risk of developing ASD by virtue of having an older sibling with autism (for full sample 

description, see Gabard-Durnam et al., 2019; Wilkinson et al., 2020). Because younger 

siblings of children with ASD are more likely to develop an autism spectrum disorder than 

the general public (estimated to be as high as 1 in 5, Messinger et al., 2015; Ozonoff 

et al., 2011), so-called baby-sibling designs provide enriched samples for prospectively 

studying early ASD markers. Participants were recruited at or before 12-months of age into 

one of two groups: infants at high risk of ASD (HRA, n=22) had an older sibling with 

a community diagnosis of ASD that could not be attributed to a known genetic disorder, 

while low risk controls (LRC, n=24) had a typically developing older sibling and no first- or 

second-degree family history of ASD. Older sibling diagnosis was confirmed independently 

using the Social Communication Questionnaire (SCQ; Rutter et al., 2003) and/or the Autism 

Diagnostic Observation Schedule (ADOS; Lord et al., 2000). At their final visit to the lab, 

children received a final ASD diagnosis using both the ADOS and best clinical judgment 

by a Licensed Clinical Psychologist. Within the present sample, all LRC children were 

determined to not have ASD, 10 HRA children were determined to have ASD (HRA+), 

and 12 HRA children were determined to not have ASD (HRA−). LRC and HRA children 

did not differ on participant sex, caregiver education, family income, race, or ethnicity 

(Table 1). HRA+ and HRA− children did not differ on caregiver education, family income, 

race, or ethnicity, but they did differ on sex (HRA+ included more males, p = 0.04). No 

independent or dependent variables were significantly associated with caregiver education, 

family income, race, or ethnicity, so no covariates were included in analyses. The lack of 

these associations is not surprising given the limited demographic variability within the 

sample, which is later discussed as a limitation.

Inclusion criteria required infants to have a minimum gestational age of 36 weeks, no history 

of pre- or postnatal medical or neurological problems, and no known genetic disorders (e.g., 

fragile-X, tuberous sclerosis). The complete study enrolled 255 infants. Seventeen infants 

from the LRC group were excluded after enrollment for not meeting inclusion criteria (4 

had a family history of ASD, 8 had an older sibling that met ADOS criteria for ASD, 4 

revealed the qualifying older sibling was a half sibling, and 1 was diagnosed with hearing 

impairment), and 1 infant from the HRA group was excluded for developing seizures. 

Forty-seven participants discontinued the study before they could receive a final clinical 

judgement. Additionally, 3 from the LRC group were excluded for meeting criteria for ASD, 
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and 5 from the HRA group were excluded for receiving a diagnosis other than ASD (e.g., 

language impairment). This left 182 children in the larger longitudinal study.

For determining the subsample for the present analyses, 9 participants were excluded for 

not hearing English as their primary language at home (>80% of time). At the 18-month-

old visit, 69 participants did not have usable parent-child free play videos for coding 

language input due to session non-attendance (n=8), task non-completion (n=31), or file 

corruption (n=30). Of the remaining 104 participants, a pseudo-random sample of 70 videos 

(oversampled for HRA+) were selected for transcription (see Choi et al., 2020). At the 

24-month visit, 16 children did not attend, 7 did not have usable language assessment 

data due to task non-completion, and 45 did not have usable baseline EEG data (n = 

24 not acquired, 6 incomplete recordings, 1 technical error, and 14 poor quality data, 

see below), leaving 103 participants with both EEG and language assessment data. The 

46 toddlers in the present sample comprised all participants with usable data from all 

three measures, including 18-month parent-child interaction, 24-month baseline EEG, and 

24-month standardized language scores.

Language Input Measures

At 18-months of age, parent-child dyads engaged in video-recorded free play in the 

laboratory for 10 minutes. Families were provided with a set of age-appropriate toddler toys, 

and parents were asked to play with their child as they normally would. Videotaped sessions 

were transcribed verbatim following Codes for the Human Analysis of Transcripts (CHAT) 

conventions of the Child Language Data Exchange System (CHILDES; MacWhinney, 

2000). All parent and child verbalizations were transcribed at the utterance level, which 

were demarcated by a pause, a change in conversational turn, or a change in intonational 

pattern. Trained transcribers were determined to have met reliability when they achieved 

95% agreement on utterance boundaries. Additionally, each transcript was verified by a 

second transcriber to ensure accuracy and consistency.

