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Abstract

Background—Accurate needle placement into soft tissue is essential to percutaneous prostate 

cancer diagnosis and treatment procedures.

Methods—This paper discusses the steering of a 20 gauge (G) FBG-integrated needle with 

three sets of Fiber Bragg Grating (FBG) sensors. A fourth-order polynomial shape reconstruction 

method is introduced and compared with previous approaches. To control the needle, a bicycle 

model based navigation method is developed to provide visual guidance lines for clinicians. A 

real-time model updating method is proposed for needle steering inside inhomogeneous tissue. A 

series of experiments were performed to evaluate the proposed needle shape reconstruction, visual 

guidance and real-time model updating methods.

Results—Targeting experiments were performed in soft plastic phantoms and in vitro tissues 

with insertion depths ranging between 90 and 120 mm. Average targeting errors calculated based 

upon the acquired camera images were 0.40 ± 0.35 mm in homogeneous plastic phantoms, 0.61 ± 

0.45 mm in multilayer plastic phantoms and 0.69 ± 0.25 mm in ex vivo tissue.

Conclusions—Results endorse the feasibility and accuracy of the needle shape reconstruction 

and visual guidance methods developed in this work. The approach implemented for the 

multilayer phantom study could facilitate accurate needle placement efforts in real inhomogeneous 

tissues.
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Introduction

Prostate cancer is the second most common cancer in men and a leading cause of cancer 

death in the United States, according to an American Cancer Society report in 2014 (1). 

The mainstream clinical procedures for diagnosing and treating prostate cancer include 

percutaneous prostate interventions, among which the clinician inserts a surgical needle to 

a target region inside the prostate either to take a tissue sample for diagnosis (biopsy), and 
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to place radioactive seeds for treatment (brachytherapy). Recent studies have focused on 

the application of steering a flexible bevel-tip needle to avoid obstacles such as vital blood 

vessels and other anatomic structures (2,3). Webster et al. (4) proposed a nonholonomic 

model to describe the needle behavior during insertion. Abayazid et al. (5) used an 

ultrasound-guided insertion device to perform 3D needle steering in biological tissue based 

on a previously developed trajectory planning method (6).

For the sake of targeting accuracy and patient safety, it is important to keep track of the 

needle position during percutaneous interventions. This can be done via several different 

imaging modalities. Ultrasound (US) is a widely used, low-cost, gold standard navigation 

method for biopsy (7) and has been used in numerous needle placement studies (5,8). 

However, US imaging provides poor soft tissue contrast in prostate; and therefore the tumor 

is hardly visible. In addition, the acquired images can be significantly distorted by the 

US probe (3). Computed tomography (CT) provides high-quality images (9), but using 

CT throughout the percutaneous interventions exposes both the patient and the clinician to 

a large dose of X-ray radiation. In contrast to US and CT, magnetic resonance imaging 

(MRI) is an ideal imaging modality for prostate interventions (10–12) because it can 

provide the best soft tissue contrast among the three imaging modalities and tumors can 

be clearly spotted in MR images (13). However, due to the strong magnetic and radio 

frequency field of an MR scanner, the tools used inside or near the scanner have to be 

made of only non-ferromagnetic materials, which is not possible with most of the standard 

clinical instruments. This has led to significant research efforts to develop MRI-compatible 

robotic devices in the aspect of actuation methods, including pneumatic actuators (14,15), 

piezomotors (16,17) and ultrasonic motors (18–20).

In terms of imaging frequency, the time delay between MRI frames limits its capability 

of tracking the needle trajectories in real time. Therefore, there is a critical unmet need 

for tracking the needle fast and accurately. Studies have shown the potential of enhancing 

flexible needles with embedded Fiber Bragg Grating (FBG) sensors to estimate needle 

shapes. This approach aims to alleviate the need for real-time high-resolution images to 

track the needle during insertion. Optical fibers with a small diameter are etched with 

gratings that have specific reflection wavelengths, and are attached along the needle shaft. 

The data from the FBG sensors are acquired by an interrogator with a high frequency up 

to 20 kHz, which allows real-time shape reconstruction. The needle is fabricated using only 

non-ferromagnetic materials, and thus it is MRI-compatible. Park et al. (21) designed an 18 

G needle with two sets of FBG sensors. Free-space single-bend experiments demonstrated 

the feasibility to utilize FBG sensors for shape sensing. Roesthuis et al. (22) attached fibers 

with four sets of FBG sensors on a 1 mm diameter nitinol wire. They proposed a piecewise 

interpolation method for needle shape reconstruction, and it was later combined with an 

automatic 3D steering algorithm in (23). The in-plane double-bend targeting error was 2.0 

mm. In (24) they used a similar method to steer a 2 mm diameter active-tip needle and 

achieved a targeting error below 2.02 mm.

