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A B S T R A C T   

Background: Post COVID-19 condition (PCC) is known to affect a large proportion of COVID-19 survivors. Robust 
study design and methods are needed to understand post-COVID-19 diagnosis patterns in all survivors, not just 
those clinically diagnosed with PCC. 
Methods: We applied a case-crossover Phenome-Wide Association Study (PheWAS) in a retrospective cohort of 
COVID-19 survivors, comparing the occurrences of 1,671 diagnosis-based phenotype codes (PheCodes) pre- and 
post-COVID-19 infection periods in the same individual using a conditional logistic regression. We studied how 
this pattern varied by COVID-19 severity and vaccination status, and we compared to test negative and test 
negative but flu positive controls. 
Results: In 44,198 SARS-CoV-2-positive patients, we found enrichment in respiratory, circulatory, and mental 
health disorders post-COVID-19-infection. Top hits included anxiety disorder (p = 2.8e-109, OR = 1.7 [95 % CI: 
1.6–1.8]), cardiac dysrhythmias (p = 4.9e-87, OR = 1.7 [95 % CI: 1.6–1.8]), and respiratory failure, insuffi-
ciency, arrest (p = 5.2e-75, OR = 2.9 [95 % CI: 2.6–3.3]). In severe patients, we found stronger associations with 
respiratory and circulatory disorders compared to mild/moderate patients. Fully vaccinated patients had mental 
health and chronic circulatory diseases rise to the top of the association list, similar to the mild/moderate cohort. 
Both control groups (test negative, test negative and flu positive) showed a different pattern of hits to SARS-CoV- 
2 positives. 
Conclusions: Patients experience myriad symptoms more than 28 days after SARS-CoV-2 infection, but especially 
respiratory, circulatory, and mental health disorders. Our case-crossover PheWAS approach controls for within- 
person confounders that are time-invariant. Comparison to test negatives and test negative but flu positive pa-
tients with a similar design helped identify enrichment specific to COVID-19. This design may be applied other 
emerging diseases with long-lasting effects other than a SARS-CoV-2 infection. Given the potential for bias from 
observational data, these results should be considered exploratory. As we look into the future, we must be aware 
of COVID-19 survivors’ healthcare needs.   

1. Introduction 

Though most patients with Coronavirus Disease 2019 (COVID-19) 
recover, [1] many survivors report symptoms long after disease onset, a 
condition commonly referred to as “long COVID” or “post COVID-19 
condition” (hereinafter abbreviated as PCC). [2–4] While initially the 
names and definitions of PCC were highly heterogeneous, the consensus 
clinical case definition [3] proposed by the WHO in October 2021 

represented a significant step towards reaching global consistency. A 
recent meta-analysis estimated that 43 % (95 % CI: 39 %–46 %) of 
COVID-19 survivors experience at least one lingering condition post- 
COVID-19. [5] This, paired with estimates for global COVID-19 re-
ported case counts, [6] the estimated prevalence of PCC among initially 
asymptomatic cases, [7] and the fraction of unreported COVID-19 in-
fections, [8,9] forms the basis that hundreds of millions of people may 
have or have had post-COVID-19-related health complications. 
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Female sex, older age, severe COVID-19, and comorbidities such as 
asthma are claimed to be associated with PCC. [5] Common symptoms 
include fatigue, brain fog/memory issues, headache, heart conditions, 
respiratory conditions, sleep disorders, and mental health conditions, 
[4] but PCC symptomatology still remains heterogeneous. Recent 
research has shown that COVID-19 may increase risk for cardiovascular 
events, kidney-related outcomes, and diabetes sometimes long after 
infection [10–12] and that PCC can persist for months after infection. 
[13,14] Regardless of a formal diagnosis, several surveys indicated that 
post-COVID-19-related disabilities have affected a large proportion of 
the population. [15–17] 

However, there are also skepticisms and contradictions in the liter-
ature. One recent study suggested that not every new or persistent 
symptom post-infection can be attributed to a confirmed COVID-19 
diagnosis. [18] Another important question is whether vaccination or 
later SARS-CoV-2 variants reduces PCC development. To date, results 
have been inconsistent, with some studies finding vaccination to confer 
a protective effect, but others finding the contrary. [19–22] 

While a proper population-based survivorship cohort with adequate 
follow-up time is the ideal study design to understand post-COVID-19 
clinical outcomes, electronic health records (EHRs) offer snapshots of 
patients’ health status and thus allow comparisons of the medical phe-
nome of COVID-19-positive patients before and after COVID-19 diag-
nosis. EHRs are easily accessible and enabled many studies on post 
COVID-19 complications. [10–12,14,23,24] Phenome-Wide Associa-
tion Studies (PheWAS) are an increasingly common EHR-based method 
to agnostically find associations between hundreds of phenotypes and 
some other health-related factor. [25] Recently, PheWAS have been 
used to understand the genetic and phenotypic risk factors for COVID-19 
outcomes. [26–29] Such studies can be error-prone due to lack of a 
suitable control group or confounding due to differences in other patient 
characteristics determining who is getting tested and diagnosed for 
COVID-19 as well as who is seeking post-COVID-19 care. Researchers 
may consider matching, weighting or regression adjustment as potential 
remedies to this problem, but these methods are only able to adjust for a 
limited set of measured confounders. [30,31] 

The case-crossover design is an elegant design-based solution which 
reduces potential confounding by using events observed for the same 
person during suitably defined case and control periods. [32,33] This 
design can be thought of as a matched case-control design that controls 
for both observed and unobserved person-level confounders that are 
invariant over the case and control windows. Case-crossover designs 
have been used to study early COVID-19 detection and post-COVID-19- 
vaccination cerebral venous thrombosis. [34,35] One particular study 
used claims data to estimate the association between patient diagnoses 
and the time period after COVID-19 infection, [36] and another used 
EHR data to conduct a post-COVID-19 PheWAS. [37] 

In October 2021 a new diagnosis code specifically for PCC was 
introduced, [38] thus facilitating the clear identification of PCC patients, 
but in this study we took an agnostic look across hundreds of diagnoses 
to understand which ones are more commonly seen post-COVID-19 
using a case-crossover design with more than two years of follow-up 
data. We conduct analyses stratified by COVID-19 severity and vacci-
nation status. We compare these results to the results of the same 
analysis applied to test negative controls and a test negative flu positive 
cohort to discern unique contributions of COVID-19. Using this 
approach, we aim to improve our understanding of post-COVID-19 
diagnosis patterns and consequently to advance healthcare and socie-
tal support for all COVID-19 survivors. 

