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Abstract

The emergence of large-scale phenotypic, genetic, and other multi-model biochemical data has 

offered unprecedented opportunities for drug discovery including drug repurposing. Various 

knowledge graph-based methods have been developed to integrate and analyze complex and 

heterogeneous data sources to find new therapeutic applications for existing drugs. However, 

existing methods have limitations in modeling and capturing context-sensitive inter-relationships 

among tens of thousands of biomedical entities. In this paper, we developed KG-Predict: a 

knowledge graph computational framework for drug repurposing. We first integrated multiple 

types of entities and relations from various genotypic and phenotypic databases to construct 

a knowledge graph termed GP-KG. GP-KG was composed of 1,246,726 associations between 

61,146 entities. KG-Predict then aggregated the heterogeneous topological and semantic 

information from GP-KG to learn low-dimensional representations of entities and relations, and 

further utilized these representations to infer new drug–disease interactions. In cross-validation 

experiments, KG-Predict achieved high performances [AUROC (the area under receiver operating 

characteristic) = 0.981, AUPR (the area under precision–recall) = 0.409 and MRR (the mean 

reciprocal rank) = 0.261], outperforming other state-of-art graph embedding methods. We applied 

KG-Predict in identifying novel repositioned candidate drugs for Alzheimer’s disease (AD) and 

showed that KG-Predict prioritized both FDA-approved and active clinical trial anti-AD drugs 

among the top (AUROC = 0.868 and AUPR = 0.364).
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1. Introduction

Traditional drug discovery often takes 10–17 years and costs ~$2 billion to bring a drug to 

market, with a high attrition rate of 90% [1-3]. On the other hand, drug repurposing, which 

is the process of finding new indications for existing drugs, has demonstrated advantages 

over de novo drug design, including faster development time and reduced risk [4-6]. In 

the past few years, drug repurposing research has benefited greatly from the explosion of 

large-scale biomedical databases. Numerous computational approaches have been developed 

to systematically analyze various biomedical data to infer new indications for a given drug 

or find new treatments for a given disease [7-12].

Various network-based approaches have been developed for drug repurposing in the past 

decades. Several traditional studies identified new indications of an existing drug through 

constructing drug or disease similarity networks [13-16]. A key idea behind these methods 

is that similar drugs may treat similar diseases and vice versa. However, it is hard to 

provide a universal definition of similarity [17] and the similarity scores only reflect the 

strength of connections among entities while ignoring how two entities are connected [18]. 

Several computational strategies have been introduced to extract functional information 

from heterogeneous data sources to strengthen the prediction of new drug indications. For 

example, Dai et al. [19] built a three-layer network by integrating drug–gene interactions, 

disease–gene interactions and gene–gene interactions and proposed a matrix factorization 

model to predict novel drug indications. RWHNDR proposed by Luo et al. [20] constructed 

a heterogeneous network by combining multiple sub-networks including drug network, 

disease network, target network, drug–disease network, drug–target network and target–

disease network. They applied a random walk model to capture the global information of 

the heterogeneous network to predict candidate pharmacological treatments for diseases. 

Despite the impressive performances of these models, these methods were limited to capture 

the semantics within different types of relationships between biomedical entities. It is 

proposed that knowledge graph (KG) approaches would be of value in identifying the 

semantic connections between multiple databases [21-23]. Knowledge graph embedding, 

which aims to embed the entities and relations of a knowledge graph into low-dimensional 

vector spaces while maximally preserving its topological properties and leverages these 

representations for link prediction, is an emerging computational approach for biomedical 

discovery [24-26], including drug repurposing [27]. Moon et al. [28] constructed a 

heterogeneous knowledge graph including a variety of drug-related information and utilized 

TransE [29] model to infer drug–disease–target or drug–target–side effect relationships. 

Mohamed et al. [30] extracted drugs, target proteins, action pathways and targeted diseases 

from drug target knowledge bases to build a knowledge graph and extended the DistMult 

[31] and ComplEx [32] to propose a computational approach for predicting new associations 

between drugs and their targets. Other studies [33,34] constructed biomedical knowledge 

graphs and applied several knowledge graph completion algorithms (i.e., TransE, DistMult, 

ConvE [35], RotateE [36] to predict drug candidates for COVID-19 or Parkinson’s Disease. 

