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A B S T R A C T   

The Coronavirus (COVID-19) has become a critical and extreme epidemic because of its international dissemi-
nation. COVID-19 is the world’s most serious health, economic, and survival danger. This disease affects not only 
a single country but the entire planet due to this infectious disease. Illnesses of Covid-19 spread at a much faster 
rate than usual influenza cases. Because of its high transmissibility and early diagnosis, it isn’t easy to manage 
COVID-19. The popularly used RT-PCR method for COVID-19 disease diagnosis may provide false negatives. 
COVID-19 can be detected non-invasively using medical imaging procedures such as chest CT and chest x-ray. 
Deep learning is the most effective machine learning approach for examining a considerable quantity of chest 
computed tomography (CT) pictures that can significantly affect Covid-19 screening. Convolutional neural 
network (CNN) is one of the most popular deep learning techniques right now, and its gaining traction due to its 
potential to transform several spheres of human life. This research aims to develop conceptual transfer learning 
enhanced CNN framework models for detecting COVID-19 with CT scan images. Though with minimal datasets, 
these techniques were demonstrated to be effective in detecting the presence of COVID-19. This proposed 
research looks into several deep transfer learning-based CNN approaches for detecting the presence of COVID-19 
in chest CT images.VGG16, VGG19, Densenet121, InceptionV3, Xception, and Resnet50 are the foundation 
models used in this work. Each model’s performance was evaluated using a confusion matrix and various per-
formance measures such as accuracy, recall, precision, f1-score, loss, and ROC. The VGG16 model performed 
much better than the other models in this study (98.00 % accuracy). Promising outcomes from experiments have 
revealed the merits of the proposed model for detecting and monitoring COVID-19 patients. This could help 
practitioners and academics create a tool to help minimal health professionals decide on the best course of 
therapy.   

1. Introduction 

The World Health Organization (WHO) obtained the 2019 

Coronavirus replacement on December 31, 2019. (COVID-19). WHO 
declares COVID-19 a global emergency on January 30, 2020. This virus 
is zoonotic, thus it began in animals after humans. After animal 
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interaction, the virus spreads to humans. When someone exhales, 
coughs, sneezes, or talks, the Coronavirus can spread by respiratory 
droplets [1]. It`s additionally feasible that the virus unfolds from bats to 
different animals like snakes and pangolins and finally to people. 

A recently identified coronavirus causes Coronavirus Disease 
(COVID-19), a communicable one. Mostly the patients diagnosed with 
the COVID-19 virus will have mild to moderate respiratory signs and get 
well without further treatment. A situation called cytokine launch syn-
drome or a cytokine typhoon has precipitated a couple of COVID-19 
results along with liver difficulties, pneumonia, breathing failure, car-
diovascular disorders, septic shock, and more. When the immune ma-
chine is activated through an infection, inflammatory proteins called 
cytokines are launched into the circulation, which could damage human 
cells and organs. People above 65, those with underlying medical dis-
orders such as cardiovascular disease, diabetes, cancer, etc., are more 
likely to become critically ill. While most COVID-19 patients recover and 
return to normal health, some individuals may experience symptoms for 
weeks or even months after their acute sickness has passed. Even those 
who aren’t in the hospital and have a minor sickness can have symptoms 
that last a long time. 

Several methods are used to detect Coronavirus, such as scanning, 
molecular, and serological testing. Molecular testing is used to seek 
evidence of an illness still present. A cotton swab is typically used for 
collecting a sample from the back of the throat for testing performed 
with polymerase chain reaction (PCR). This test reveals the genetic 
material of the virus. The molecular test can identify only existing 
COVID-19 instances and cannot detect whether people have recovered 
from COVID-19. 

Serological testing can identify virus-fighting antibodies. Serological 
tests employ blood samples to diagnose infections with little to no 
symptoms [2]. COVID-19 survivors had these antibodies in their blood 
and tissues. X-rays, CT scans, swabs, and serological testing can visualise 
the chest’s interior structure [3]. A painless and rapid chest CT scan is 
used to diagnose pneumonia. 

Early detection of COVID-19 may aid in developing a treatment 
strategy and disease containment decisions [4]. Detecting, isolating, and 
caring for individuals as soon as feasible is vital for effectively handling 
this pandemic. Using RTPCR to identify COVID is dangerous since the 
swab tests reach the throat through the nose, causing coughing and 
spreading virus particles into the air, putting health professionals’ lives 
at risk. According to researchers, CT scans are far safer than traditional 
swab examinations. In addition, for a COVID-positive patient, a CT scan 
test should be performed after the RTPCR test. Standard imaging for 
detecting COVID-19, a chest CT scan, is a rapid and painless procedure. 
According to current research, CT testing has a sensitivity of 98 percent 
for COVID-19 infection, more significant than RT-PCR testing’s 71 
percent. 