2. Methods 

2.1. COVID-19-positive cohort 

Data were extracted retrospectively from EHRs for patients in the 
Michigan Medicine (MM) health system. Ethical review and approval 

were waived for this study due to its qualification for a federal exemp-
tion as secondary research for which consent is not required. Determi-
nation for exemption was made by the University of Michigan Medical 
School Institutional Review Board (study ID: HUM00180294). 
Individual-level data included de-identified information regarding 
reverse transcription polymerase chain reaction (RT-PCR) testing for 
SARS-CoV-2, patient demographics, diagnoses, vaccinations, hospitali-
zations, ICU admission, and death. We included all adult individuals 
with either 1) positive RT-PCR test result or 2) diagnosis of COVID-19 
infection based on International Classification of Disease (ICD)-10-CM 
codes U07.1 or U07.2 between March 10, 2020, to August 1, 2022. We 
defined the date of the first positive test or diagnosis as the index test 
date for each patient. For patients with multiple positive tests, we 
considered their first positive test as the index test date. Patients with 
missing test dates were excluded from this analysis. 

2.2. Test negative controls 

We also measured test negative controls – patients tested, but who 
never received a positive RT-PCR result nor a COVID-19 diagnosis. We 
matched negative to positive patients at a 4:1 ratio on age, gender, and 
Charlson Comorbidity Index. [39] The index test date for negative pa-
tients who were tested multiple times was defined as the date of their 
first COVID-19 test to ensure sufficient follow-up post-test. A sub-cohort 
of test negative patients who were diagnosed with other forms of the flu 
(defined using PheCode 481; PheCode system described below) during 
the same period were also measured, where the date of flu diagnosis (if 
multiple, one was randomly chosen) served as their index date for 
choosing the case-control windows. 

2.3. Study design 

We used a case-crossover design where each COVID-19-positive case 
served as its own control. We defined three time periods relative to the 
index test date (time zero): “pre-COVID-19 period” (− 2 years to − 14 
days), “acute and short COVID-19 period” (− 14 days to + 28 days), and 
“post-COVID-19 period” (+ 28 days to + 1 year; Fig. 1). Thus, the “post- 
COVID-19 period” did not include the acute phase of COVID-19. We 
included 14 days prior to the index test date in the “acute and short 
COVID-19 period” to account for individuals who may have had COVID- 
19 and related symptoms before testing positive. Patients were included 
in the study if they had at least one EHR encounter with a diagnosis in 
both the “pre-” and “post-COVID-19 period.” 

We implemented two sampling schemes to be used in the case- 
crossover design-based PheWAS. Primarily, we used a random L:M 
case:control window ratio (CCWR) design in which we randomly 
sampled (without replacement) up to L case windows (“cases”) and up to 
M control windows (“controls”), each S days in length, from each study 
participant’s “post-COVID-19 period” and “pre-COVID-19 period”, 
respectively (termed random L:M CCWR S-day analysis; Fig. 1A). Win-
dows of length S days were selected by randomly choosing window start 
dates. We also used a fixed window design where we selected 1 case and 
1 control window (of length S days) from a fixed start date, defined as 
the date most proximal to the index test (termed fixed S-day analysis; 
Fig. 1B). 

2.4. Demographic and clinical variables 

Age, gender, race, and Body Mass Index (BMI) were reported from 
patients’ EHRs. Patients aged >= 90 years were coded as being exactly 
90 years old for confidentiality reasons. A patient was considered a MM 
primary care patient if they received primary care at MM in the last two 
years. We also computed the Charlson Comorbidity Index using pre- 
existing conditions 14 days prior to the index date. 
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2.5. COVID-19 severity 

COVID-19-related hospital and ICU admission were defined for 
COVID-19 positive patients as having each respective outcome within 
30 days following the index test date. [40] COVID-19-related death was 
defined as death within 60 days following the index test date. These 
outcomes describe 30-day all-cause-hospitalization and 60-day all- 
cause-mortality following a COVID positive test. We define the com-
posite outcome as “severe COVID-19” if a COVID-19 patient experienced 
a COVID-19-related hospitalization, ICU admission, or death as defined 
above. A patient is considered “mild/moderate COVID-19” otherwise. 
See eFigure 1 for details. 

2.6. COVID-19 vaccination 

The date on which a person was considered fully vaccinated was 
after either 1) two doses of Moderna, Pfizer-BioNTech, or Astrazeneca or 
2) one dose of Johnson and Johnson - Janssen vaccine, and 21 or more 
days had elapsed after their last dose. [41] Patients were considered 
unvaccinated if they had exactly zero or an unknown number of doses at 
index test date. Partially vaccinated patients were not included in the 
stratified analysis but were included in the overall analysis. We note that 
MM’s vaccine eligibility criteria changed over time and mirrored the 

CDC’s recommendations. Thus, most patients diagnosed before 2021 
were unvaccinated at their index test date. eFigure 2 details how 
vaccination status was determined. 

2.7. Diagnosis code mapping 

ICD diagnosis codes were extracted for each patient and mapped to 
their corresponding PheCodes according to the PheWAS catalog ICD 
maps. [42] Standard PheCode exclusions were applied, and one 
observed PheCode during a corresponding time window was considered 
the presence of a diagnosis. The totality of observed PheCodes for an 
individual was termed their “phenome.” We grouped PheCodes into 
symptom groups as defined in the PheWAS catalog. [43] 

2.8. Descriptive analysis of diagnosis patterns 

We tabulated presence of any new PheCodes (and PCC-related 
PheCodes as defined in eTable 1) [4] as well as the number of new 
PheCodes received during the “post-COVID-19 period.” A PheCode was 
considered new if it was present in the “post-COVID-19 period” but not 
present during the “pre-COVID-19 period.” Additionally, we counted 
visits per month and follow-up time (in weeks) during both the “pre-“ 
and “post-COVID-19 periods”. A visit was defined as any unique day on 