Transcripts were automatically analyzed in Computerized Language ANalysis (CLAN; 

MacWhinney, 2000), and three measures of parent input were extracted: (1) Tokens indicates 

the number of total words spoken by the parent and indexed input quantity, (2) Types 

indicates the number of unique words spoken by the parent and indexed vocabulary 

diversity, and (3) Mean length of utterance (MLU) indicates the average number of 

morphemes per utterance and indexes grammatical complexity. While tokens are exclusively 

a quantitative measure of input, types and MLU index more qualitative aspects of the input.

Child Language Skill Measures

At 24 months of age, toddlers were administered the Mullen Scales of Early Learning 

(MSEL; Mullen, 1995), a standardized assessment of physical, cognitive, and verbal skills. 

Receptive and expressive language skills were separately indexed by the age-normed T-

scores from the Receptive Language Scale and the Expressive Language Scale.
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ASD outcome classification

At their final visit to the lab (24 or 36 months of age), children received a final ASD 

diagnosis. Research staff with extensive experience administered and scored the ADOS, and 

an ADOS-reliable researcher co-scored via video recording. When children met or came 

within three points of the ASD cutoff score on the ADOS, a Licensed Clinical Psychologist 

reviewed scores and assessment videos to provide a best estimate clinical judgment using 

DSM-5 criteria. Children from either group who were determined to have a disorder other 

than ASD (e.g., attention deficit disorder, anxiety, developmental language disorder) were 

excluded. The majority of children (n=42) had their diagnostic outcomes determined at 

36 months; however, because of sample attrition, 4 children had their ASD outcomes 

determined at 24 months (1 HRA+, 2 HRA−, and 1 LRC). These four children were not 

statistical outliers within their group on any independent or dependent measure, and their 

inclusion is supported by evidence of the diagnostic stability of ASD in high-risk children 

between 18 and 36 months (Ozonoff et al., 2015; Zwaigenbaum et al., 2016).

EEG Data Acquisition

At 24 months of age, 2–5 minutes of continuous baseline/resting EEG data were acquired 

while toddlers were seated on their caregivers’ laps in a dimly lit, sound-attenuated, 

electrically shielded room, following field standards (deBoer et al., 2007). A research 

assistant sat nearby and ensured toddlers were calm and still by blowing bubbles and/or 

quietly showing toys but did not engage in social interaction. EEG data were collected using 

either a 128-channel (n=44) or 64-channel (n=2) Geodesic Sensor Net System, sampled 

at 250 or 500 Hz, and re-referenced online to the vertex (channel Cz) through NetStation 

software (Electrical Geodesics, Inc (EGI), Eugene, OR, USA). The study began with the 

64-channel net but switched to 128-channel nets because the production company ceased 

supporting 64-channel net equipment. Thus, channels were selected for analysis from spatial 

locations that corresponded across nets (Gabard-Durnam et al., 2019). Impedances were 

kept below 100KΩ, in accordance with the capabilities of the high-impedance DC-coupled 

amplifiers (Net Amps 200 or Net Amps 300) inside the electrically shielded room.

EEG Processing

The continuous, baseline EEG portion of the raw NetStation files were exported to 

MATLAB (R2017a). Preprocessing, artifact removal, and quality assessment was conducted 

with the Harvard Automated Processing Pipeline for EEG (HAPPE), a preprocessing 

pipeline optimized for developmental EEG data with short recordings and/or high levels 

of artifact (Gabard-Durnam et al., 2018). All files were batch processed using the batch EEG 

automated processing platform (BEAPP) to ensure the same artifact removal criteria were 

applied regardless of group or acquisition circumstances (Levin et al., 2018). A whole-head 

distributed subset of channels was processed through HAPPE (128-channel net: 3, 4, 9, 11, 

13, 19, 20, 22, 23, 24, 27, 28, 33, 36, 40, 41, 45, 46, 47, 52, 58, 62, 70, 75, 83, 92, 96, 98, 

102, 103, 104, 108, 109, 112, 117, 118, 122, 123, 124; 64-channel net: 2, 3, 6, 8, 9, 11, 12, 

13, 15, 16, 17, 21, 24, 25, 27, 28, 34, 37, 40, 46, 49, 50, 52, 53, 54, 57, 58, 61, 62). A 1-Hz 

digital high-pass filter and a 100-Hz low-pass filter were applied, and data sampled at 500 

Hz were resampled to 250 Hz with interpolation as recommended for HAPPE processing.
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HAPPE’s artifact identification and removal steps were applied, including removal of 60 

Hz electrical noise through multi-taper approach, bad channel rejection, and participant-

produced artifact rejection (e.g., eye blinks, movement, and muscle activity) through 

wavelet-enhanced ICA and multiple artifact rejection algorithm (MARA; Winkler et al., 

2014). After artifact rejection, any channels removed were repopulated through spherical 

interpolation. Data were then re-referenced to the average reference and detrended using 

the signal mean. EEGs were then segmented into contiguous 2-second windows to allow 

for power calculations using multitaper spectral analysis (Babadi & Brown, 2014), and any 

segments with retained artifact were rejected using HAPPE’s amplitude and joint probability 

criteria. Noncontiguous data were not concatenated. The lengths of raw and/or processed 

EEG did not differ by recruitment or diagnostic outcome group (all p > 0.1).