Current research intends to develop conceptual transfer learning 
enhanced CNN framework models for detecting COVID-19 with CT scans 
by utilizing image classification and deep learning models. For unique 
medical disorders like COVID-19, it isn’t easy to obtain sufficiently big 
data from publically available corpus to perform training of deep 
learning models. Hence, the proposed models are enhanced with 
Transfer learning. Transfer learning helps to train the pre-trained 
models, where these pre-trained models learned weights are utilized 
in the current model and save the training time. This method is an 
alternate way of training deep learning models. It is frequently used to 
build customized deep-learning models to support smaller datasets [5]. 
These models sometimes perform better than fully trained networks, 
where fine-tuning helps achieve better performance [6]. This paper will 
show how transfer learning detects COVID-19 in CT scan images. 
Resnet50, DensNet121, VGG16, VGG19, Inception V3, and Xception 
were the basis models employed for detection and classification. Though 
with minimal datasets, these techniques were demonstrated to be 
effective in detecting the presence of COVID-19. This could help prac-
titioners and academics create a tool to help minimal health 

professionals decide on the best course of therapy. 
Using image classification and deep learning models, this research 

aims to improve conceptual transfer learning CNN framework models 
for diagnosing and detecting COVID-19 with CT scans. Deep learning 
models can increase COVID-19′s diagnosis speed and accuracy. The 
suggested system reduces over-fitting with batch normalisation and 
dropout. False negatives during the COVID-19 outbreak could propagate 
the virus. 

The research provides a tailored pre-trained model for identifying 
COVID-19 using CT images, reduces false positive and false negative 
findings in the modelling process, and eliminates overfitting by applying 
batch normalisation and regularisation. Extensive tests are done to 
compare the proposed models’ performance with baseline and existing 
models. 

2. Literature review 

Every area of work entails the creation of objectives, which aid in 
resolving the organization’s issues and difficulties. Artificial intelligence 
is a domain that includes both machine learning and deep learning. It 
entails both studying and developing intelligent things [7]. Artificial 
neurons are built up through data processing layers to form deep neural 
networks (DNNs) [8]. These networks have a deep architecture known 
as a ’deep neural network,’ which comprises numerous layers that 
interpret data into decisions [9]. CNN is a subtype with well-known uses 
represented by images and videos. While information exchange might be 
challenging to handle at times, CNNs have prospered and gained 
popularity due to remarkable advances in image and video processing 
[10]. 

Deep learning has shown enormous potential in numerous real-world 
applications in various fields [11,12]. Object recognition is included in 
all of these potential applications. Deep learning algorithms are used in 
this innovative approach to object recognition. Deep learning of this 
type has produced excellent results in recognizing photo objects [13]. 
CT scans of the chest have also become used in clinical practice for 
diagnosing lung illness in COVID-19 patients [14]. 

People are prone to both pneumonia and COVID-19. Pneumonia kills 
about 800,000 children under five every year, with around 2,200 dying 
daily. Pneumonia affects almost 1,400 children per 100,000 children 
[15]. In 2013, the most common cause of death was lower respiratory 
tract infection, mainly pneumonia, according to a new study. India has 
the largest number of pneumonia deaths (0.297 million) in the world, 
according to the John Hopkins Bloomberg School of Public Health, and 
dysentery deaths in children under five in 2015. Pneumonia was also the 
leading cause of death in children under five in 2015 [16]. Aside from 
pneumonia, COVID-19 infection rates are quite high. 

COVID-19 is a very transmissible disease caused by the SARS-CoV-2 
virus. It is the world’s largest pandemic since 1918, affecting more than 
2.9 million persons globally. Adults over 60, including those with health 
difficulties, should be aware of the increased risk of SARS-CoV-2 infec-
tion. Mostly pneumonia and Coronavirus have the lungs of the human 
body, and they are to be considered for further research with the support 
of medical experts. As a result, doctors encourage patients to keep track 
of their oxygen intake with an oxygen analyzer so that any irregularities 
can be discovered and addressed as soon as feasible. CNN’s perfect for 
such a situation. 

Thoracic X-ray imaging, CT, and MRI are diagnostic radiology pro-
cedures for lung illness that are highly successful and cost-efficient chest 
X-ray imaging modalities. They are also accessible in hospitals and have 
lower dose exposures to individuals. Even for highly qualified and 
experienced doctors, detecting pneumonia and COVID-19 with X-ray 
images is difficult, as X-ray images exhibit comparable location features 
for various illnesses, including lung disease. Several studies have 
focused on COVID-19, pneumonia detection, and analysis with various 
algorithms. Most healthcare applications are gaining popularity with 
highlighted features supported by Artificial intelligence (AI), Machine 
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Learning, and Deep Learning [17–19]. 
In 2016, Redmon et al. [20] introduced YOLO, which can support 

detecting images up to forty-five frames within a fraction of a second. In 
the same year, Liu et al. [21] published the SSD algorithm. All SSD and 
YOLO win when it comes to identifying speed, but SSD uses a multi-scale 
feature map to distinguish between them. Deep network images’ spatial 
resolution has been drastically reduced, making it more difficult to 
discover small targets challenging to detect at low resolution, affecting 
the detection accuracy. YOLO does not support multi-scale feature maps 
for solo diagnosis. It aids in smoothing extracted features and their 
clipping with a lower-resolution feature map. AI’s most appealing 
feature is that it may be used to classify unseen images in a training set. 
As a result, a rapid and effective method of detection that can distinguish 
between the two types of pneumonia is required. Several papers have 
applied deep learning in recently described COVID-19 pneumonia 
detection techniques. Authors have employed a deep CNN network 
structure to detect COVID-19 with 93.96 percent accuracy, 99.13 
percent precision, and 94 percent sensitivity, respectively. A tiny dataset 
with 339instancesare used for building the model based on deep transfer 
learning based ResNet50and obtained a well-performed model with an 
accuracy of 96.2 percent. Wang [22] proposed five pre-trained models, 
and the e Xception model performs the best effect with 96.75 percent 
accuracy. 1102 chest X-ray images contain COVID-19 and 
non-COVID-19 cases, where this dataset is appropriately divided as 
training and testing for building the model. 