Fig. 1. Sampling Schematic for Case-Crossover Design. Panel A depicts the random L:M CCWR (Case:Control Window Ratio) sampling design used in our primary 
analysis, wherein we randomly sampled L = 1 case window and M = 4 control windows (by randomly choosing a window start date), each with S = 90 days in length. 
A patient’s index test date is denoted by the red line. The “Acute and Short COVID-19 period” is from − 14 days to + 28 days, the “post-COVID-19 period” is from +
28 days to + 1 year, and the “pre-COVID-19 period” is from − 14 days to − 2 years from the index test date. In this instance, one 90-day case window is randomly 
selected from the “post-COVID-19 period,” and four 90-day control windows are selected from the “pre-COVID-19 period.” Panel B depicts the fixed scheme where 
two windows of S = 90 days length are selected from each of the periods with fixed start dates. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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which at least one diagnosis was recorded, and follow-up time was 
computed by taking the difference between the date most proximal to 
the index test date for a period (− 14 days for “pre-COVID-19 period”, +
28 days for “post-COVID-19 period”) and the most distal date on which 
they received a diagnosis in their “pre-“ and “post-COVID-19 periods” 
(up to − 2 years for “pre-COVID-19 period”, up to + 1 year for “post- 
COVID-19 period”). 

2.9. Statistical analysis for PheWAS 

We used a PheWAS approach with a case-crossover design. To account 
for the within-subject matched analysis, conditional logistic regression 
was used to model the association between case and control windows and 
patients’ phenomes. Let us consider a 1:M case-crossover design with 
N patients analyzing K PheCodes. Let i = 1,2, ...,N index patients, 
j = 1, 2,⋯,M+1 index case and control windows of a patient, and 
k = 1, 2, ...,K index Phecodes. Patient i’s case window (j = 1) is matched 
to multiple randomly selected control windows (j =2,⋯,M +1). For each 
PheCode k, we fit the following model: 

logit
[
Prob

(
Windowij = case|PheCodek

ij

) ]
= βk

0i + βk
1PheCodek

ij 

where PheCodek
ij is an indicator for whether PheCode k is present in 

window j of patient i and Windowij denotes the case/control window for 
patient i. The conditional logistic regression conditions on the matched 
design or the fact that Windowi1 is a case window and Windowi2,⋯,

WindowiM+1 are control windows for the same individual i, such that the 
patient-specific intercept βk

0i is eliminated and the conditional likelihood 
only retains βk

1, the coefficient of PheCode k shared by all patients. The 
resulting conditional likelihood for PheCode k takes the following form: 

Lk
CLR =

∏N

i=1
[

exp(βk
1Phecodek

i1)
∑M+1

j=1 exp(βk
1Phecodek

ij)
]

For a model to be run, we specified that at least 10 subjects (5 for 
cohorts with < 5,000 subjects) in the analytic dataset should have a 
given PheCode in their case (control) periods. We used Manhattan plots 
to visualize the p-values corresponding to the null hypotheses H0k : βk

1 =

0, k = 1,⋯,K and the directions of the association. 
For each sampling scheme, a PheWAS was run on the entire COVID- 

19-positive cohort (termed “overall” cohort) and several subgroups – 
severe, mild/moderate, fully vaccinated, and unvaccinated patients. 
Random 1:4 CCWR 90-day sampling was used in the primary analysis. 
We chose 90 days as it aligns with the WHO’s PCC case definition as well 
as recent research. [3,5] Sensitivity analyses regarding the length of the 
window and the case:control ratio included fixed 90-day, fixed 30-day, 
random 1:2 CCWR 180-day, random 2:4 CCWR 90-day. We also con-
ducted a random 1:4 CCWR 90-day analysis on test negative and test 
negative but flu positive controls, and random 1:4 CCWR 90-day anal-
ysis stratified by year of infection (2020, 2021, 2022). For test negative 
controls, we performed PheWAS on controls matched to the overall 
cohort and to the severe cohort. We formally compared cohorts by 
testing for a difference in effect sizes (eMethods 1). 

All analyses were performed in R (version 4.1.2), [44] and the 
PheWAS package was used. [45] Summary statistics are reported as 
median (interquartile range [IQR]) for continuous variables or n (%) for 
categorical variables. Odds Ratios (ORs) with Wald-type 95 % Confi-
dence Intervals (CIs) and p-values are reported from each conditional 
logistic regression model. Phenome-wide significance (“hits”) was 
determined by the Holm-Bonferroni method. [46] We reported on both 
the Bonferroni and Holm-Bonferroni hits in PheWAS plots. 

3. Results 

3.1. Cohort description 

Between March 10, 2020 and August 1, 2022, 353,648 patients were 
tested or diagnosed for COVID-19 at MM. Of these, 44,198 COVID-19- 
positive patients were included in our study, to which 160,399 test 
negative controls were matched. In addition, 1,328 test negative pa-
tients with an index flu infection during the same period were also 
included as a second set of controls (see eFigure 1 for a flow diagram 
defining the analytic cohort). Median (IQR) age was 48 (31–63) and 61 
% of the cohort was female (Table 1). Of the positive patients, 2,569 
(5.8 %) patients experienced severe COVID-19, and 41,629 (94.2 %) had 
mild/moderate COVID-19. 16,468 (37 %) patients were fully vaccinated 
and 25,736 (58 %) were unvaccinated at their index test date. 

3.2. Descriptive diagnosis patterns 

Both COVID-19-positive (Table 2) and COVID-19-negative patients 
(eTable 2) received a similar number and rate of diagnoses in the “post 
period”, and we saw a similar trend even when looking only at PCC- 
related diagnoses (eTable 1). The flu positive cohort had an increased 
number and rate of diagnoses in the “post period” (eTable 3). Increasing 
COVID-19 severity led to increased numbers and rates of diagnosis (i.e., 

Table 1 
Cohort Summary. Summary statistics for the cohort are presented as median 
(IQR) for continuous variables and n (%) for categorical variables. The table is 
stratified by vaccination status at index test date. Missing values are reported for 
each variable.  