EEG Rejection

All 24-month EEG files (n=148) were subjected to the same pre- and post-processing 

pipeline no matter whether participants were ultimately included in the final study sample. 

EEGs were rejected if they had fewer than 20 postprocessed good segments (40 seconds) 

or were more than 3 standard deviations from the mean on the following HAPPE metrics: 

percent good channels (<82%), mean retained artifact probability (>0.3), median retained 

artifact probability (>0.35), percent of independent components rejected as artifact (>84%), 

and percent of EEG signal variance retained after artifact removal (<32%), which resulted in 

the rejection of 8 EEGs. Additionally, EEGs with a mean power in any frequency band more 

two standard deviations from their outcome group mean were visually reviewed blind to 

outcome group status, which resulted in the rejection of 2 additional EEGs. Neither HAPPE 

quality measures nor visual inspection rejection rates differed by recruitment or diagnostic 

outcome group (all p > 0.1). Quality measures were also not correlated with power in the 

gamma band (p > 0.1), which is the EEG measure of interest in the current study.

EEG Power Decomposition

A Fast Fourier Transform with multitaper windowing (3 orthogonal tapers) was used to 

decompose the signal into power for each segment at each channel of interest. Total power 

in the gamma band (30–50 Hz) was calculated as the summed power across all frequencies 

within the band, equivalent to the area under the power density curve (Gabard-Durnam et 

al., 2019). Power at each channel was then averaged across all 2-second segments within the 

recording and normalized by a log base-10 transform. Finally, power was averaged across 

all channels within two regions of interest (ROIs): one centered over the frontal cortex 

(128-channel net: 3, 4, 11, 19, 20, 23, 24, 27, 118, 123, 124; 64-channel net: 2, 3, 8, 9, 12, 

13, 58, 62), and one centered over bilateral temporal-parietal cortex (128: channel net—40, 

41, 45, 46, 47, 52, 92, 98, 102, 103, 108, 109; 64-channel net: 21, 24, 25, 28, 46, 50, 52, 53; 

Supplementary Figure 1).

Statistical Analyses

Demographic differences between recruitment and diagnostic outcome groups were explored 

using Fisher’s exact test (gender and sex) and Mann-Whitney U-test (parental education, 

which was ordinal and non-normally distributed, see Table 1). Welch’s t-test was used 

to explore group differences in all measures of interest: language input, regional gamma 
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power, and MSEL language scores. Pearson’s correlations were used to assess relationships 

between measures of interest within groups, and the effect of group (risk/diagnosis) on these 

relationships was examined through multiple regressions with group (dummy-coded) as an 

interaction term.

Mechanistic relationships between measures of interest were examined by estimating first-

stage, second-stage, and combined first- and second-stage moderated mediation models 

(Edwards & Lambert, 2007; Hayes, 2015). Separate models were constructed to assess 

whether either regional gamma measure (frontal or temporal) mediated the association 

between each input measure (tokens, types, MLU) and each language measure (receptive 

and expressive scores), and further, whether the indirect effect was conditional on risk 

status (HRA or LRC, within the full sample) or diagnostic outcome (HRA+ or HRA−, 

within the HRA subgroup). All continuous measures were mean-centered prior to creating 

product terms, and the index of moderated mediation was tested with a with 95% 

bias-corrected bootstrap confidence interval based on 10,000 replications (Hayes, 2015). 

Statistical analyses were completed in RStudio using R v4.0, with exception of moderated 

mediation models, which were completed using PROCESS v3.5 (Hayes, 2018) executed in 

SPSS 26.

Results

Input, Language, and EEG Differences by Group

Table 1 and Figure 2 show comparisons between LRC and HRA groups on the four input 

measures and three language score measures. The only language input measure that differed 

by risk group was the mean length of utterance [t(43.57) = 2.91, p < .01], such that LRC 

toddlers were on averaged exposed to longer utterances (M = 3.49 morphemes) than HRA 

toddlers (M = 3.06 morphemes). LRC toddlers exhibited higher scores than HRA toddlers 

on both language measures, with larger differences in expressive language scores (EL: 

[t(43.51) = 3.62, p < .001], mean difference = 10.26 points) than receptive language scores 

(RL: [t(36.39) = 2.51, p < .05], mean difference = 7.30 points). HRA and LRC groups did 

not differ in either frontal or temporal gamma power. No input, EEG, or language score 

measure significantly differentiated HRA+ and HRA− groups.