COVID-19 lung infection has been identified with chest CT images by 
applying segmentation. Based on a 3D U-Net architecture, the suggested 
method can easily detect irregular regions with poor contrast between 
lesions with an accuracy of 0.98 and a precision of 0.73. Segmentation is 
vital in identifying COVID-19 along with the 3D deep learning model. 
The authors of [23] created and tested the CODID-SegNet, segmentation 
method on CT images of the chest. The proposed network would 
comprise ASPs with characteristics that help identify COVID-19 limits 
and placements. The MultiResUNet model was introduced by [23] to 
slice COVID-19 from CT images. 

COVID-19 was detected using CNN in a chest X-ray by the authors of 
[4]. COVID-19 detection has been done using a variety of approaches. 
Most investigations, including chest X-rays, have shown a 90–94 percent 
accuracy rate. The major goal of this study is to use the pre-trained 
models and their weight for proposed models, where the top layer is 
customized and learned details of pre-trained models are transformed 
into the proposed model. The customized new models are utilized to 
detect COVID-19 with CT images. Using residual networks and multiple 
instance learning, Xiao et al. [24] developed and validated a deep 
learning-based model (ResNet34). The binary classification model pro-
posed by Panwar et al. [25] can detect COVID-19. The input pictures 
were classified using a fine-tuned VGG model. Grad-CAM technology is 
applied to represent color visualization, making the suggested 
deep-learning model more explainable. To identify patients with 

COVID-19, Jaiswal et al. [26] used a deep transfer learning (DTL) based 
model. The proposed model collected features from the ImageNet 
dataset using its training weights and a CNN. To detect the 
Coronavirus-infected person using chest CT radiograph digital images, 
Loey et al. [13] used five deep CNN such as AlexNet, VGGNet19, 
VGGNet16, ResNet50, and GoogleNet. To aid in identifying COVID-19, 
the authors employed CGAN and standard data augmentations to 
create extra pictures. Models robustness was tested with CT scans of 
community-acquired pneumonia (CAP), and other than pneumonia 
were used. 

Convolutional networks often perform better on large-scale datasets; 
transfer learning is one technique to address this shortcoming in a small- 
scale dataset. The latter entails training a model with a large dataset for 
one job, then fine-tuning it with a small dataset for another [27]. 

Data-augmentation Accuracy of COVID-19 patient detection using 
chest X-rays is optimistic, leading to the development of deep learning 
methods [28]. 

In order to detect COVID-19 using CT images, the research work 
proposed by [29] has an effective image classification method utilizing 
Efficient Net with preprocessing to enhance the quality of the images. 
On Efficient Net, a number of transformation methods, including 
Wavelet, Laplace, Adaptive Gamma, and CLAHE, with outstanding 
performance were achieved. 

Various deep transfer models and fusion classifiers, as well as deep 
feature concatenation techniques, were proposed by the authors 
[30–32] for COVID-19 detection. Moreover, the predicting power of an 
Artificial Neural Network (ANN) is utilized to model the thermal con-
ductivity and viscosity of the nanofluid with experimental data [33]. 
Furthermore, the Group Method of Data Handling-type neural network 
(GMDH type NN) can support a stream of data in different layers to build 
optimized networks [34]. 

Dataset used in the various references consists of small [35,36], 
medium [13,29,37–40] and large [27,29,41,42] data samples shown in 
Table 1. The parameter used in the various references consists of Ac-
curacy, loss, precision, recall/sensitivity, f1-score, and AUC. Authors in 
[37] proposed that VGG11, ResNet18, ResNEt50, and ResNet50 per-
formed well, with the highest Accuracy of 95.98% and a lower loss of 
0.57%. However, ResNet-50 has the lowest Accuracy of 60 in [38], and 
VGG-19 performed with 94.5% accuracy. DNN and BiLSTM and transfer 
learning models were proposed by [39], and BiLSTM outperformed 
them. Synthetic augmentation also plays an important role in diagnosing 
diseases [28]. Various flavors of Densenet was proposed by many 
research works [27,29,35–39,43]. 

Learning in the field of medical image analysis has received a lot of 
attention. However, knowledge is still required, and the analysis in-
corporates a range of algorithms to improve, speed up, and produce an 
accurate diagnosis. When compared to prior approaches, deep learning 
algorithms have shown to be more efficient and precise in detecting 
pneumonia, COVID-19, and other lung diseases. Currently, doctors in 
hospitals may encounter patients who have pneumonia caused by the 
flu, others, and COVID-19 all at the same time. Segmentation is required 
to analyze the images and detect disease when working with lung im-
ages, COVID-19 identification is a challenging task that frequently ne-
cessitates looking at clinical pictures of patients. Machine learning [ 

The primary novel ideas presented in this paper include the 
following. 

This study aims to minimize both the false-positive and false- 
negative rates. Reducing false positive and false negative results in the 
modeling process is critically important in medical research, especially 
for severe disorders like COVID-19. False negatives should be kept to a 
minimum for obvious reasons to prevent misclassifying any COVID-19 
patients as non- COVID-19, which might seriously affect our society. 
Additionally, it’s crucial to reduce the number of false positives because 
misclassifying a non-COVID-19 as COVID-19 could result in unnecessary 
testing. 

In order to address the domain shift problem, the transfer learning 

Table 1 
Dataset Description of the state-of-the-art models.  