Variable Overall (n 
¼ 44,198) 

Fully Vaccinated 
(n ¼ 16,468)a 

Unvaccinated (n ¼
25,736) a,b 

Age 48 (31, 63) 51 (34, 65) 45 (29, 61) 
Gender    

Female 26,880 (61 
%) 

10,148 (62 %) 15,544 (60 %) 

Male 17,316 (39 
%) 

6,320 (38 %) 10,191 (40 %) 

(Missing) 2 (<0.1 %) 0 (0 %) 1 (<0.1 %) 
Race    

African 
American 

4,926 (11 %) 1,429 (8.7 %) 3,262 (13 %) 

Asian 1,574 (3.6 
%) 

790 (4.8 %) 706 (2.7 %) 

Caucasian 34,579 (78 
%) 

13,132 (80 %) 19,927 (77 %) 

Other 1,919 (4.3 
%) 

631 (3.8 %) 1,206 (4.7 %) 

(Missing) 1,200 (2.7 
%) 

486 (3.0 %) 635 (2.5 %) 

BMI 28 (24, 33) 28 (24, 33) 28 (24, 34) 
(Missing) 2,624 (5.9 

%) 
677 (4.1 %) 1,835 (7.1 %) 

Charlson 
Comorbidity 
Index 

1.00 (0.00, 
3.00) 

1.00 (0.00, 4.00) 1.00 (0.00, 3.00) 

(Missing) 1,114 (2.5 
%) 

535 (3.2 %) 498 (1.9 %) 

Primary Care 
Patientc 

23,871 (54 
%) 

9,940 (60 %) 12,928 (50 %) 

COVID-19 
Severityd    

Mild/Moderate 41,629 (94.2 
%) 

15,784 (95.8 %) 23,989 (93.2 %) 

Severe 2,569 (5.8 
%) 

684 (4.2 %) 1,747 (6.8 %)  

a 1,994 partially vaccinated patients not represented. 
b Includes those with unknown vaccination status. 
c Received primary care at MM in last 2 years. 
d Severe if experienced COVID-19-related hospitalization, ICU admission or 

death; mild/moderate otherwise. 

S.R. Haupert et al.                                                                                                                                                                                                                              



Journal of Biomedical Informatics 136 (2022) 104237

5

Table 2 
Summary of Diagnosis Patterns. This table includes six outcomes: follow-up time in weeks, visits per month, individuals with at least one new diagnosis in the “post- 
COVID-19 period,” individuals with at least one new PCC-related diagnosis in the “post-COVID-19 period,” the number of new diagnoses per month in the “post- 
COVID-19 period,” and the number of new PCC-related diagnoses per month in the “post-COVID-19 period.” Each outcome is stratified by both COVID-19 severity, 
“pre-“/”post-COVID-19 period,” and vaccination status. Statistics are presented as median (IQR) for continuous variables and n (%) for categorical variables, and 
sample sizes for cohorts are provided.    

Overall (n ¼ 44,198)a Fully Vaccinated (n ¼ 16,468)a Unvaccinated (n ¼ 25,736)a,b 

Outcome Cohort Pre-COVID-19 Post-COVID- 
19 

Pre-COVID-19 Post-COVID- 
19 

Pre-COVID-19 Post-COVID- 
19 

Follow-up Time (Weeks) Overall (n = 44,198) 90.86 (59.04, 
99.71) 

25.14 (13.29, 
41) 

94.29 (67.43, 
100.29) 

17.71 (7.43, 
25.29) 

88 (54.29, 
99.14) 

34.71 (19.29, 
44.86)  

Mild/Moderate (n =
41,629) 

90.43 (58.86, 
99.57) 

25 (13.29, 
40.57) 

94.07 (67.29, 
100.29) 

17.57 (7.43, 
25.14) 

87.29 (53.86, 
98.86) 

34.57 (19.29, 
44.71)  

Severe (n = 2,569) 96.43 (66.86, 
101) 

29.71 (14.14, 
45.29) 

98.07 (70.82, 
101.29) 

19.14 (6.82, 
27.57) 

95.71 (64.71, 
100.86) 

38.14 (19.29, 
46.43)  

Hospitalized, No ICU (n 
= 1,900) 

96.14 (66.68, 
101) 

29.36 (15.71, 
45) 

97.86 (69.04, 
101.14) 

20.29 (7.71, 
27.57) 

95.29 (64.71, 
100.86) 

38.14 (20.29, 
46.29)  

Hospitalized and ICU (n 
= 588) 

97.71 (70.32, 
101.14) 

35.71 (15.11, 
46.43) 

98.71 (81.79, 
101.29) 

18.86 (6.43, 
30.21) 

97.43 (68.29, 
101.14) 

41.57 (21.43, 
47)  

Deceased (n = 136) 96.64 (64.64, 
101.43) 

2.29 (0.86, 
4.46) 

99.64 (69.96, 
101.82) 

1.79 (0.75, 
3.11) 

96.43 (60.89, 
101.07) 

2.43 (0.86, 
5.57) 

Visits Per Month Overall (n = 44,198) 0.64 (0.25, 
1.44) 

0.54 (0.18, 
1.26) 

0.93 (0.42, 
1.91) 

0.45 (0.18, 
0.99) 

0.51 (0.21, 
1.15) 

0.54 (0.18, 
1.35)  

Mild/Moderate (n =
41,629) 

0.59 (0.25, 
1.36) 

0.45 (0.18, 
1.17) 

0.89 (0.38, 
1.83) 

0.45 (0.18, 
0.99) 

0.47 (0.17, 
1.06) 

0.54 (0.18, 
1.26)  

Severe (n = 2,569) 1.44 (0.59, 
3.06) 

1.44 (0.54, 
3.25) 

2.17 (0.98, 
3.95) 

1.35 (0.45, 
2.64) 

1.27 (0.51, 
2.55) 

1.53 (0.54, 
3.43)  

Hospitalized, No ICU (n 
= 1,900) 

1.44 (0.59, 
2.93) 

1.26 (0.45, 2.8) 2.08 (0.98, 
3.66) 

1.13 (0.45, 
2.37) 

1.23 (0.51, 
2.42) 

1.35 (0.45, 
2.89)  

Hospitalized and ICU (n 
= 588) 

1.61 (0.64, 
3.65) 

2.75 (0.99, 
5.33) 

2.85 (0.91, 
5.10) 

2.53 (0.9, 
4.69) 

1.4 (0.55, 3.23) 2.89 (0.99, 5.6)  