Relationships between Input and Language Scores

Within the full sample (collapsed across groups), parent word types at 18-months 

significantly predicted toddlers’ 24-month receptive language scores (r = .33, p < .05) and 

marginally predicted toddler’ 24-month expressive language scores (r = .27, p = .07), while 

parent MLU at 18-months significantly predicted both receptive and expressive language 

scores (receptive: r = .39, p < .01; expressive: r = .51, p < .001). Multiple regressions 

including all three input measures revealed that MLU was the only significant predictor 

of receptive (β = .31, p < .05) and expressive (β = .48, p < .01) language scores after 

controlling for the other measures.

For two of three input measures, relationships with expressive language were moderated by 

risk group (Tokens*Risk: β = 1.20, p < .05; Types*Risk: β = 1.17, p<.05; MLU*Risk: n.s.), 
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such that Tokens and Types significantly predicted expressive language scores in HRA but 

not LRC toddlers (HRA: Tokens: r = .59, p < .01; Types: r = .63, p < .01; Figure 3, top 

row). MLU significantly predicted expressive language scores in HRA toddlers (r =.44, p 
< .05) and marginally in LRC toddlers (r =.37, p = .08), but the interaction with risk was 

not significant. No relationships between input measures and receptive language scores were 

significantly moderated by risk.

Within the HRA group, diagnostic outcome (ASD versus no ASD) also moderated the 

relationship between input MLU and expressive language scores (β = 2.98, p < .05), such 

that MLU significantly predicted expressive language scores in HRA+ toddlers (r = .65, p < 

.05) but not HRA− toddlers (Figure 3, bottom row, and Figure 4, top row). Tokens and Types 

predicted expressive language scores in both HRA+ and HRA− groups (HRA+ Tokens: r = 

.69, p <.05; HRA+ Types: r =.68, p <.05; HRA− Tokens: r = .5, p = .098; HRA− Types: r 
=.63, p <.05) so the interaction was not significant. Diagnostic outcome did not moderate 

relationships between any input measure and receptive language scores (all β < 1.05, p > 

.18).

Relationships between Input and Gamma Power

Within the whole group, no 18-month input measure significantly predicted either 24-month 

EEG measure. However, risk status did significantly moderate the relationships between 

Tokens and Types and gamma power in both frontal regions (Tokens: β = −1.05, p < .05; 

Types: β = −1.52, p < .01) and temporal regions (Tokens: β = −1.34, p < .05; Types: β = 

−1.50, p < .05). In both cases, input negatively predicted frontal gamma power (Tokens: r 
= −.49, p < .05, Types: r = −.59, p < .01) and temporal gamma power (Tokens: r = −.53, p 
< .05, Types: r = −.47, p < .05) in HRA toddlers, such that higher input was significantly 

related to lower gamma power, while input did not predict gamma power in LRC toddlers 

(Figure 3, top row).

Within the HRA group, diagnostic outcome (ASD versus no ASD) also moderated the 

relationships between Tokens, Types, and MLU and Frontal gamma power (Tokens: β = 

−2.55 p < .01; Types: β = −1.19, p < .05; MLU: β = −4.51, p < .01) and between Types and 

Temporal gamma power (β = −1.21, p < .05). In all cases, input negatively predicted both 

frontal gamma power (Tokens: r = −.82, p < .01, Types: r = −.89, p < .001, MLU: r = −.77, 

p < .05) and temporal gamma power (Tokens: r = −.88, p < .001, Types: r = −.77, p < .01, 

MLU: r = −.59, p = .07) in HRA+ toddlers, but not in HRA− toddlers (Figure 3, bottom row, 

and Figure 4, middle rows).

Relationships between Gamma Power and Language Scores

Within the whole group, neither 24-month regional gamma power measure correlated with 

cotemporaneous receptive or expressive language scores (all r < .08, all p > .6). However, 

risk did significantly moderate the relationships between both frontal gamma power and 

both receptive and expressive language scores (Receptive: β = −3.29, p < .05; Expressive: 

β = −5.60, p < .001), as well as between temporal gamma power and expressive language 

scores (β = −3.06, p < .01). In HRA toddlers, regional gamma power was negatively 
correlated with expressive language scores (Frontal: r = −.61, p < .01, Temporal: r = −.51, 
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p < .05) language scores, while in LRC toddlers, frontal gamma power was positively 
correlated with expressive language scores (r = .51, p < .05) and temporal gamma was 

uncorrelated with language scores (Figure 3, top row). Neither gamma power measure was 

correlated with receptive language scores in either group.