Reference Dataset samples 

[37] 746 
[38] 738 
[39] 625 
[28] 1124 
[27] 2482 
[29] 2482 
[41] 2482 
[40] 852 
[42] 2482 
[35] 349 
[13] 742 
[36] 349 
[29] 4986 
[43] 2482  
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approach is used in this proposed study. Using a pre-trained network’s 
expertise, the proposed models can reduce the number of training im-
ages and boost training speed. The excellent result of these pre-trained 
deep models can significantly increase COVID-19′s diagnosis speed 
and Accuracy. Over-fitting is minimized by batch normalization and 
dropout in the proposed system. 

Pre-trained models’ capacity for recognition has been demonstrated 
to influence the quantity of frozen layers. Using its trained parameters 
on the ImageNet dataset and a convolutional neural structure, the pro-
posed framework is being used to extract features. Numerous tests are 
run to determine how well the proposed DTL method fits on COVID-19 
CT scan images. 

3. Proposed system 

Deep learning is an emerging field with several successful applica-
tions in recent years. Researchers can use it in many domains. Artificial 
intelligence problems have become considerably easier to forecast and 
work on thanks to deep learning. Everyone nowadays favors CNN over 
other layers for image classification because of its high accuracy. 
Moreover, it has a strong potential for extracting features from images 
that aid in image classification. Most importantly, CNN has been widely 
utilized in image analysis since its inception. Recent advances in deep 
learning, particularly in the medical imaging domain, suggest that 
various Deep CNN architectures could be used. To begin with, such 

individual baseline models are thoroughly analyzed in this study. 
VGG16, VGG19, InceptionV3, ResNet50, DenseNet121, and Xception 
are some baseline models. The convolution components of all of these 
baseline models proposed in the ImageNet challenge are retained pre-
cisely the same as the standard models in this study, Chest CT images are 
given as input to the model. Images with different sizes are resized with 
uniform dimensions. 

3.1. Dataset description 

Images from CT scans of the lungs are included in the dataset. A CT 
scan is a type of X-ray used to diagnose sensitive inner organs precisely. 
The dataset consists of 2481 images obtained from Kaggle [44]. The data 
is separated into two categories: COVID and non-COVID. COVID pa-
tients’ CT images are included in the COVID category, while healthy 
people are included in the non-COVID category. The COVID class has 1, 
252 CT images, while the non-COVID class contains 1229 CT images. 80 
percent of lung CT scans are used to train the model, and 20 percent are 
used to test it. Table 2 presents these details. The proposed architecture 
is displayed in Fig. 1. 

3.2. Preprocessing 

Image pre-processing is the first and most crucial step when working 
with image data. Deep learning is used in this proposed work to create a 
binary classifier for Chest CT scans and predict the presence of COVID- 
19. Because the input images are of different sizes, they are all resized to 
128 × 128 × 3 to maintain uniformity. Artifacts in CT scans, such as 
beam hardening, noise, and scatter, diminish the model’s Accuracy. The 
images were converted from BGR to RGB color formats, pre-processed, 
and scaled to 49152 dimensions (128, 128, 3). This is highly relevant 
when using the OpenCV library’s imread() method, because its color 
order is BGR, whereas Pillow thinks the colors are ordered as RGB. The 

Table 2 
CT Images Dataset.  

Dataset COVID non-COVID 

Training 1001 983 
Testing 251 246 
Total 1252 1229  

Fig. 1. Proposed System Architecture.  
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photos were transformed into pixel matrices and normalized to a range 
of 0 to 1. After pre-processing, labels were assigned to each image based 
on the directory of origin. 

Data augmentation helps the model to know a wider range of fea-
tures while also increasing the dataset size, which prevents the model 
from overfitting. A randomly performed affine transformation; 
randomly performed flipping. The hue, brightness, and saturation values 
are randomly adjusted to each training image. Shearing and rotation 
make up the random affine transformation. Rotation is to be performed 
in the range of 0 to 30. The Shearing and zooming range can be 0.2, and 
the brightness level can be adjusted in the range of 0.75 to 1.25 are some 
image augmentation parameters. 

3.3. Pre-trained models and transfer learning 

More data is needed to train a neural network if we train the model 
from scratch. A tiny training dataset was applied with Transfer learning 
to generate an accurate and comprehensive feature set to manage. Since 
most of the COVID-19 dataset is considerably smaller and needs more 
time to build an efficient model. Therefore, the proposed models are 
created from the pre-trained models and customized to detect COVID-19 
cases. 

3.3.1. Densenet121 
Huang et al. [45] created the DenseNet design, which builds on 

ResNet by introducing dense connections, representing that each layer 

has a connection with all layers. Naturally, this highly linked architec-
ture ensures that every layer receives network parameters from the 
layers above it and passes on its feature map to the layers below it. 
Another significant benefit of this structure is the possibility of reusing 
features while keeping the overall number of parameters minimal. 
Several DenseNet architectural versions that are frequently used, 
including the DenseNet121 design structure, are used in this study. 

3.3.2. Resnet50 
The essential principle of ResNet topologies is described in He et al. 

work’s [46]. Convolutional and pooling layers were added in a stacking 
manner, with one layer above on top of another layer. This might cause 
network performance to decline due to the vanishing gradient problem. 
Therefore, shortcut networks can deal with this, and a residual block is 
used. The use of skip connections effectively eliminates the significant 
training error that is common in otherwise deep architectures. ResNet50 
is a kind of ResNet architecture that consists of 50 layers. 