Deceased (n = 136) 1.36 (0.51, 
3.53) 

1.9 (0.95, 4.99) 2.61 (1.2, 3.95) 2.85 (0.95, 
12.83) 

1.13 (0.47, 
3.45) 

0.95 (0.95, 
4.51) 

1 + New Diagnosisc Overall (n = 44,198)  34,257 (79 %)  11,917 (75 %)  20,809 (82 %)  
Mild/Moderate (n =
41,629)  

31,950 (79 %)  11,324 (74 %)  19,222 (82 %)  

Severe (n = 2,569)  2,307 (90 %)  593 (87 %)  1,587 (91 %)  
Hospitalized, No ICU (n 

= 1,900)  
1,682 (89 %)  454 (86 %)  1,127 (90 %)  

Hospitalized and ICU (n 
= 588)  

567 (97 %)  126 (97 %)  421 (97 %)  

Deceased (n = 136)  101 (76 %)  24 (73 %)  70 (76 %) 
1 + New PCC-Related 

Diagnosisc 
Overall (n = 44,198)  16,205 (59 %)  5,469 (51 %)  9,930 (64 %)  

Mild/Moderate (n =
41,629)  

14,784 (58 %)  5,128 (51 %)  8,930 (63 %)  

Severe (n = 2,569)  1,421 (71 %)  341 (63 %)  1,000 (74 %)  
Hospitalized, No ICU (n 

= 1,900)  
1,005 (68 %)  251 (59 %)  692 (71 %)  

Hospitalized and ICU (n 
= 588)  

403 (80 %)  86 (77 %)  303 (81 %)  

Deceased (n = 136)  29 (49 %)  9 (43 %)  16 (48 %) 
New Diagnoses Per Month Overall (n = 44,198)  0.36 (0.09, 

0.90)  
0.27 (0, 0.72)  0.36 (0.09, 

0.90)  
Mild/Moderate (n =
41,629)  

0.27 (0.09, 
0.81)  

0.27 (0, 0.72)  0.36 (0.09, 
0.90)  

Severe (n = 2,569)  0.99 (0.27, 
2.26)  

0.9 (0.27, 
2.08)  

1.08 (0.36, 
2.44)  

Hospitalized, No ICU (n 
= 1,900)  

0.81 (0.27, 
1.90)  

0.63 (0.18, 
1.62)  

0.9 (0.27, 1.90)  

Hospitalized and ICU (n 
= 588)  

2.17 (0.90, 
4.06)  

2.17 (0.90, 
3.81)  

2.17 (0.95, 
4.15)  

Deceased (n = 136)  1.9 (0.95, 
13.31)  

6.65 (0, 19.01)  0.95 (0.95, 
10.69) 

New PCC-Related Diagnoses 
Per Month 

Overall (n = 44,198)  0.09 (0, 0.18)  0.09 (0, 0.18)  0.09 (0, 0.18)  

Mild/Moderate (n =
41,629)  

0.09 (0, 0.18)  0.09 (0, 0.18)  0.09 (0, 0.18)  

Severe (n = 2,569)  0.09 (0, 0.27)  0.09 (0, 0.18)  0.09 (0, 0.27)  
Hospitalized, No ICU (n 

= 1,900)  
0.09 (0, 0.27)  0.09 (0, 0.18)  0.09 (0, 0.27)  

Hospitalized and ICU (n 
= 588)  

0.18 (0.09, 
0.36)  

0.18 (0.09, 
0.36)  

0.18 (0.09, 
0.36)  

Deceased (n = 136)  0 (0, 1.90)  0 (0, 1.90)  0 (0, 0.95)  

a Median (IQR) or Frequency (%). 
b Includes those with unknown vaccination status. 
c In the ~ 11 month-long “post-COVID-19 period”. 
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90 % of severe vs 79 % of mild/moderate with 1 + new diagnosis). 
Positives and negatives (including the flu positive cohort) both most 
commonly received circulatory, mental, and digestive disorders in the 
“post period” (eTables 4–6). 

3.3. Overall Case-Crossover PheWAS analysis 

1,671 PheCodes were evaluated in the primary analysis for the 
overall cohort (Fig. 2A), and a total of 372 PheCodes reached phenome- 
wide significance according to Holm-Bonferroni multiple testing rule. 
We saw the highest proportion of phenome-wide significant hits in 

circulatory (73 hits/total of 171 circulatory codes; 43 %), mental dis-
orders (24/76; 32 %), and respiratory (27/85; 32 %; Table 3). The top 
hits in each of these groups were anxiety disorder (p = 2.8e-109, OR =
1.7 [95 % CI: 1.6–1.8]), cardiac dysrhythmias (p = 4.9e-87, OR = 1.7 
[95 % CI: 1.6–1.8]), and respiratory failure, insufficiency, arrest (p =
5.2e-75, OR = 2.9 [95 % CI: 2.6–3.3]). 

3.4. Stratified analyses 

3.4.1. By COVID-19 severity status 
Top groups for the mild/moderate cohort (Fig. 2B) were circulatory 

Fig. 2. Random 1:4 CCWR 90-day analysis Manhattan plots. Panel of PheWAS Manhattan plots showing overall (panel A) and stratified by COVID-19 severity 
(panels B and C) and vaccination status (panels D and E). PheCodes (grouped by category) are on the x-axis and the -log10(p-value) is on the y-axis. The Bonferroni- 
adjusted p-value threshold line (in red) is shown, and the nominal p-value threshold (0.05) is also shown in blue. For each panel, the number of hits at the Bonferroni, 
Holm-Bonferroni and nominal p-value threshold are provided. Some of the top hits for each plot are annotated. For each hit, an upward pointing triangle represents a 
positive association (OR greater than 1), and a downward facing triangle represents a negative association (OR < 1). Note: The following two PheCodes were removed 
from plots for better visualization due to their extreme p-values: “Other infectious and parasitic diseases” (p = 1.2e-119 in overall cohort) and “Other headache 
syndromes” (p = 1.9e-139 in overall cohort). The former is a PheCode connected to COVID-19 infection and sequelae, [47] so its low p-value is unsurprising. The 
extreme association seen for “Other headache syndromes” is somewhat more surprising because it had a negative association with the “post-COVID-19 period”, 
perhaps relating to patients being less willing to visit the doctor for a “mild” symptom like headache during a pandemic. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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system (58/171; 34 %), mental disorders (22/76; 29 %), and pregnancy 
complications (12/46; 26 %, Table 3). Essential hypertension (p = 2.6e- 
59, OR = 1.5 [95 % CI: 1.4–1.5]), anxiety disorder (p = 2.7e-96, OR =
1.6 [95 % CI: 1.6–1.7]), and infectious and parasitic complications 
affecting pregnancy (p = 2.4e-91, OR = 9.8 [95 % CI: 7.8–12.2]) were 
top hits in these groups. For the severe cohort, we saw a different pattern 
of hits (Fig. 2C), with respiratory conditions being a top category (21/ 
85; 25 %). Other top groups include circulatory system (36/171; 21 %) 
and mental disorders (15/76; 20 %), and the top hit from these groups 
were respiratory failure, insufficiency, arrest (p = 4.2e-65, OR = 6.3 [95 
% CI: 5.1–7.7]), cardiac dysrhythmias (p = 2.4e-25, OR = 2.3 [95 % CI: 
1.9–2.6]), and neurological disorders (p = 4.6e-23, OR = 2.8 [95 % CI: 
2.3–3.4]). 