The key to any knowledge graph-based drug repurposing approach is the types, quantity, and 

quality of semantic relationships captured in the underlying knowledge graphs.
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While knowledge-graph methods have been successfully used in drug repurposing, they 

are limited by the fact that the underlying knowledge graphs mainly captured genetic and 

genomic information of diseases and drugs such as drug targets, pathways, and disease 

genes . In addition, these methods also have limitations in capturing heterogeneous topology 

information and feature interactions to predict new interactions. In recent years, phenotypic 

information has become available as a new source of drug repositioning [37]. This type 

of information can be integrated with other biomedical data sources to enrich associations 

between drugs, genes, and diseases; and potentially boost the accuracy of drug repositioning 

[38,39].

In this paper, we addressed aforementioned limitations and proposed KG-Predict, a 

knowledge graph computational framework for inferring new drug indications. We first 

constructed GP-KG by connecting various genotypic and phenotypic databases. GP-KG 

composed 9 kinds of phenotypic and genotypic relations and 7 kinds of entities including 

drugs, genes, diseases, and phenotypic annotations. The embedding module of KG-Predict 

was trained to learn low-dimensional representations of entities and relations in GP-KG. The 

predicting module of KG-Predict captured rich heterogeneous feature interactions between 

entity and relation embeddings to infer new drug–disease interactions. We compared KG-

Predict with several state-of-the-art models. We also used Alzheimer’s disease (AD) as a 

case study and evaluated predicted drugs by clinical trials.

2. Materials and methods

2.1. Knowledge graph construction

GP-KG consisted of nine types of semantic relationships among seven biomedical entity 

types. It was built from publicly available phenome-level databases, genome-level databases, 

and text-mined knowledge bases. Each of these relationships (e.g., disease–gene, drug–gene, 

drug–disease, and gene–phenotype interactions) and databases (e.g., Drugbank, TreatKB, 

MGI, HPO, GAO) has widely been used for drug repurposing [11,22,27,38,39]. In this 

study, we integrated these heterogeneous semantic relationships into one unified knowledge 

graph GP-KG. Table 1 listed statistics of extracted entities and relations.

2.1.1. Phenome-level databases—Gene–phenotype interactions were derived from 

abnormal phenotypes observed in mouse models, the normal functions of gene products and 

anatomical location of gene expressions. Specifically,

• Mouse Genome Informatics (MGI) database for Gene-relate-MP interactions. 

MGI [40] is the online database and bioinformatics resource, which provides 

access to data on the genetics, genomics, and biology of the laboratory mouse to 

facilitate the study of human health and disease. File “MGI_GenePheno.rpt” in 

the MGI database provided the connection between genotypes and mammalian 

phenotype (MP) annotations. We mapped each mouse gene to its human 

ortholog using mouse–human orthologs with phenotype annotations to obtain 

Gene-relate-MP interactions.

• Gene Ontology Annotation (GOA) Database for Gene-relate-GOA interactions. 

The GOA database provides annotations to the UniProt Knowledgebase using 
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the standardized vocabulary of the Gene Ontology [41]. We downloaded 

file “goa_human.gaf.gz” from the GOA database to extract Gene-relate-GO 

interactions. Some of pairs inferred from electronic annotation or with no 

available biological data were removed.

• Genotype-Tissue Expression (GTEx) database for Gene-relate-UT interactions. 

GTEx [42] Program provides a data resource and tissue bank that includes the 

relationship between genetic variants and gene expression in multiple human 

tissues and across individuals. We chose a cutoff of 4.0 transcripts per million as 

a threshold [39] to extract genes expressed in each tissue and mapped each tissue 

to the Uberon Anatomy Ontology to obtain human Gene-relate-UT interactions.

Disease-relate-HP interactions were collected from Human Phenotype Ontology (HPO) 

database. HPO [43] database provides a standardized vocabulary of phenotypic 

abnormalities that have been seen in human disease. Phenotype annotations of 

human diseases with the human phenotype (HP) ontology were obtained from file 

“phenotype.hpoa” in the HPO database and these annotations were used to construct 

Disease-relate-HP interactions.