3.3.3. InceptionV3 
The basic idea behind the InceptionV3 architectures is to address the 

issue of excessive changeability in the position of prominent sections in 
the images under examination by allowing the network to incorporate 
numerous kernel types on the same level, effectively "widening" the 
network [47]. The Inception modules make it possible to have many 
kernels running simultaneously. The initial InceptionV1 was proposed 
with this essential concept. Inception V3 is an extended version of 

Fig. 2. Customized Model Structure.  

Table 3 
Model Parameters.  

Parameters Densenet121 Resnet50 InceptionV3 Xception VGG16 VGG19 

Image size 128 × 128 × 3 128 × 128 × 3 128 × 128 × 3 128 × 128 × 3 128 × 128 × 3 128 × 128 × 3 
Batch size 128 128 128 128 128 128 
Optimizer Adam Adam Adam Adam Adam Adam 
Learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 
epochs 20 20 20 20 20 20 
Dense layer Activation 

Function 
relu relu relu relu relu relu 

Dropout 0.5 0.5 0.5 0.5 0.5 0.5 
Output Layer 

Activation / Loss 
Function 

Softmax / Categorical 
Cross Entropy 

Softmax / Categorical 
Cross Entropy 

Softmax / Categorical 
Cross Entropy 

Softmax / Categorical 
Cross entropy 

Softmax / Categorical 
Cross Entropy 

Softmax / Categorical 
Cross Entropy  
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Inception V2. This will address some critical concerns about the repre-
sentational bottleneck [48]. It also deals with auxiliary classifiers with 
kernel factorization and batch normalization. 

3.3.4. Xception 
Depth-wise separable convolution layers are used in the Xception 

network. Xception network consists of mapping spatial and cross- 
channel correlations, and this can be completely decoupled in CNN 
feature maps. Inception’s fundamental design has survived Xception. 
The Xception model’s 36 convolution layers can be divided into 14 
discrete modules. Each layer has a continuous residual link surrounding 

it after the first and last layers are eliminated. The input image is 
transformed into spatial correlations within every output channel to 
acquire cross-channel correlations. 

3.3.5. VGG16 and VGG19 
The VGG Net design, introduced by Simonyan and Zisserman [49] 

from the University of Oxford’s Visual Geometry Group, is one of the 
most familiar Deep CNN models, having won first and second place in 
the ILSVRC 2014 image classification tasks. To obtain Computer Vision 
tasks more accurately, the models are designed to include increased 
layers of CNN with few kernels. VGG architecture variations have been 

Fig. 3. Results of Proposed Models Accuracy Graph.  
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widely applied for extracting deep image characteristics for further 
processing in many Computer Vision jobs, particularly in the medical 
domain.VGG 16 has sixteen layers, whereas VGG19 consists of nineteen 
layers. 

3.4. Customized proposed model building 

Following pre-processing, about 20% of the dataset was set aside for 
testing, leaving the remaining 80% for training. CNN is one of the deep 

neural network structures and is a big step forward in image identifi-
cation. They’re most usually employed to examine visual imagery and 
are frequently involved in image classification behind the scenes. CNN 
was trained using Keras, a Python package with a TensorFlow backend, a 
deep learning framework. Because the Imagenet data set is large enough 
(1.2 million images) to generate a general model, it has been frequently 
used to build several architectures. To generalize outside of the Image-
Net dataset, we apply transfer learning. This only happens when the 
model has been pre-trained. We also employ a fine-tuning framework to 

Fig. 4. Results of Proposed Models Loss Graph.  
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capture changes to a pre-trained model. 
Our model was built around the various pre-trained models, 

including Densenet121, InceptionV3, Xception Resnet50, VGG16, and 
VGG19. For instance, the VGG19 CNN with a 2D Max Pooling output 
layer of shape (7, 7, 512) and no parameters can be imported using the 
Keras applications class. Because we only have two classification classes, 
Covid19 and Normal (No-Covid19), transfer learning was utilized to 

modify the output layer to a binary classifier. The outputs from the 
previous layer were retrieved and passed to a Flatten layer as a 
parameter. Since this layer comes after a 2D Max Pooling output layer 
with the shape (7, 7, 512), our flattened array has the dimensions 7 × 7 
× 512 = 25088. As rectangular or cubic shapes cannot be used as direct 
inputs, this is usually done towards the end of the CNN. A Dropout layer 
is added as a regularization strategy to reduce overfitting and enhance 

Fig. 5. Results of a Proposed Models Confusion matrix.  
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Fig. 6. Results of Proposed Models ROC - AUC.  

Table 4 
Comparison Results of COVID-19 class.  

Metrics Densenet121 InceptionV3 Resnet50 Xception VGG16 VGG19 

Precision 98.37 94.38 80.62 96.64 98.39 96.41 
Recall 96.41 93.63 82.87 91.63 97.61 96.41 
F1-score 97.38 94.00 81.73 94.07 98.00 96.41 
Support 251 251 251 251 251 251 
ROC / AUC 97.48 92.11 89.71 94.39 97.86 97.16  
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generalization error. So we want to make a binary classifier, and the 
likelihood of the layer’s outputs being dropped out was set to 0.5, which 
is a common value. This is based on the idea that extensive neural net-
works on short datasets tend to overfit the training data, decreasing 
validation accuracy. The customized proposed model structure is rep-
resented in Fig. 2. 