3.4.2. By vaccination status 
Among those fully vaccinated at index test date (Fig. 2D), we saw 

circulatory system (51/171; 30 %), mental disorders (17/76; 22 %), and 
pregnancy complications (9/46; 20 %, Table 3). Essential hypertension 
(p = 6.3e-37, OR = 1.6 [95 % CI: 1.5–1.7]), major depressive disorder (p 
= 2.3e-60, OR = 0.4 [95 % CI: 0.3–0.4]), and infectious and parasitic 
complications affecting pregnancy (p = 1.3e-44, OR = 12.8 [95 % CI: 
8.9–18.2]) were top hits in these groups. The unvaccinated cohort 
(Fig. 2E) was largely similar to the overall cohort with circulatory (45/ 
171; 26 %), mental disorders (18/76; 24 %), and respiratory (18/85; 21 
%) being the top groups. Top hits in these groups were cardiac dys-
rhythmias (p = 1.5e-39, OR = 1.6 [95 % CI: 1.5–1.7]), anxiety disorders 
(p = 3.2e-51, OR = 1.6 [95 % CI: 1.5–1.7]), and respiratory failure, 
insufficiency, arrest (p = 1.1e-43, OR = 2.9 [95 % CI: 2.5–3.3]). 

3.4.3. Summary of comparison between severity and vaccination subgroups 
A large proportion of circulatory hits was common across all cohorts. 

The most striking observation is the strength of association for respira-
tory conditions in the severe cohort. Comparing the top 20 hits from 
each subgroup revealed septicemia and protein-calorie malnutrition 
were unique to the severe cohort in addition to several severe respira-
tory disorders; shortness of breath was unique to those unvaccinated 

(eFigure 3). Bearing in mind that p-value magnitudes are directly 
influenced by sample sizes (which are dissimilar across cohorts), we note 
that the p-value ranks/patterns of the mild/moderate, fully vaccinated, 
and unvaccinated subgroups appeared similar to the overall cohort, but 
the unvaccinated group was largely driving the strongest associations, 
and the top enriched categories in the unvaccinated were identical to the 
overall cohort as well. 

3.5. Comparison with test negative controls 

Circulatory (121/171; 71 %), mental disorders (52/76; 68 %), and 
respiratory (52/85; 61 %) were the top groups in the PheWAS analysis 
for the test negative cohort (Table 3, eFigure 4). Top hits in these groups 
were cardiac dysrhythmias (p = 3.3e-254, OR = 1.7 [95 % CI: 1.6–1.7]), 
anxiety disorders (p = 9.8e-221, OR = 1.5 [95 % CI: 1.4–1.5]), and 
respiratory failure, insufficiency, arrest (p = 2.5e-129, OR = 2.4 [95 % 
CI: 2.3–2.6]). 

The top symptom groups in negatives were similar to that seen in the 
overall and unvaccinated cohort. Viral pneumonia, disturbances of the 
sensation of smell and taste, and chronic fatigue syndrome were hits in 
the positive but not negative cohort (eFigure 5). 

3.6. Comparison with test negative flu positive controls 

Ischemic heart disease (p = 1.6e-5, OR = 2.5 [95 % CI: 1.7–3.9]), a 
circulatory disease (Table 3), was the sole phenome-wide significant hit 
in the flu positive cohort (eFigure 6). 

Depression and sleep apnea were in the top 20 phenotypes for the 
COVID-19-positive but not the flu positive cohort, while ischemic heart 
disease, calculus of the kidney and gout were seen in the flu positive 
cohort (eFigure 7). 

Details regarding odds ratios and p-values for the test negative 
PheWASs as well as other PheWASs from the primary analysis are in 
eTable 7. 

Table 3 
PheWAS Hits by Symptom Group. The first and second columns give PheCode symptom groups as defined by the PheWAS catalog and the total number of PheCodes 
in each group. The other columns give the number of phenome-wide significant hits and the proportion of hits to the total number of PheCodes in each symptom group 
for each cohort in the primary analysis including the two control cohorts.   

Phenome-Wide Significant Hits a,b 

Symptom Group Total PheCodes 
in Group c 

Overall (n ¼
44,198) 

Mild/Moderate 
(n ¼ 41,629) 

Severe (n 
¼ 2,569) 

Fully Vaccinated 
(n ¼ 16,468) 

Unvaccinated (n ¼
25,736) 

Negative (n ¼
160,399) 