We collected Drug-relate-HP and Drug-relate-MP interactions from file 

“sider_drug_phenotype.txt” in the Phenomebrowser database. Phenomebrowser [44] is a 

platform that aggregates phenotype connections with biomedical concepts. This platform 

provided drug-phenotype datasets which include mammalian phenotype (MP) annotations 

[45] and human phenotype (HP) ontology [43] associating drugs.

2.1.2. Genome-level databases—We collected Drug–target–Gene interactions from 

the DrugBank database. DrugBank [46] is a comprehensive online database that provides 

information on drugs and drug targets. It has been widely used in many bioinformatics 

and cheminformatics tasks. In our study, we extracted FDA-approved drugs and their target 

genes from file “drugbank_all_target_polypeptide_ids.csv” in Drug-Bank.

We extracted Disease-associate-Gene interactions from the file “MGI_DO.rpt” in MGI 

database. We excluded disease–gene pairs where the organism of the gene were not human.

2.1.3. Text-mined knowledge bases—In our previous studies [47,48], we developed 

natural language processing techniques to extract Drug–treat–Disease interactions from 

records of patients in FAERS, FDA drug labels, MEDLINE abstracts and clinical trial 

studies. From the above databases, we collected a drug set including 1430 drugs and a 

disease set including 7784 diseases. We extracted drug–disease pairs from TreatKB in which 

drugs and diseases appeared in the drug set and disease set.

2.1.4. Data integrating and processing—We mapped and integrated data from the 

above resources using standard biomedical terminologies. Drug names were mapped to their 

active ingredients using PubChem identifiers. Diseases that were represented using their 

OMIM (online mendelian inheritance in man) [49] identifiers in MGI and HPO databases 

were mapped using UMLS (unified medical language system) CUIs (Concept Unique 

Identifiers) [50, 51]. For example, Alzheimer’s disease was denoted by its OMIM identifier 
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(104300) in MGI and HPO databases. In GP-KG, we converted AD’s OMIM identifier 

(104300) into its CUI (C0002395) using mapping file “MRCONSO.RRF” downloaded from 

UMLS.

Fig. 1 showed the structure of the knowledge graph. All interaction information extracted 

from different data sources were merged into a KG, in which each type of biomedical 

concepts (i.e., drugs, genes, diseases, and phenotype annotations) was considered as a 

node type and each type of interactions (i.e., Drug–target–Gene, Drug–treat–Disease, and 

Drug-relate-MP) was considered as an edge type. Table 1 showed statistics of entities and 

interactions in GP-KG. The knowledge graph contained 61,146 nodes, 1,246,726 edges, 

7 node types, and 9 semantic relationships. Among 9 kinds of relationships, two of them 

were derived from genome-level knowledge databases, e.g., “Drug–target-Gene”, “Disease-

associate-Gene”. One was from text-mined knowledge bases, e.g., “Drug-treat-Disease”. 

Other six relations were derived from phenome-level knowledge databases.

2.2. KG-Predict Model

Fig. 2 provided an overview of KG-Predict Model. KG-Predict included a embedding 

module and a predicting module. The embedding module took GP-KG as input and learned 

low-dimensional embeddings of entities and relations. For a drug node, the embedding 

module aggregated information from the drug identifier, topological structure of the 

drug’s neighborhoods (such as genes, diseases and phenotype annotations) and semantic 

relations between the drug and its neighbors to learn the drug’s embedding. Once learned, 

the predicting module concatenated embeddings of entities and relations and used three 

operations to extract topologic and semantic information to make link predictions. For each 

triple (eg., Drug–Treat–Disease), the predicting module could be represented as a ranking 

function which generated higher scores for true triples and lower scores for false triples.

2.2.1. GP-KG representation—The embedding module of KG-Predict is used to 

transform entities (e.g., drugs, diseases), relations (e.g., Drug–treat–disease), and their 

features into low-dimensional vector representations whilst maximally preserving properties 

like graph structure and information. These entity and relation representations are used to 

predict unseen interactions in the knowledge graph. More specifically, we first define the 

knowledge graph as,

G = (V , E, X, R, S) (1)

where V and E denote the set of entities and relations, respectively. T ⊆ V × E × V denotes 

the set of triplets, X represents features of nodes, R denotes the set of relations, S denotes 

the initial relation features. KG-Predict takes G as input and learns embeddings of entities 

and relations by aggregating multi-relational information in the knowledge graph.