In previous studies, we developed a series of MRI-compatible prostate needle placement 

systems, initially actuated by pneumatic cylinders (25) and then improved by utilizing non-

magnetic ultrasonic motors (26,27). These 4-degrees-of-freedom (DOF) robotic systems can 
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assist clinicians to place an off-the-shelf surgical needle precisely during manual biopsy or 

brachytherapy procedures. Our latest prototype (27) has been approved by the Institutional 

Review Board (IRB) and is currently under clinical testing. The use of this system can 

further be extended to teleoperated needle steering applications by adding an ultrasonic 

motor-driven needle driver module (28) and by using a FBG-integrated smart needle, 

which was developed in our earlier work using FBG sensors with a preliminary shape 

reconstruction method (29).

This study builds on our earlier work with the following main contributions: (1) a 

comparison among various needle shape reconstruction approaches and a novel fourth-order 

polynomial-based shape reconstruction method; (2) a computer-assisted navigation system 

based on FBG shape sensing and trajectory prediction model to assist targeting; and (3) a 

real-time model updating approach based on tissue property estimation for precise needle 

steering inside inhomogeneous tissues. The experimental results verified the feasibility and 

accuracy of the proposed shape sensing based needle steering approach. The ultimate goal of 

this study is to use the real-time reconstructed needle shape from the FBG sensors to assist 

clinicians to perform accurate and safe needle insertions via an in-bore MRI-compatible 

robot.

Materials and methods

Design of the FBG-integrated needle

The aim of this part is to develop a bevel tip needle that is able to sense its own shape while 

it is being inserted and steered inside soft tissue. To this end, we adapted a standard 20G 

(Φ = 0.9 mm) MRI-compatible bevel-tip brachytherapy needle (E-Z-EM Incorporation, NY, 

US, tip angle 30°). We embedded three optical fibers (Φ = 80 μm) around the inner stylet (Φ 
= 0.6 mm) of the needle with an angle of 120° between each other. Each fiber has three FBG 

sensors located at 11, 26 and 70 mm from the needle tip. Figure 1 illustrates the assembly of 

the FBG-integrated needle. For transperineal prostate biopsy and brachytherapy, considering 

the typical location of prostate (40–70 mm deep from the perineum (30)), we determined 

our needle length and sensor loci based on a maximum insertion depth of 110 mm. During 

insertion, the small diameter of the needle is able to provide a larger bending range and thus 

better steering ability. This is, to the best of our knowledge, the thinnest FBG-integrated 

bevel-tip needle used in similar studies.

Needle shape reconstruction methods

According to (19), each FBG sensor reflects a specific wavelength of light (λB) which can 

be calculated by

λ = 2neΛ (1)

where ne is the effective refractive index of the fiber core and Λ is the period of the grating. 

λ can be measured directly using an optical interrogator. In (30), local strain (ε) on the 

sensor and change of temperature (ΔT) will linearly shift the wavelength by
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Δλ = kεε + kΔTΔT (2)

where kε and kΔT are constant coefficients associated with strain and temperature, 

respectively. If the temperature were constant during needle operation, two optical sensors 

would have been sufficient for 3D needle shape reconstruction. Using a third fiber enables 

temperature compensation and identifying the wavelength shift related to the strain alone. 

The approach is to compute the average wavelength shift of the three sensors at the same 

longitudinal location, and subtract this common mode from each of the Δλ values (29). Each 

of the remaining wavelength shifts after this step (Δλε) are linearly proportional to the local 

strain on each sensor (ε) at that location. Considering the two planes that are perpendicular 

to the needle axis and define the shape of the needle, assuming negligible twisting (xy and 

xz planes), there exist two proportionality constants for each sensor (cxy and cxz). These 

coefficients can be combined into a coefficient matrix (Cmat) to relate the total strain (ΔE) 

to optical wavelength shift of all sensors (ΔΛ). Therefore, for each sensor location (xi) we 

will have

ΔΛ
Δλε, 1
Δλε, 2
Δλε, 3 i

ΔΛ

= Cmat
cxy, 1 cxz, 1
cxy, 2 cxz, 2
cxy, 3 cxz, 3 i

Cmat

ΔE
εxy
εxz i
ΔE

(3)

where i = {1, 2, 3} denotes the 3 sensor locations along the needle. The coefficient matrix is 

obtained through experimental calibrations by applying a concentrated force at the needle tip 

on both xy and xz planes, using a similar method to that in (29).