Flu (n ¼
1,328) 

circulatory system 171 73 (43 %) 58 (34 %) 36 (21 %) 51 (30 %) 45 (26 %) 121 (71 %) 1 (1 %) 
congenital 

anomalies 
56 5 (9 %) 3 (5 %) – – – 7 (12 %) – 

dermatologic 95 10 (11 %) 15 (16 %) 2 (2 %) 6 (6 %) 7 (7 %) 35 (37 %) – 
digestive 162 26 (16 %) 20 (12 %) 9 (6 %) 12 (7 %) 21 (13 %) 88 (54 %) – 
endocrine/ 

metabolic 
169 43 (25 %) 28 (17 %) 26 (15 %) 17 (10 %) 31 (18 %) 97 (57 %) – 

genitourinary 173 27 (16 %) 21 (12 %) 3 (2 %) 15 (9 %) 16 (9 %) 71 (41 %) – 
hematopoietic 62 13 (21 %) 7 (11 %) 9 (15 %) 5 (8 %) 10 (16 %) 31 (50 %) – 
infectious diseases 69 16 (23 %) 8 (12 %) 8 (12 %) 10 (14 %) 7 (10 %) 33 (48 %) – 
injuries & 

poisonings 
122 13 (11 %) 6 (5 %) 7 (6 %) 7 (6 %) 6 (5 %) 45 (37 %) – 

mental disorders 76 24 (32 %) 22 (29 %) 15 (20 %) 17 (22 %) 18 (24 %) 52 (68 %) – 
musculoskeletal 132 11 (8 %) 12 (9 %) 4 (3 %) 9 (7 %) 9 (7 %) 53 (40 %) – 
neoplasms 141 39 (28 %) 32 (23 %) 7 (5 %) 22 (16 %) 23 (16 %) 72 (51 %) – 
neurological 85 18 (21 %) 14 (16 %) 5 (6 %) 9 (11 %) 14 (16 %) 46 (54 %) – 
pregnancy 

complications 
46 13 (28 %) 12 (26 %) – 9 (20 %) 9 (20 %) 19 (41 %) – 

respiratory 85 27 (32 %) 13 (15 %) 21 (25 %) 8 (9 %) 18 (21 %) 52 (61 %) – 
sense organs 127 8 (6 %) 9 (7 %) 1 (1 %) 5 (4 %) 4 (3 %) 24 (19 %) – 
symptoms 46 6 (13 %) 5 (11 %) 4 (9 %) 3 (7 %) 3 (7 %) 26 (57 %) –  

a n (% of total PheCodes in group). 
b According to the Holm-Bonferroni method. 
c Not every available PheCode was evaluated in each PheWAS due to case/control thresholds. 
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3.7. Sensitivity analyses 

We also conducted several sensitivity analyses to evaluate the effect 
our design and analytic choices made on the primary analysis. 
Increasing the number of cases and controls used resulted in higher 
power (more phenome-wide significant hits; eFigures 8–9). Using the 
fixed sampling scheme resulted in lower power and a different pattern of 
hits, although respiratory and circulatory conditions still gave a strong 
signal (eFigure 10–11). Those diagnosed in 2021 and beyond closely 
resembled the fully vaccinated cohort, as severe respiratory illnesses 
waned, and common chronic diseases became more pronounced over 
time (eFigure 12). 

3.8. Formal comparison of effect sizes 

3.8.1. By severity and vaccination status 
The severe cohort had larger effect sizes than the mild/moderate 

cohort for the vast majority of PheCodes (eFigure 13A). Groups that 
tended to exhibit very large differences include respiratory (OR:6.2 vs 
2.0 for respiratory failure, insufficiency, arrest; p = 9.6e-19) and cir-
culatory system (OR:7.4 vs 2.3 for acute pulmonary heart disease; p =
2.2e-7). When looking at vaccination status (eFigure 13B), those un-
vaccinated were more likely to be diagnosed with shortness of breath 
(OR:1.7 vs 1.2; p = 2.4e-6) and immunity deficiency (OR:3.7 vs 1.7; p =
4.0e-14) in the “post-COVID-19 period.”. 

eFigures 13C, 13D, and 14 give the results of an effect size com-
parison between COVID-19 positives and negatives, COVID-19 positives 
and the test negative flu positive cohort, and the COVID-19-positive 
severe cohort and test negatives matched to the severe cohort, respec-
tively. Briefly, respiratory and mental disorders generally have larger 
effect sizes in the COVID-19-positive cohort, and endocrine/metabolic 
and circulatory disorders have similar effect sizes between COVID-19 
positives and negatives. eTable 8 gives full details of the effect size 
comparisons. 

4. Discussion 

4.1. Strengths and principal findings 

In this study, we present a case-crossover PheWAS approach to 
characterize changes in diagnosis patterns after a COVID-19 infection. 
Our results show that the “post-COVID-19 period,” defined as + 28 days 
to + 1 year from a positive COVID-19 test or diagnosis, is associated with 
a wide variety of diagnoses across many organ systems. Despite our 
analysis being an agnostic screen, results are remarkably congruent with 
existing PCC literature in that we found respiratory, circulatory, and 
mental health disorders to be highly enriched post-COVID-19-infection 
in COVID-19 positives, but also in negatives. Patients with severe 
COVID-19 were more likely to receive a wide variety of diagnoses, but 
particularly respiratory and circulatory diagnoses, in the “post-COVID- 
19 period,” compared to those with mild/moderate COVID-19. Fully 
vaccinated patients were more likely than those unvaccinated to be 
diagnosed with chronic conditions like hypertension in the “post- 
COVID-19 period.” This MM cohort has been extensively studied in the 
past, [26,40,48–50] but the current study provides the longest follow-up 
time (over 2 years) to date and includes a “post-COVID-19 period.” 

Our approach offers an advantage over traditional case-control 
PheWAS methods in that it controls for time-invariant confounding. 
Our results generally concur with those reported in a similar post- 
COVID-19 PheWAS without a case-crossover design, [37] but mental 
health conditions appear more prominently in our results. Future 
research may use and refine this approach to continue studying post- 
COVID-19 manifestations, but this pre/post design could be applied to 
any event, not just a SARS-CoV-2 infection. This method could prove 
useful in elucidating long-lasting sequelae for future emerging infectious 
diseases, especially in the early stages where such consequences are 

poorly understood, and data warehouses are being used to tease out 
post-infection patterns in an agnostic way. A case-crossover design may 
also be applied to other EHR-enabled association studies such as Lab-
WAS and DrugWAS. 