We extend composition-based multi-relational graph convolutional networks (CompGCN) 

[52] to learn representations of entities and relations. The pseudo code of the GP-KG 

embedding algorithm is illustrated in Algorithm 1. The procedure has three steps:
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• Input: the feature vector Xυ of node υ (e.g., drugs, diseases) and the feature 

vector Sr of edge r (e.g., Drug–treat–disease) is used as the initial input 

representation vector of entity υ and relation r.

• CompGCN layer: our model stacks several convolutional layers. These layers 

update the representation vectors of entities by aggregating heterogeneous 

information through their neighboring entities and neighboring semantic 

relations. Specifically, let ℎv
n represents the feature vector of the entity υ in the 

nth layer, KG-Predict in nth layer aggregates the embeddings of υ’s neighboring 

entities and relations using a aggregator function AGGREGAREn(.). For a drug 

node, AGGREGAREn(.) generates the aggregated feature vector for the drug 

by aggregating information from its neighboring entities (e.g., genes, diseases, 

human phenotype ontology, mammalian phenotype annotations) and relations 

(e.g., Drug–target–Gene, Drug–treat–Disease, Drug-relate-HP, Drug-relate-MP). 

It then uses a concat function CONCAT(.) to sum up these corresponding 

embeddings and υ’s embedding in previous layer to obtain the embedding of the 

entity υ in the nth layer. Similarly, let ℎr
n denote the representation of a relation 

r after n − 1 layers. KG-Predict utilizes a learnable transformation matrix W rel
n

which projects all the relations to the same embedding space as entities to update 

relation r’s embedding in the nth layer. It is an end-to-end learning process, 

the aggregator function AGGREGAREn(.) aggregates each entity’s information 

from its neighboring entities and relations, and the concat function CONCAT(.) 

sums up all neighboring information and maps the entity into a low dimensional 

vector. Both functions are achieved via neural networks.

• Output: the embeddings of entity υ and relation r are generated after N iterations. 

ZV and ZR are denoted as the set of entity embeddings and the set of relation 

embeddings, respectively.
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Algorithm 1: GP-KG Embedding Algorithm

Input:G = (V , E, X, R, S), ∀n ∈ 1, 2, …, N, aggregator function
AGGREGATEn( . ), concat function CONCAT( . ),

relation−specific coefficient matrix W rel
n , self−specific

coefficient matrix W on, learnable transformation matrix

W rel
n , the set of entity v’s neighbore N(v) .

Output:entity embedding ZV , relation embedding ZR .

1 ℎv0 Xv, ℎr0 Sr ;
2 for n = 1, 2, …, N do

3
4
5
6
7

for v ∈ V do

ℎN(v)
n AGGREGATEn(W λ

nψ ℎun − 1, ℎrn − 1 ), u, r ∈ N(v) ;

ℎvn f(CONCAT(ℎN(v)
n , W onℎvn − 1)) ;

for r ∈ R do

ℎrn W rel
n ℎrn − 1 ;

8 ZV {ℎvN}, ∀v ∈ V ;

9 ZR {ℎrN}∀r ∈ R ;

2.2.2. Prediction based on GP-KG representation—KG-Predict utilizes the 

InteractE model [53] to capture heterogeneous feature interactions preserved in entity and 

relation embeddings to infer new drug–disease interactions. Denoted υ is a drug entity and r 
is the relation of ‘Drug–treat–Disease’, The predicting modular of KG-Predict is input with 

node embedding Zυ and relation embedding Zr and predicts another suitable disease entity u 
that can composes a correct triplet, that is predicting disease entity u given subject entity and 

relation (υ, r). The goal is achieved through defining a score function ϕ(υ, r, u) and score a 

correct triplet higher than incorrect triplets.