Within the HRA group, diagnostic outcome (ASD versus no ASD) also moderated 

relationships between temporal gamma power and expressive language scores (β = −3.67, 

p < .01), and marginally moderated relationships between frontal gamma power and 

expressive language scores (β = −3.40, p = .06). In both cases, gamma power was negatively 

correlated with expressive language scores in HRA+ toddlers (Frontal: r = −.79, p < .01, 

Temporal: r = −.72, p < .05) and was uncorrelated with language scores in HRA− toddlers 

(Figure 3, bottom row, and Figure 4, bottom row).

Full Moderated Mediation Models

Within the full sample, no models assessing indirect or conditional indirect effects by 

risk status were significant because there were minimal relationships amongst independent, 

dependent, and mediating variables in the LRC group. Additionally, no models with an 

outcome measure of receptive language were significant, also because no input or neural 

measure was significantly associated with receptive language in any subgroup. Thus, all 

models reported below are conducted within HRA toddlers only, with a conditional effect of 

diagnostic outcome and a dependent outcome measure of expressive language scores.

First-stage moderated mediation models (model 7, Hayes, 2018) assess whether gamma 

power mediates the effect of input on expressive language skills and whether diagnostic 

outcome moderates the relationship between input and gamma power (the a path). A formal 

test of first-stage moderated mediation based on the index term (the difference between 

conditional indirect effects) revealed that HRA subgroup (HRA+ or HRA−) moderated 

the indirect effect of tokens on expressive language scores through frontal gamma power 

(B = .02, SE = .02, 95% CI = [.0002, .06]; Figure 5, top left). Specifically, the mediation 

was significant for HRA+ toddlers (B = .02, SE =.02, CI = [.003, .06]), but not for HRA− 

toddlers (B = .0009, SE = .008, CI = [−.01, .02]). No first-stage models with types were 

significant. The first-stage models with MLU through both frontal and temporal gamma 

power were significant, but the combined first and second stage models had a higher R-

squared values (frontal: +.03; temporal: +.08) and moderated mediation index terms (frontal: 

+3.10; temporal: +5.06; see below).

Second-stage moderated mediation models (model 14, Hayes, 2018) assess whether gamma 

power mediates the effect of input on expressive language skills and whether diagnostic 

outcome moderates the relationship between gamma power and expressive language scores 

(the b path). A formal test of second-stage moderated mediation revealed that HRA 

subgroup moderated the indirect effect of types on expressive language scores through 

temporal gamma power (B = .07, SE = .06, 95% CI = [.0001, .22]; Figure 5, top right). 

Specifically, the mediation was significant for HRA+ toddlers (B = .07, SE = .05, CI = [.007, 

.20]), but not for HRA− toddlers (B = .002, SE = .03, CI = [−.06, .05]). No other second-

stage models were significant.
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Combined first- and second-stage moderated mediation models (model 58, Hayes, 2018) 

assess whether gamma power mediates the effect of input on expressive language skills 

and whether diagnostic outcome moderates both the relationship between input and gamma 

power (the a path) and the relationship between gamma power and expressive language 

scores (the b path). Thus, the indirect effect is a quadratic function of the moderator. A 

formal test of first- and second-stage moderated mediation revealed that HRA subgroup 

moderated the indirect effect of MLU on expressive language scores through both frontal 

gamma power (B = 17.43, SE = 20.48, 95% CI = 1.41, 30.99]; Figure 5, bottom left) and 

through temporal gamma power (B = 11.61, SE = 8.63, CI = [1.03, 29.93]; Figure 5, bottom 

right). Specifically, the mediations were significant for HRA+ toddlers (frontal: B = 16.44, 

SE = 20.48, CI = [.40, 30.12]; temporal: B = 11.45, SE = 8.62, CI = [1.09, 29.76]), but not 

for HRA− toddlers (frontal: B = −.98, SE = 1.84, CI = [−4.74, 1.61]; temporal: B = −.16, 

SE = 1.46, CI = [−3.47, 2.05]). No other combined first- and second-stage models were 

significant.