Output layer, two-unit dense layer (for recognizing COVID and non- 
COVID objects), and softmax function were introduced. At neural 
network models that forecast a multinomial probability distribution, 
Softmax is used in the output layer. A binary classifier still needs a two- 
unit dense layer. The model was created using an Adam optimizer and a 
categorical cross-entropy loss function. Cross-entropy loss trains the 
CNN to output the class probabilities for each image, allowing proba-
bilistic image differentiation. 

As an extension of stochastic gradient descent, the Adam optimizer 
iteratively adjusts network weights using training data. It preserves a 
per-parameter learning rate that improves performance on sparse gra-
dients and changes based on recent gradient magnitudes. This optimizer 
handles noisy issues well. After transfer learning, 20 epochs are used 
with 128 batches. Table 3 shows model parameters. All models use 80% 
training data and 20% test data. 10% of test data is preserved as vali-
dation data to enable early halting and prevent model overfitting. 

3.4.1. The training procedure  

a) The model is to be trained with training data with a batch size of 128 
data samples extracted from the training dataset. Input image di-
mensions rescaled with (128 × 128 × 3) 

b) The model provides binary categorical results, uses binary/categor-
ical cross entropy to calculate loss, and employs the Adam optimizer 
to update network weights..  

c) Each epoch retains model parameters. Model classifies validation set 
to calculate Accuracy.  

d) Use the numerical number to ascertain whether or not the current 
outcome is optimal. If this is the case, it’s important to have a current 
copy of the model’s parameters.  

e) To train for an unlimited number of iterations, simply repeat steps a- 
d above. 

3.4.2. The model’s optimal weights are stored during the training phase 
The model’s optimal weight values are carefully stored during the 

training process. After each epoch, the validation accuracy is written 
into a dictionary. The current Accuracy values are compared to the 
optimal historical values for each. The optimal historical value is 
updated if a current accuracy value is greater than the optimal. The 
optimum weight detail of this current generation is also saved. As a 
result of the final training, the optimal weight file of Accuracy is 

obtained. Custom models include a relu activation function in the dense 
layer and softmax and sigmoid activation functions in the output layer. 
The output layer is good for softmax with categorical cross-entropy. 

4. Results and discussions 

This proposed work evaluates the models under consideration using 
Precision, Recall, F1-score, and AUC / ROC curve. These markers are 
helpful when evaluating a medical screening system for COVID-19 
detection. 

4.1. Performance metrics 

4.1.1. Confusion matrix 
It is assumed that the confusion matrix will produce four values: true 

positive (TP), true negative (TN), false positive (FP), and false negative 
(FN) (FN). TP means "properly predicted." COVID-19 cases, TN indicates 
accurately predicted normal cases, FN indicates COVID-19 cases 
wrongly categorised as normal cases, and FP indicates normal cases 
incorrectly classified as COVID-19 by the proposed model. 

4.1.2. Precision 
Precision is a metric that measures how robust enough the model 

recognizes the positive samples and is specific to the expected outcome. 
The better value of precision shows, the more precise the positive sample 
prediction. Eq. (1) represents the precision formula for calculation. 

Precision =
TP

TP + FP
(1)  

4.1.3. Recall 
Improved accuracy in predicting the target instance and decreased 

likelihood of missing a bad instance are both the result of a higher recall 
rate. The method to find recall is expressed in Eq. (2). 

Recall =
TP

TP + FN
(2)  

4.1.4. Accuracy 
Accuracy is defined as the proportion of correct predictions made 

relative to the total number of samples. Eq. (3) is used for calculating the 
Accuracy of the various models. 

Accuracy =
TP + TN

TP + TN + FP + FN
(3)  

4.1.5. F1-Measure 
The F1 score is offered as a composite metric to mitigate the negative 

effects of both precision and recall when evaluating classifiers. F1-score 

Table 5 
Comparison Results of non-COVID-19 class.  

Metrics Densenet121 InceptionV3 Resnet50 Xception VGG16 VGG19 

Precision 96.41 93.55 82.01 91.89 97.58 96.34 
Recall 98.37 94.31 79.67 96.75 98.37 96.34 
F1-score 97.38 93.93 80.82 94.26 97.98 96.34 
Support 246 246 246 246 246 246 
ROC / AUC 97.48 92.11 89.11 94.51 97.93 97.30  

Table 6 
Comparison of Training and Validation Performance.  

Metrics Densenet121 InceptionV3 Resnet50 Xception VGG16 VGG19 

Training Accuracy 97.98 94.41 81.70 93.09 97.63 96.88 
Training Loss 0.08 0.17 0.43 0.18 0.09 0.12 
Testing Accuracy 97.38 93.96 81.29 94.16 98.00 96.38 
Testing Loss 0.10 0.17 0.43 0.17 0.10 0.14  
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Table 7 
Comparison of proposed models with state-of-the-art models.  