The pseudo code of the interaction prediction algorithm is illustrated in Algorithm 2. The 

procedure has three steps:

• Input: the embeddings of entities and relations obtained from the embedding 

module are as input of predicting module. For example, to infer whether a triple 

(Memantine, Drug–treat–Disease, Alzheimer’s Disease) is true, the embedding 

vector Zυ of drug υ (e.g., Memantine), the embedding vector Zr of relation 

r (e.g., Drug–treat–Disease) and the embedding vector Zu of disease u (e.g., 

Alzheimer’s Disease) are input to our predicting module.

• InteractE layer: the layer uses neural networks to capture variety of 

heterogeneous interactions preserved in the entity and relation embeddings, 

which is beneficial to prediction performance. Specifically, let w ∈ Rk×k be a 

convolutional kernel of size k, three operations (feature permutation, checkered 
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feature reshaping, and circular convolution) are used in the predicting module. 

The first operation is to generate t-random permutations of both Zυ and 

Zr, denoted by Pt = [(Zv
1, Zr

1); …; (Zv
t , Zr

t)]. KG-Predict conducts the reshaping 

operation and defines φ(Pt) = [φ(Zv
1, Zr

1); …; φ(Zv
t , Zr

t)], φ(.)is the reshaping 

function which is used to capture maximum heterogeneous interactions between 

entity and relation features. KG-Predict stacks the reshaped matrices into a 3D 

tensor, that is then processed with depth-wise circular convolution. Our model 

flattens and concatenates the output of each circular convolution into a vector 

ζ(υ, r).

• Output: we design a score function ϕ(υ, r, u) to get the score of triple (υ, u, 

r) and utilize a sigmoid function p(υ, r, u) to calculate the probability of the 

triple (υ, r, u). Dυ,r was denoted as probability distribution of entity υ connecting 

to other entities with relation r. The output scores are then passed to the loss 

function to calculate training loss. We use the standard cross entropy loss as the 

loss function.

Algorithm 2: Interaction Prediction Algorithm

Input:entity v’s embedding Zv, relation r’s embedding Zr,
depth−wise circular convolution ⊕ , vector concatenation
vec( . ), learnable weight matrix W p, activation function f,
logistic sigmoid function g

Output: interaction probability Dv, r .

1 Pt [(Zv1, Zr1); …; (Zvt , Zrt)] ;

2 φ(Pt) [φ(Zv1, Zr1); …; φ(Zvt , Zrt)] ;
3 ζ(v, r) vec(f(φ(Pt) ⊕ w))W p;
4 for u ∈ V do
5
6

ϕ(v, r, u) ζ(v, r) ∗ Zu ;
p(v, r, u) g(ϕ(v, r, u)) ;

7 Dv, r {p(v, r, u)}, ∀u ∈ V ;

2.3. Evaluation and comparison

We conducted cross-validation to evaluate the model performance for predicting drug–

disease interactions. All drug–disease interactions were randomly shuffled five times, and 

split into training (60%), validation (20%) and test (20%) set with the same ratios. Thus, 

five training, validation and test sets were created for the cross-validation experiments. We 

used each training set to build the model, used each corresponding validation set to optimize 

the parameter setting of the model, and used the test set to verify the model performance. 

In order to provide a comprehensive comparison, we also constructed the similarity-based 

heterogeneous networks (S-HNs) that included six types of relations: drug–drug, drug–

gene, drug–disease, disease–disease, gene–disease, gene–gene. The S-HNs shared the same 

drug–gene, drug–disease, and gene-disease interactions with GP-KG. Other Drug–drug, 

gene–gene and disease–disease similarity networks were from DTINet [54], PPIN [55] and 
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TargetPredict [38]. The S-HNs included 22,784 nodes of 3 types and 624,855 relationships 

of 6 types.

We also added negative samples for cross-validation experiment. We generate negative 

counterparts for each positive triple in each test set by enumerating the complement set of 

positive examples. We treated drug–disease pairs that are not in GP-KG as negatives. For 

each known triple (υs, r, υo) in the test set where υs was a drug entity, r was the relation 

of ‘TREAT’ and υo was a disease entity, we created a set of negative samples (υs, r, υn) 

by replacing the subject υo to subject υn. υn was another disease entity. These generated 

negative samples have not been in the original knowledge graph. We enumerated all disease 

entities for each triple in the test set to construct the negative dataset.