Discussion

In this study we sought to determine whether the neuroscillatory mechanisms linking 

toddlers’ language input to their language skills vary by toddlers’ familial risk for ASD 

and/or by ultimate diagnostic outcomes. Results indicate that quantitative (number of 

words) and qualitative (lexical diversity and grammatical complexity) measures of parental 

language input at 18-months of age predict toddlers’ language skills 6 months later, but that 

these relationships are moderated by both ASD risk and diagnostic outcome. Specifically, 

high-risk toddlers showed stronger relationships between input and expressive language 

scores than low-risk toddlers, and high-risk toddlers who ultimately receive ASD diagnoses 

showed the strongest relationships. Furthermore, in high-risk toddlers, and especially those 

who would later receive diagnoses of autism, greater/higher quality input was associated 

with lower baseline gamma power over frontal and temporal regions 6-months later, 

which in turn was related to higher expressive language scores. Moderated mediation 

models revealed that relationships between input and expressive language scores were 

explained by frontal (types and MLU) and temporal (tokens and MLU) gamma power, 

but only for toddlers who received ASD diagnoses. Together, results suggest that high-risk 

toddlers appear to be both cognitively and neurally more sensitive to their early language 

environments, and the neurophysiological mechanisms underlying experience-dependent 

language development differ according ultimate diagnosis.

The finding that high-risk toddlers exhibit stronger effects of input on neuroscillatory 

patterns and language skills is consistent with a theory of differential susceptibility 

to one’s early environment, in which certain individuals or groups of individuals are 

neurobiologically more sensitive than others to both negative and positive experiences 

(Belsky & Pluess, 2009; Boyce, 2016; Ellis et al., 2011). By such an account, inherent 

to HRA children is some to-be-determined risk factor—which may be of prenatal 

origin, genetic, familial, and/or experientially derived—that predisposes them to be more 

susceptible to variation in their language input in terms of its effects on neurodevelopment. 

Although typically referenced in response to vulnerability to adverse early experiences, 

differential susceptibility theory posits that more susceptible children will also be more 
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receptive to promotive early experiences (Ellis et al., 2011), such as positive parenting 

practices, or in the present case, rich early language environments. Indeed, toddlers 

in the HRA+ group who experienced higher quantity and quality of language input 

exhibited average-range language scores on par with many low-risk controls. This 

suggests the potential benefit of preemptive intervention programs to support caregivers’ 

language interactions with pre-symptomatic high-risk children to support optimal language 

development (Swanson, 2020).

Although correlations between gamma power and language input/language skills were 

hypothesized, the negative correlations (i.e., higher input was associated lower gamma 

power, which was in turn associated with higher language skills) in HRA toddlers were 

surprising. It is important to note that Wilkinson and colleagues (2019) have previously 

found negative correlations between frontal gamma power and concurrent language scores in 

a larger sample of participants of the same study as is reported here (i.e., all 24-month-olds 

with EEG and language scores, irrespective of 18-month parent child interactions), and the 

present study extends these negative associations to language input 6-months prior. Of the 

studies finding relationships between gamma power and language development in typically 

developing children, all have reported positive correlations, with higher gamma power 

predicting better language outcomes (Benasich et al., 2008; Brito et al., 2016; Cantiani et 

al., 2019; Gou et al., 2011; Tarullo et al., 2012; Tarullo et al., 2017; although, note that 

Wilkinson et al, 2019 did not find a significant association between frontal gamma and 

language scores in LRC children). Additionally, the emerging literature relating language 

input to infant brain oscillations also finds positive associations between input and high-

frequency brain rhythms (Brito et al., 2020; Pierce et al., 2020). However, the present 

findings of opposite (i.e., negative) associations are consistent with previous studies that 

have found reversed brain-language relationships in toddlers at risk of and/or diagnosed 

with ASD. For example, in a prospective functional magnetic resonance imaging (fMRI) 

study of 1–3 year-olds, associations between language-related brain activation and later 

language development were in opposite directions in children who would and would not 

develop ASD (Lombardo et al., 2015). While the reason for the reversed findings in 

high-risk toddlers is unclear, it may originate in the already atypical neural circuitry in 

these children. Specifically, because ASD is hypothesized to stem from imbalances in 

neural excitation/inhibition (Geschwind & Levitt, 2007; Rubenstein & Merzenich, 2003), a 

reduction in gamma power may indicate successful compensation to hypoactive inhibitory 

neurons (Wilkinson et al., 2019). The present study suggests that greater quantity and 

quality of language input may support these neurobiological processes to support language 

development in high-risk children.

Additionally, there were slight differences amongst the relationships between measures 

of language input and gamma power in the HRA+ toddlers. Specifically, input tokens 

(a measure of the sheer quantity of input) were more strongly related to gamma power 

in the temporal region, while input types (a measure of lexical diversity) and MLU (a 

measure of grammatical complexity) were more strongly related to gamma power in the 

frontal region. This pattern may reflect different relationships between input quantity/quality 

and different language regions in the brain. The temporal cortex houses early developing 

regions responsible for auditory processing and lower-level receptive language processing, 
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while the prefrontal cortex subserves later-developing semantic and syntactic processing, 

speech production, and other higher-level cognitive processes. Although speculative, it is 

possible that sheer input quantity has the largest effects on lower-level language-related 

brain development in temporal regions, while input quality has greater effects on higher-

level language-related development in prefrontal regions. This would be consistent with 

developmental trajectories of the variable influence of language input, in which quantitative 

measures are most important for young infants, while qualitative measures become 

increasingly more important as children age (Rowe, 2012; Rowe & Snow, 2020). Further, 

this would suggest that early interventions to support caregivers’ language input to high-risk 

children should be tailored to the child’s age and developmental level, and should focus not 

only on responsiveness, but also the quantity, diversity, and complexity of input.