Therefore, with the calibration matrix, the strain on the needle can be calculated by

ΔE = Cmat+ΔΛ (4)

where Cmat+ is the Moore–Penrose pseudo-inverse of Cmat.

For needle tip deflection less than 10% of the full length, the needle can be modeled as a 

Euler–Bernoulli beam. For a rod beam we have

k(x) = ε(x)
r (5)

where k(x) is the beam curvature at location x, and r is the radius of the transverse section. 

For the proposed needle design, r represents the distance from the fiber axis to the needle’s 

central axis. For the xy plane, with small deflection we can assume that y″(x) = k(x), where 

y(x) is the shape of the needle. Therefore, we have:

y″(x) = εxy
r = ΔExy

r = Cmat+
xyΔΛ

r
(6)

Equations in the xz plane are similar.
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According to beam theory, the curvature at the needle tip can be assumed to be zero. Using 

the FBG wavelength shifts, the local curvature information at the three sensor loci can be 

obtained, and thus the needle shape can be reconstructed by various approaches. This section 

depicts the theory and computational steps of each method.

Method 1—In (29), Seifabadi et al. describe the curvature equation 6 as

y″(x) = Ax3 + Bx2 + Cx + D (7)

where the coefficients A, B, C and D are obtained by fitting the curvature values at four 

locations (3 at sensing regions and 1 at the needle tip) to a third-order polynomial. Thus the 

needle shape y(x) can be calculated by integrating equation 7 twice. Taking the boundary 

conditions y′(0) = 0 and y(0) = 0 obtains

y(x) = A
20x5 + B

12x4 + C
6 x3 + D

2 x2 (8)

In this method, the needle shape is described by a fifthorder polynomial. Generally, the 

bigger the number of sensing regions on the needle, the higher the order of the profile 

function. This method relies strictly on the accurate curvature values, because a small 

discrepancy at any sensor location may lead to a significant change in the equation 7, and 

thus the needle shape.

Method 2—Roesthuis et al. (22) assume that the needle has a continuous curvature. The 

curvature along the longitudinal axis can be obtained by linking the acquired curvature 

values at each sensor location. The needle shape is modeled as a connection of pieces of 

smaller discrete curves. The curvature plot (same shape as strain plot) for this method is 

identical to the situation where concentrated forces are applied only at the sensor loci. This 

approach has high robustness, as any inaccuracy in readings from the sensors close to the 

needle tip does not influence the profile segment that has already been reconstructed from 

the sensor readings near the needle base. However, this method is less suitable when stresses 

are not concentrated at the sensor loci.

Method 3—From the analysis in (31), when the needle is inserted into soft tissue, the 

lateral force along the needle axis is more of a distributed load rather than a concentrated 

point load. Therefore, in this case, we can assume that the needle will take a shape described 

by a fourth-order polynomial function. This reconstruction approach is a trade-off between 

method 1 and 2, and thus it is a balance between accuracy and sensitivity. The needle shape 

in this method is given by the following equation:

y(x) = A
12x4 + B

6 x3 + C
2 x2 + D (9)

As shown in Figure 2, the first steps in each method are the same. Signals from the 

FBG sensors are converted into wavelength shifts, and strain values at the sensor loci are 

calculated by applying the calibration matrix Cmat. The curvatures at these loci are then 
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obtained using equation 5. The three reconstruction methods differ mainly in terms of the 

interpolation of sampled curvatures. The difference of interpolation approaches leads to 

discrepancies on the shapes of the curvatures, and finally results in different needle shapes 

after integration of the curvatures.

Experiment 1: comparison of needle shape reconstruction methods.: Phantom study was 

performed to compare and evaluate the aforementioned three reconstruction methods in 2D. 

The experimental setup is illustrated in Figure 3. A Cartesian stage is used to drive the 

needle. The soft-tissue phantom, made from liquid plastic (M-F Manufacturing Company, 

TX, USA), is contained in a transparent box with six parallel entry holes 10 mm apart on 

the side. A calibrated CCD camera (FL208S2C, Point Grey, BC, Canada, resolution 1024 × 

768) is used to capture the needle profile as the ground truth. It is fixed above the phantom 

box at a proper height to cover the entire phantom region, and the resolution in the obtained 

image is 0.24 mm per pixel. A light panel is placed underneath the phantom box to enhance 

contrast of the needle in the image. The needle shape is reconstructed in real time with 

respect to the insertion depth.