Several state-of-the-art computational methods for drug–disease prediction were used to 

compared with our model. DeepWalk model [56] was a traditional graph embedding method 

which used random walks (RWs) to learn embeddings for nodes in graphs and input these 

embeddings to a logistic regression function to predict new relations. Matrix factorization 

model [56] aimed to factorize a data matrix into lower dimensional matrices and built a 

Logistic regression predictor for link prediction. TransE [29] was a translation-based method 

for link prediction, which used the relation for translating the head entity to a tail entity. 

DistMult [31] interpreted interaction prediction as a task of tensor decomposition. ConvE 

[35] was a deep learning model which used 2D convolutions over embeddings to predict 

new interactions in knowledge graphs. RotatE [36] mapped the entities and relations to the 

complex vector space and took predications as rotations from subjects to objects in complex 

space. Several widely used evaluation metrics were adopted to measure performances of 

these models including Hits@N and MRR (mean reciprocal rank). Hits@N was the hit 

percentage of true triples in a test set being ranked by a model within the top N positions, 

it evaluated the ability for “early recognition” of true predictions. MRR was the average 

inverse rank for true triples. A higher MRR value indicated a better model. In addition, 

we also calculated AUROC (Area Under Receiver Operating Characteristic curve) and 

AUPR (Area Under Precision-Recall Curve) to compare performances of these models. 

These metrics afforded comprehensive assessments of a model and has been recognized in 

bioinformatics applications.

Hyperparameters for KG-Predict were tuned using the grid search on the validation set. We 

tuned the learning rate η ∈ {0.0001, 0.001, 0.01}, embedding dimensions κ ∈ {100, 200, 

400 }, Number of GCN Layer ℓ ∈ {1, 2, 3 }, batch size β ∈ {64, 128, 256 }, and dropout 

σ ∈ {0.1, 0.2, 0.3 }. For baseline methods, we downloaded their implementations from the 

original authors’ websites and used their default model parameters to train these baseline 

models.

3. Results

3.1. Experimental setup

KG-Predict was built on PyTorch and used Adam optimizers to generate gradients and 

update embeddings and parameters. ReLU was used as activation function f. We used the 

validation sets to perform a grid search to learn the model’s best hyperparameters. The 
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optimal values were selected based on MRR results. We first checked how the number of 

GCN layers affected the performance. We found that deeper GCN layers did not improve 

the performance while substantially increased the computational cost. Thus ℓ was set to 1. 

We also investigated the influence of embedding dimensions κ. We found that increasing 

κ boosted the performance marginally but too large κ substantially increased both memory 

and computation costs. Therefor we chose the middle value 200 as embedding dimension 

κ setting. Other optimal hyperparameters η and β were set to 0.001 and 128. To avoid 

over-fitting, the dropout setting after each convolution layer was 0.1 in the embedding 

module and 0.3 in the predicting module. This procedure was performed iteratively for 500 

iterations. These settings were used throughout all results reported in this paper.

3.2. Overall performance evaluation with cross-validation

We evaluated the performances of KG-Predict and six state-of-art models using cross-

validation. Statistics of the average score of Hits@N and MRR for KG-Predict and baseline 

models were given in Table 2. We first compared KG-Predict with two traditional methods 

using S-HM. KG-Predict outperformed DeepWalk and matrix factorization approaches by 

a large margin. Compared with four knowledge graph embedding techniques on GP-KG, 

KG-Predict achieved the best performance in terms of Hits@N and MRR. For example, 

RotatE achieved a 2.4% improvement in terms of Hits@10 value compared with DistMult. 

ConvE achieved a competitive performance with RotatE. Our method outperformed ConvE 

by 4.5% (MRR), 4.8% (Hits@1), 3.4% (Hits@3) and 4.8% (Hits@10). It also improved over 

RotatE with 4.9% on MRR and 4.4% on Hits@10. This validated KG-Predict that captured 

rich heterogeneous interactions can improve the predicting performance. In addition, KG-

Predict using GP-KG achieved better performances on drug–disease prediction than that 

using S-HNs. It showed that incorporating phenotypic data can boost predicting accuracy.