The present findings also raise questions about why caregivers vary in their language 

input to children. Even though the language input measures temporally preceded the 

biobehavioral measures, there are likely reciprocal relationships between parent input and 

child development. Specifically, as high-risk children age and exhibit increasingly more 

phenotypic ASD characteristics, parents may tailor their input to match their child’s 

developmental language level (Bottema-Beutel & Kim, 2020; Leezenbaum et al., 2014). 

The present study focused only on parent-to-child input effects in service of identifying 

neurobiological links, yet further research is necessary to characterize the nature of 

reciprocal relationships between caregiver speech and child language development in higher-

risk children, and the impact of caregiver support interventions across a variety of caregivers 

with differing communication styles.

Despite its strengths, this study has several limitations. First, the language input measure 

was derived from short, in-lab video recordings which may not be fully representative of 

a child’s full day-to-day experience (Bergelson et al., 2019). Many language development 

studies have begun utilizing daylong audio recordings to provide automated measures of 

children’s naturalistic language experience (Ganek & Eriks-Brophy, 2018). However, at 

present these measures only provide quantitative information on children’s language input 

(e.g., the number of words and conversational turns), while human transcription is still 

considered the gold standard for deriving in-depth qualitative input measures, which appear 

to have unique relations to language development in the present study and others (Rowe 

& Snow, 2020). Second, we explored multiple measures for each construct of interest 

(three input, two EEG, and two language) because we did not have strong hypotheses 

about which would be most related to the other variables and did not want to overlook non-

hypothesized relationships. Because this was exploratory, we did not correct for multiple 

comparisons, so results should be replicated with the implicated measures only for greater 

confidence. Additionally, the overall sample size was not large, which made the subgroups, 

and especially the two HRA subgroups, even smaller. Although the effect sizes within the 

HRA+ subgroup were strong (correlations between input, gamma power, and expressive 

language ranged from .65 to .89), results should be replicated with a larger sample. Finally, 

the sample skewed toward non-Hispanic white, highly educated, and higher income families, 

which may limit generalization to more diverse populations of children. This also may 

have constrained the observed range in input measures, which could have contributed to the 

limited correlations between input and language scores in the LRC group (though see Choi 
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et al., 2020 for relationships within the full sample of transcribed interactions, irrespective 

of usable EEG data). While such sample demographics are unfortunately not unusual in 

developmental neuroscience research, further research with more representative samples is 

critical to a comprehensive understanding of the neural mechanisms underlying language 

development in autism.

In conclusion, this study revealed that toddlers at high risk of ASD, and especially those 

who go on to receive ASD diagnoses, are disproportionately sensitive to the quantity 

and quality of their early language environments, and that the neuroscillatory mechanisms 

mediating these input-language associations differ between toddlers who do and do not 

develop ASD. Beyond the mechanistic value, these findings also have strong translational 

implications. Specifically, they highlight the importance of early (i.e., pre-symptomatic) 

intervention programs to support caregivers in providing high-quality language to high-risk 

children to optimally scaffold their language development.
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Figure 1. 
Conceptual figure representing the tested moderated mediation model and associated 

hypotheses. Hypothesis 1 (H1) addresses the mediation, hypothesis 2 (H2) addresses the 

moderation of the direct effect, and hypothesis 3 (H3) addresses the moderation of the 

indirect effect. MLU= Mean Length of Utterance.