Reference Model Accuracy Loss Precision Recall / Sensitivity F1 Score AUC 

[37] VGG11+BN 92.73 0.94 - - - - 
Resnet18 93.39 0.96     
Resnet50 95.98 0.57     

[38] Ctnet-10 82.1 - - - - - 
VGG19 94.5      
Densenet169 93.15      
Inception V3 53.4      
VGG16 89      
Resnet50 60      

[39] VGG16 – DNN 91.84 - 89.21 69.6 - - 
VGG16 –BiLSTM 95.68  91.02 88   
Resnet-50 – DNN 92.64  90.93 70.4   
Resnet-50 –BiLSTM 93.28  89.58 76   
Densenet-121 – DNN 88.32  88.89 50.4   
Densenet-121 –BiLSTM 89.76  86.27 60   
Concatenated Deep -DNN 95.84  98.59 82.4   
Concatenated Deep=BiLSTM 97.6  96.86 91.2   

[28] CNN-AD 85 - 87 82 84 - 
CNN-SA 95  95 94 94  

[27] InceptionV3 84.51 - - - - - 
Densenet 60      
New-Densenet 95.98      

[29] VGG-16 94.37  91.49 96.41 93.89 94.96 
VGG-19 96.37  96.96 95.96 95.96 96.33 
Xception 91.95  91.4 90.58 91.00 91.82 
Inception_V2_Resnet 94.57  93.36 94.62 93.98 91.82 
Densenet121 95.77  91.73 99.55 95.48 96.12 
Densenet201 97.38  95.26 99.1 97.14 97.54 

[41] VGG16 96.18 - 96.16 96.2 96.17 96.2 
VGG19 94.77  94.95 94.66 94.75 94.66 
Resnet50 92.15  92.13 92.12 92.14 92.18 
Resnet50 V2 97.79  97.77 97.84 97.78 97.84 
Resnet50 V3 91.55  91.62 91.67 91.55 91.67 
Xception 94.77  94.75 94.83 94.77 94.83 
MobileNet 97.38  97.41 97.35 97.38 97.35 
InceptionResnet V2 91.35  91.33 91.39 91.34 91.39 

[40] ANN 85.09 - 82.59 87.69 - - 
ANFIS 88.11  88.14 88.47   
CNN 87.36  87.4 87.73   
DTL 90.75  92.59 89.60   
DTL-Proposed 93.02  95.18 91.46   

[42] VGG16 89 - - - - - 
Densenet 169 93.15      
Inception V3 53.4      
Inception Resnet 90.90      
Resnet 50 60      
AlexNet 82      
Laplace transform 75.9 - 68 72 64 - 
Adaptive gamma correction 90.94  91 91 92  
Wavelet transform 92.55  93 90 93  
CLAHE transform 94.56  95 91 93  

[29] VGG16 86 - 86 86 86 - 
Densenet 88  88 88 88  
Resnet101 88  88 88 88  
Spike train-based 76  76 76 76  

[41] AlexNet 76.38 - - - - - 
VGG16 78.89      
VGG19 73.87      
GoogleNet 77.39      
Resnet50 81.41      

[42] VGG16 76 - - - 76 82 
Resnet18 74    73 82 
Resnet50 80    81 88 
Densenet-121 79    79 88 
Densenet-169 83    81 87 
Efficientnet-b0 77    78 89 
Efficientnet-b1 79    79 84 
CRNet 73    76 79 

[29] VGG16 94.37  91.49 96.41 93.89 94.96 
VGG19 96.37  95.96 95.96 95.96 96.33 
Xception 91.95  91.40 90.58 91.00 91.82 
Inception_V2_Resnet 94.57  93.36 94.62 93.98 91.82 
DenseNet121 95.77  91.73 99.55 95.48 96.12 
DenseNet201 97.38  95.26 99.10 97.14 97.54 

(continued on next page) 
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is calculated using Eq. (4). 

F1 − score = 2
(

Precision∗ Recall
Precision + Recall

)

(4)  

4.1.6. ROC Curve 
It is not possible to have an AUC (Area under Curve) greater than 1, 

which is the area under the ROC (Receiver Operating Characteristics) 
curve. It is common practise to evaluate binary classifiers using the ROC 
curve and AUC. 

4.2. Experimental results and analysis 

4.2.1. Accuracy and loss graphs 
The loss and accuracy graphs are the greatest approach to visualize 

our model training, as seen from the figure’s model accuracy plot.2 
below, it was capable of reaching identical validation and training ac-
curacies after a few epochs, based on the F-1 Score. Time series graphs 
exhibit analyses of the suggested model’s loss and accuracy as a function 
of epoch. 

4.2.2. ROC curve 
The ROC curve displays our binary classifier’s diagnostic perfor-

mance as the threshold varies. True positive rate (TPR) is plotted against 
false positive rate (FPR) at various threshold values to create the ROC 

curve. Recall sensitivity is TPR. False alarm probability (FPR) is calcu-
lated as (1- specificity). ROC plots the fall-out function with sensitivity 
or recall. A good classifier has high recall and low false-positive rate. 
Fig. 4 shows that our model’s true-positive rate is over 0.8 and false- 
positive rate is less than 0.1, indicating an acceptable match. 

4.2.3. Confusion matrix 
The model’s performance was evaluated using a confusion matrix. 

Most photos are categorized as true positives and true negatives. Addi-
tionally, COVID-19 has a lower false negative rate than false positive 
rate. False positives and patient quarantine are preferable to mis-
identifying a positive case as unfavorable and allowing disease 
transmission. 

The obtained accuracy results of the proposed models represented in 
Fig. 3 show the highest performance of VGG16 among various models 
proposed and the lowest performance of Resnet50. Other models ob-
tained moderate results. 

The obtained loss performance results of the proposed models are 
represented in Fig. 4, which shows the best results for VGG16 and 
moderated results for others except Resnet50. 

The epoch vs. loss graph displays each epoch’s loss. Fig. 3 shows how 
loss values decrease as epochs increase. The obtained loss performance 
result of Resnet50 has the highest value. The lowest value for VGG16 
shows the best performance of VGG16 among other models. The evi-
dence from the loss graph shows the moderate performance of the 
models such as Densenet12, Xception, VGG19, and InceptionV3. 