We then used the AUROC and AUPR to evaluate how these known positive drug–disease 

pairs ranked among all the possible pairs. Fig. 3 showed the average AUROC and AUPR of 

each model using cross-validation. KG-Predict got an excellent performance on AUROC and 

AUPR compared with DeepWalk and matrix factorization methods using S-HNs. We further 

compared KG-Predict with four knowledge graph embedding models using GP-KG. KG-

Predict performed the best in discriminating positive and negative pairs in drug repurposing 

tasks, outperforming that of TransE, DistMult, ConvE, and RotatE. Comparing the AUROC 

and AUPR of KG-Predict trained by the GP-KG and S-HNs, KG-Predict (GP-KG) achieved 

a significantly higher overall AUROC of 0.981 and AUPR of 0.409 compared with 0.959 

and 0.375 obtained by the KG-Predict (S-HNs).

3.3. Visualization of entity embeddings with GP-KG representation

In the following, we evaluated the quality of entity representations produced by each method 

to qualitatively interpret models’ learning abilities. We learned entity embeddings into 

200-dimensional vector spaces for each model and input them into t-SNE [57] to reduce 

the dimensionality to 2 and visualized nodes in a 2-D space. This method can reveal 

the local and global features encoded in the embedding vectors and thus can be used 

to visualize clusters within the knowledge graph. Fig. 4 showed 2-D entity embeddings 

produced by KG-Predict and four state-of-art models, with colors corresponding to different 
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entity groups. Compared to TransE, DistMult, ConvE, and RotatE, the GP-KG had visibly 

distinct clusters with clear group separation, demonstrating that KG-Predict was capable of 

learning and preserving the high-level structural information embedded in the GP-KG and 

had strong ability to distinguish the differences between multiple type of entities.

4. Case study: drug repurposing for Alzheimer’s disease

To further validate the efficacies of our model, we conducted a case study to infer novel 

drug repurposing for Alzheimer’s disease (AD). For objective performance evaluation, 

we collected clinically reported drugs that have been tested for treating AD from the 

ClinicalTrials.gov database as an external validation set and validated the top ranked drugs 

against evidence from clinical trials [58,59]. The external validation set carried 60 drugs. 

We treated these 60 drugs as positive samples. Other drugs in GP-KG were considered to 

be negative samples. Fig. 5 gave the AUROC and AUPR curves for this task. KG-Predict 

achieved an AUROC value of 0.868 and an AUPR value of 0.364.

Table 3 showed the top 10 highest-scoring novel drug repurposing candidates for AD with 

the canonical name of the drug, original indication, and the reported evidence. Among the 

top 10 drugs, memantine has been approved for Alzheimer’s disease. Eight of the top-ranked 

drugs have been tested in clinical trials for treating AD. These results further confirmed the 

validity of KG-Predict for drug repositioning.

To better understand how our model made novel link predictions, we selected top predicted 

drugs to analyze their mechanism in original GP-KG. Our method hypothesized that 

risperidone and acitretin were potential drugs with top-2 ranked for AD. Risperidone was 

used to treat schizophrenia and acitretin was used to treat psoriasis. In Fig. 6, several 

reasoning paths were provided to support these hypotheses. For instance, side effects of 

two drugs were directly mapped to phenotypes of AD. It suggested that they may share 

similar underlying pathways [9]. Recent research studies indicated that more than 50% of 

individuals with AD had Lewy body diseases [60]. Drugs related to Lewy bodies may also 

work on AD due to the interdependence between the two diseases. Several observational 

evidences also showed that antihypertensive treatments can reduce the risk of AD [61]. 

In addition, APP and DRD1 have been reported to be involved in AD pathology [62]. 

This indicated that drugs that targets to DRD1 may potentially treat AD. This case study 

illustrated that KG-Predict can capture heterogeneous network information and phenotypic 

features from the GP-KG to infer new drug indications.