4.2. Contextualization of results 

Healthcare utilization metrics (Table 2, eTable 2–3) were very 
similar between COVID-19 positives, negatives, and the test negative flu 
positive cohort. However, SARS-CoV-2 positives were receiving different 
categories of diagnoses than both the control cohorts. We observed that 
post-flu manifestations were distinct from post-COVID-19 manifesta-
tions during the same time period, but this comparison was severely 
limited by sample size. We observed much stronger effect sizes for many 
respiratory and mental diagnoses in COVID-19 positives compared to 
negatives. Further, as results for the overall cohort are the composition 
of distinct association patterns of the subgroups therein, we note that 
strong respiratory signals we observed appear to have been driven by 
those with severe COVID-19. Severe patients also had stronger effect 
sizes for respiratory conditions than their matched controls. The com-
mon hits between COVID-19 positives and negatives, including many 
endocrine/metabolic and circulatory hits, may be a result of our design’s 
inability to control for time-varying factors, such as pandemic-driven 
changes in health-related behavior and the effects of aging. These 
findings highlight the need for strict diagnostic criteria for PCC such that 
coincidental diagnoses are not attributed to the COVID-19 infection. 
However, the current lack of understanding about the causal mecha-
nisms of PCC hampers such a clear differentiation. 

We found fully vaccinated patients with breakthrough infections had 
similar association patterns to the mild/moderate cohort, likely due to 
significant overlap between these groups. Many phenotypes with large 
effect sizes for fully vaccinated individuals (hypertension, anxiety dis-
order) were chronic disorders common across all included patients 
(eTables 4–6) and may be more related to willingness to see a physician 
and healthcare access over time rather than COVID-19 disease. It is 
worth noting that the COVID-19 virus itself was also different over time. 
During 2020, the Alpha variant was dominant, while in 2021 and 2022 
(when vaccines were widely available in the US) the Delta and Omicron 
variants were dominant. Temporal variation in symptomatology may be 
because different variants attack different parts of the body. [51] 

It is interesting to note that allergies were strongly associated with 
the “post-COVID-19 period” in all cohorts including COVID-19-negative 
patients. Some new evidence suggests PCC responds to treatment with 
antihistamines. [52] Our finding that mental health disorders were 
highly enriched in the “post-COVID-19 period” in positives and nega-
tives is consistent with the notion that the COVID-19 pandemic intro-
duced new mental health challenges, partly due to social changes and 
partly due to how COVID-19 affects the brain. [53,54] The negative 
cohort showed a pronounced effect for cancer-related diagnoses, 
perhaps pointing to the reality that cancer treatment was delayed for 
many, especially high-risk patients, during the pandemic. [55] Some 
research proposes a link between influenza infection and ischemic heart 
disease, the top hit in the influenza cohort. [56] 

4.3. Limitations 

This study is limited by the implicit assumption in a case-crossover 
design that there exists no within-person time-varying confounders. 
However, many aspects of human behavior changed during the COVID- 
19 pandemic. For example, health-seeking behavior decreased after the 
pandemic started due to fear of the virus, government restrictions, and 
lack of healthcare resources. [57] The presence of this specific type of 
time-varying confounding, especially for those diagnosed early in the 
pandemic, could bias our results against seeing an effect because this 
confounding would result in a relative reduction in diagnoses during the 
“post-COVID-19 period”. This effect may be less pronounced for those 
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diagnosed in the later stages of the pandemic. Our analysis stratified by 
year also gives us confidence that this method is picking up a true signal. 
The fact that our fixed 30-day results are similar to the fixed 90-day 
results might suggest time trends play a relatively small role in this 
analysis. Some alternative solutions could be to add time-varying 
covariates to the models (i.e. prevalence of cases during the period), 
confidence interval calibration, [58] and a case-time-control design 
which can account for time-varying confounding. [59] 

We focused on individuals tested for COVID-19, but there exists a 
well-documented testing bias which could make our cohort non- 
representative, especially considering that testing at the beginning of 
the pandemic was restricted to symptomatic or at-risk individuals. [60] 
Additionally, some cases in our cohort presented for COVID-19 symp-
toms (“for COVID-19”), but others presented for something else and just 
happened to have COVID-19 (“with incidental COVID-19”), which may 
help explain the strong effect sizes we observed for pregnancy compli-
cations and congenital anomalies. We treated unknown vaccination 
status as being unvaccinated, but some patients may have received 
vaccination outside of the MM system from which the vaccination data 
came. [40] By requiring included patients to have encounters both pre- 
and post-COVID-19, we may have selected MM primary care patients or 
patients with more complex health history than the general population 
of those tested for COVID-19, hampering generalizability. We hoped to 
alleviate some of this concern by matching positives and negatives on 
Charlson Comorbidity Index. Test negative controls are a useful, but 
imperfect method of control given the potential baseline differences 
between COVID-19 positives and negatives. The flu positive cohort 
represents a more suitable control group, but we were unfortunately 
underpowered to detect associations using this group. EHRs are also 
prone to selection and classification bias. [61] 

Our analysis involved choosing the values for several design pa-
rameters including the CCWR, the minimum case/control count, and the 
window size. It is difficult to know whether the parameters we chose 
were “correct,” but sensitivity analyses show our matching scheme is 
robust to the CCWR and window size. We chose to censor diagnosis 
records at − 2 and + 1 years from the index test date, but it is possible 
that even if an individual has a healthcare visit during the follow-up, the 
diagnosis codes received during the visit do not comprehensively reflect 
their health state. We chose not to censor the small number of patients 
with multiple COVID-19 infections, which potentially added noise to our 
results. Further, diagnosis codes may be poor reflections of the course of 
disease. Finally, some spurious associations potentially appeared in our 
results due to biases we discussed, despite applying the Holm-Bonferroni 
correction. 

For the above reasons, this analysis should be considered explor-
atory, and no causal conclusions can be deduced. We propose that future 
investigations can further explore the validity and applicability of this 
approach and replicate our findings under a similar design in other 
analytical cohorts. 

5. Conclusions 

We present a case-crossover PheWAS framework as a plausible 
agnostic screen that can be used to identify phenotypes associated with 
the “post-COVID-19 period” while controlling for time-invariant con-
founders. We discussed several potential sources of bias in our analyses. 
Consequently, the results should be considered exploratory. Future in-
vestigations may to refine and improve this approach to address such 
biases and replicate our findings. Epidemiologic studies that translate 
data into actionable clinical knowledge are crucial to advancing the field 
of biomedical informatics. Future research should investigate the 
mechanisms by which COVID-19 sequelae can occur and the myriad 
factors that might put a patient at risk of new post-COVID-19 symptoms. 
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