Fig. 5 depicts the performance outcomes of the suggested model 
using the confusion matrix. It shows the high-performance results for 
VGG16 with a low misclassification rate. The FP (1.12%) and FN 
(0.80%) values of VGG16 yield the best prediction result for that model. 
Among the proposed prediction models, the Resnet50 has FP (8.65%) 
and FN (10.06%) as the highest misclassification, lowering that model’s 
prediction results. Fig. 6 depicts the acquired ROC findings of the pro-
posed models. The results specifically highlight the superior perfor-
mance of the VGG16 model in comparison to other models. 

Fig. 5 depicts the outcomes of the proposed models, demonstrating 
the superior performance of VGG16 in comparison to other models. The 
proposed models’ performance indicators are shown in Tables 4 and 5. 
The proposed models’ training and validation Accuracy and loss are 
shown in Table 6. VGG16 had the best results of all the presented models 
in terms of Precision, Recall, F1-score, Accuracy, and ROC/AUC. 

The results of contrasting the proposed models with the state-of-the- 
art models are presented in Table 7. Many different models were uti-
lised, and their efficacy was measured in different ways. Each of the 
aforementioned models has its own method for determining if a CT scan 
image is positive or negative for COVID-19. Table 8 compares the pro-
posed models to the state-of-the-art models.. 

The development of a customized model using Densenet201 and the 
GradCam algorithm addressed by the authors [29] obtained the highest 
accuracy at 98.18%. The dataset used in the above article was imbal-
anced, consisting of 4986 CT images, including 1868 images of 

Table 7 (continued ) 

Reference Model Accuracy Loss Precision Recall / Sensitivity F1 Score AUC 

DenseNet201+Grad-Cam 98.18  97.76 98.20 97.98 98.82 
[43] VGG19 85.75  83.89 88.5 86.13  

ResNet101 86.25  93.41 78 86.25 
DenseNet169 88  92.70 82.5 88 
WideResNet50 2 90.75  92.23 89 90.59 
Stacked model 90.75  91.37 90 90.68 

Proposed Models Densenet121 97.38 0.1 97.39 97.39 97.38 97.48 
Inception V3 93.96 0.17 93.97 93.97 93.97 92.11 
Resnet 50 81.29 0.43 81.32 81.27 81.28 89.41 
Xception 94.16 0.17 94.27 94.19 94.17 94.45 
VGG16 98 0.1 97.99 97.99 97.99 97.90 
VGG19 96.38 0.14 96.38 96.38 96.38 97.23  

Table 8 
Accuracy of Proposed models with state-of-the-art models.  

Models Proposed Accuracy State-of-the-art models - Accuracy 

Densenet121 97.38 [39] – 89.76 
[27] - 95.98 
[35] – 88 
[36] – 79 
[29] – 95.77 

Inception V3 93.96 [27] – 84.51 
[42] – 53.4 

Resnet 50 81.29 [49] – 60 
[36] - 80 

Xception 94.16 [29] – 91.5 
[29] – 91.95 

VGG16 98 [38] – 89 
[39] - 95.68 
[29] – 94.37 
[41] - 96.18 
[42] – 89 
[35] – 86 
[13] - 78.89 
[36] – 76 
[29] – 94.37 

VGG19 96.38 [34] – 94.5 
[38] – 96.37 
[39] - 94.77 
[41] – 73.87 
[43] – 96.37 
[44] - 85.75  
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COVID-19 confirmed and 3118 images of other lung diseases. The pro-
posed models of this research article used the balanced dataset of 2481, 
including 1252 COVID-19 images and 1229 non-COVID-19 images. 

VGG16 performed well on all metrics, including Precision, Recall, 
F1-score, Accuracy, and ROC/AUC. Comparing our models to those in 
[29], Densenet 121, Xception, VGG16, and VGG19 perform better. 
Densenet 121 in [29] had 95.77% accuracy, but the proposed model has 
97.38%. The suggested article’s xception model had 94.16% accuracy, 
while [43]’s had 91.95%. VGG16 and VGG19 models also performed 
well with the highest accuracy, 98% and 96.38%, respectively, than the 
models in [43]. 

Overall, VGG16 performed better than the other models tested. The 
next highest findings are supported by Densenet121 and Resnet50, with 
the lowest results. The aforementioned findings demonstrate the po-
tential utility of Deep transfer learning augmented CNN-based predic-
tion models in the detection of COVID-19 in CT scans. The performance 
of Deep CNN models can be improved by using transformation-based be- 
spoke models to levels above 90% in all performance criteria. With such 
a small FPR, the proposed method is practical for use in real-world 
screening settings. 

5. Conclusion 

The proposed study compares different CNN-based image classifi-
cation methods for detecting COVID-19 in chest CT scan images using 
deep transformation enhancement. Conclusion of the present work is as 
below:  

• Extensive testing shows that the proposed method yields excellent 
results, with accuracy rates of 90%+ across the board and a small 
percentage of false positives.  

• According to the experimental findings, deep CNN-based techniques 
can significantly influence COVID-19 spread control by offering 
quick screening.  

• With DL-based approaches already being widely employed in other 
medical imaging applications. it is high time they be implemented in 
the screening process for the COVID-19.  

• According to analysis, VGG16 produces superior results because it 
contains smaller parameters and requires minimum training time. As 
a result, it outperforms other CNN models.  

• This paper applied a ubiquitous and effective deep learning-based 
transformation to detect COVID-19 in suspected patients using CT 
scan images. 
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