5. Discussion and conclusion

In this paper, we proposed KG-Predict, a knowledge graph computational framework, 

which embedded a knowledge graph into low-dimensional vector spaces and inferred novel 

drug indications based on latent vectors. We first constructed a knowledge graph named 

GP-KG that contains over 1 million interconnections between 61,146 entities including 

drugs, genes, diseases, and phenotypic annotations. KG-Predict captured multiple types of 

genotypic and phenotypic features embedded in GP-KG, and significantly improved the 

predicting accuracy of unseen interactions. Extensive experiments demonstrated that our 
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model achieved competitive performance on the task of drug re-purposing. In addition, we 

externally validated the potential ability of our method in drug repositioning for Alzheimer’s 

disease.

KG-Predict has several potential limitations under the current deep learning framework. 

First, it is hard to build gold-standard unknown pairs as negative samples due to the 

inherent lack of negative drug–disease pairs in the public databases and literature. Although 

we made efforts to assemble drug–disease interactions from publicly available databases, 

it may incorrectly classify a drug–disease association as negative when the association 

is not yet known. We will further design natural language technique-based relationship 

mining methods to extract potential drug–disease pairs to decrease false-negative rates. 

In addition, we currently used the PubChem identifiers of drugs, Entrez gene identifiers, 

and phenotypic annotations in constructing the knowledge graph and have not considered 

non-topological domain information, e.g., chemical structure of drugs and gene expressions. 

In the future, we will expand GP-KG by merging additional domain-specific information 

embedded using contrastive learning to further improve predictive performances. Finally, 

we used KG-Predict to predict repurposed drugs for diseases in this study. However, 

KG-Predict is highly flexible in predicting other semantic relationships among biomedical 

entities, including disease–disease, drug–drug, drug–gene, disease–gene among others. 

For example, KG-Predict can be used to understand how COVID-19 and Alzheimer’s 

disease are semantically connected based on both genetic and phenotypic relevance, 

which can complement existing epidemiologic studies of COVID-19-disease relationships, 

including our recent patient electronic health record-based studies of Alzheimer disease and 

COVID-19 [63,64]. Predicting mechanistic links between disease pairs such as COVID-19 

and Alzheimer disease offers new drug repurposing opportunities by targeting these critical 

links.
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Fig. 1. 
Flow chart of the GP-KG construction: (a) extracted raw interactions from biomedical 

databases and text-mined knowledge bases, (b) mapped entities into standard identifiers and 

merged raw interactions into a knowledge graph.
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Fig. 2. 
The pipeline of the KG-Predict consists of: (a) embedding: using a stack of CompGCN 

layers to capture the heterogeneous topologic structures and semantic features to learn 

embeddings of entities and relations, (b) prediction or ranking: using InteractE to rank 

candidate entities (drugs in this study) for given input entity (a specific disease in this study) 

and relation embeddings “Drug–treat–Disease” in this study).
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Fig. 3. 
Performance of KG-Predict as compared with baseline models: (a) The bar graph of 

AUROC, (b) The bar graph of AUPR. KG-Predict achieved the best performance on 

AUROC and AUPR underlying both S-HNs and GP-KG.
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Fig. 4. 
Visualization of entity embeddings using the t-SNE package. Each dot represents an entity, 

with its color indicating node type. From this graph, we can clearly see that KG-Predict, 

but not the baseline models, can distinguish embeddings of different type of nodes, 

demonstrating that KG-Predict is able to capture high-level structural information from 

GP-KG.
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Fig. 5. 
Performance of KG-Predict in drug repurposing for Alzheimer’s disease evaluated using 

FDA-approved drugs: (a) AUROC, (b) AUPR.
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Fig. 6. 
Visualization of supportive paths between the top-2 predicted drugs and the Alzheimer’s 

disease.
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Table 2

Overall predictive performance of drug–disease associations.

Data Method Hits@1 Hits@3 Hits@10 MRR

S-HNs

DeepWalk 0.048 0.086 0.137 0.081

Matrix factorization 0.057 0.102 0.194 0.095

KG-Predict 0.147 0.255 0.411 0.234

GP-KG

TransE 0.116 0.226 0.399 0.209

DistMult 0.103 0.207 0.379 0.191

ConvE 0.126 0.232 0.399 0.216

RotatE 0.119 0.231 0.403 0.212

KG-Predict 0.174 0.266 0.447 0.261
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