Romeo et al. Page 21

J Autism Dev Disord. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Distributions of primary measures by risk group. The top row displays language input 

measures; the middle row displays scores on the language assessments of the Mullen Scales 

of Early Learning; and the bottom row displays the log10-transformed absolute power in 

the gamma band (30–50 Hz) over frontal and temporal scalp regions. Group means are 

represented by dashed lines, and asterisks indicate significant between-group differences 

according to Welch’s t-test. MLU= Mean Length of Utterance; LRC = low risk control; 

HRA = high risk of Autism. *p < .05, **p < .01, ***p < .001
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Figure 3. 
Correlation matrices of all independent, dependent, and mediator variables by risk group 

(top row) and diagnostic group within the high-risk group (bottom row). Text in cells 

represents the Pearson product-moment correlation coefficient, cool colors represent 

significant positive correlations, warm colors represent significant negative correlations, and 

white cells represent non-significant relationships. LRC = low risk control; HRA = high 

risk of Autism; HRA+ = High risk of Autism, diagnosed with ASD; HRA− = high risk 

of Autism, not diagnosed with ASD; MLU= Mean Length of Utterance; RecL = Receptive 

Language Score; ExpL = Expressive Language Score; Front γ = log10 transformed absolute 

power in the gamma band (30–50 Hz) over frontal scalp regions; Temp γ = log10 

transformed absolute power in the gamma band (30–50 Hz) over temporal scalp regions.
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Figure 4. 
Relationships between language input, regional gamma power, and expressive language 

scores by risk and diagnostic group. The top row displays relationships between language 

input measures and expressive language scores on the Mullen Scales of Early Learning; the 

middle rows display relationships between language input measures and log10-transformed 

absolute power in the gamma band (30–50 Hz) over frontal and temporal scalp regions; 

and the bottom row displays the relationships between the two regional gamma power 

measures and expressive language scores. Shaded areas are the 95% confidence intervals. 

See Supplementary Figure 1 for plots with receptive language in place of expressive 

language. MLU= Mean Length of Utterance; LRC = low risk control; HRA+ = High risk of 

Autism, diagnosed with ASD; HRA− = high risk of Autism, not diagnosed with ASD.
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Figure 5. 
Moderated mediation models estimating whether the relationship between input and 

expressive language skill is mediated by regional gamma power, conditional on diagnostic 

outcome. Numbers on pathways indicate unstandardized regression coefficients. The index 

of moderated mediation is significant for all models shown (see text), and in all cases, 

the mediation is significant for HRA+ and not for HRA− toddlers. MLU= Mean Length 

of Utterance; HRA+ = High risk of Autism, diagnosed with ASD; HRA− = high risk of 

Autism, not diagnosed with ASD. †p < .1, *p < .05, **p < .01, ***p < .001, ‡significant by 

bootstrapped confidence intervals.
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Table 1.

Sample Characteristics

Measure LRC HRA (all) HRA− HRA+ LRC v. HRA HRA+ v. HRA−

N 24 22 12 10

Sex 13M, 11F 10M, 12F 3M, 9F 7M, 3 F n.s. p = .04

Race n.s. n.s.

 White 21 17 10 7

 Black/African American 1 0 0 0

 Asian 1 0 0 0

 Multiple Races 1 5 2 3

Ethnicity n.s. n.s.

 Hispanic/Latino 0 1 0 1

 Not Hispanic/Latino 24 21 12 9

Parental Education (parent with highest education level) n.s. n.s.

 Less than 4-year college degree 1 5 2 3

 4-year college degree 6 7 2 5

 Advanced degree 14 9 7 2

 Unknown 3 1 1 0

Annual Household Income n.s. n.s.

 Less than $75,000 4 2 0 2

 Greater than $75,000 16 18 11 7

 Unknown 4 2 1 1

Language Input Measures (per 10 minutes)

 Tokens (quantity) 625.2 ± 185.0 579.3 ± 162.8 574.9 ± 144.0 584.5 ± 190.9 n.s. n.s.

 Types (diversity) 168.1 ± 44.1 157.9 ± 35.1 162.8 ± 38.1 152.1 ± 32.0 n.s. n.s.

 MLU (complexity) 3.49 ± 0.50 3.06 ± 0.50 3.21 ± 0.57 2.89 ± 0.36 p = .006 n.s.

24-month Scores on the Mullen Scales of Early Learning (MSEL)

 Receptive Language 59.7 ± 7.7 52.4 ± 11.5 52.8 ± 9.5 51.8 ± 14.0 p = .02 n.s.

 Expressive Language 59.1 ± 10.5 48.9 ± 8.7 50.8 ± 5.9 46.5 ± 11.0 p < .001 n.s.

 Verbal Developmental Quotient 118.0 ± 16.1 101.7 ± 15.5 104.2 ± 10.3 98.8 ± 20.3 p = .001 n.s.

Note: LRC = low risk control; HRA = high risk of Autism; HRA+ = high risk of Autism, diagnosed with ASD; HRA− = high risk of Autism, 
not diagnosed with ASD; n.s. = not significant. Categorical variables are reported as N per group, while continuous variables are reported as 
mean ± standard deviation. Between-group p-values come from Fisher’s Exact test (gender, income), Mann-Whitney U-test (parental education), or 
Welch’s t-test (all continuous variables).
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