Using this setup, single bend experiments (Experiment 1.1) were carried out first to examine 

the three reconstruction methods. The needle was inserted in steps of 5 mm, with no 

axial rotations, to reach a depth of 90 mm. The actual (from the CCD camera image) and 

computed (from shape reconstruction based on FBG measurements) needle tip positions 

were recorded at each step. The absolute error is defined as the distance in the y direction 

(perpendicular to the insertion direction, Figure 3) between the two needle tip positions, 

since in our cases the change of the needle along the x axis (along needle insertion direction, 

Figure 4) is neglectable and could be adjusted by insertion. Second, double-bend insertion 

trials (Experiment 1.2) were conducted. The needle was rotated at depths varying from 35 to 

70 mm in order to cover most of the possible rotation points for a total insertion depth of 90 

mm. Ten consecutive trials are carried out for both single bend and double bend insertions.

Model-based computer-assisted navigation system

The ultimate goal of this study is to use the reconstructed needle shape from the FBG 

sensors to assist clinicians to perform accurate needle insertion via visual feedback. Due to 

the asymmetric force on the needle’s bevel tip, the needle naturally bends and deflects out 

of the initial insertion direction during the process. Therefore, it is important to determine 

appropriate steering points to rotate the needle, and thus to adjust the bending direction 

and guide the needle towards the clinical target accurately. If the needle deflection can 

be predicted accurately, the visual feedback can be enhanced by overlaying trajectory 

predictions and suggesting appropriate steering loci to the clinician. Hence, hopefully, it 

can offer significantly better targeting accuracy and much easier operation than conventional 

bare hand operation exerted by clinicians.

Retracting and reinserting the needle or rotating it frequently to adjust the bending direction 

(for instance, continuously spinning the needle or duty cycling to vary the trajectory 

curvature (32)) will introduce additional trauma to the tissue (33). For this reason, it is 

important to identify the insertion path that requires the minimum number of rotations. We 
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propose a model-based real-time navigation algorithm in order to help clinicians find such 

paths and to visually guide them to stay on the path throughout operations.

In (4), the bevel tip needle is modeled as a nonholonomic bicycle which generates an arc 

with constant curvature while inserting inside soft phantoms. Based on the bicycle model, 

the path changes its direction when the needle rotates 180°, and the trajectory is comparable 

with the situation that a moving bicycle turns to another direction. If the turning angle is 

known and the tissue is homogenous, the path of the needle tip is predictable. The guidance 

is designed by introducing two guidance lines, which are generated based on the bicycle 

model, emitting from the reconstructed needle tip. As shown in Figure 4, one of the lines 

shows the needle path in the current direction, while the other one is the predicted needle 

path when the needle is rotated at the current point. The two guidance lines enclose an area 

called the reachable region. The needle tip can arrive at any point inside this region with 

proper steering, but the region outside the area is not achievable. The principle of needle 

guidance is as follows. At the beginning, the needle direction is set to incorporate the target 

in the reachable region. While the needle is inserting, the reachable region decreases until 

the guidance line passes through the target (i.e. intersects with a guidance line, Figure 4). At 

this moment, the needle should be rotated axially to change the bending direction towards 

the target.

Two parameters are required for generating the guidance lines: the initial slope (θi) and the 

radius of the needle tip trajectory (Rbicycle). The initial slope is the angle between the tangent 

line of the needle tip trajectory through the entry point and the normal line perpendicular 

to the surface. The radius of the needle trajectory is calculated by fitting the single bend 

needle shape into a circle via least squares. These parameters can be acquired experimentally 

from single bend insertions, as described in Experiment 1.1. Based on the bicycle model, the 

angle shift (Figure 4), which represents the change of direction when the needle is rotated, is 

obtained by doubling the initial slope.

Experiment 2: insertion trials under computer-assisted navigation.—Needle 

insertion experiments are performed to evaluate the proposed navigation method using 

homogenous phantoms. This experiment is a proof-of-concept test for the proposed 

computer-assisted needle steering approaches. Nine different targets are set inside an 

isotropic soft tissue phantom, and the experimental setup is shown in Figure 5. During the 

experiment, the operator inserts the needle by taking discrete steps of 5 mm at the beginning 

and 1 mm when approaching the target region.

During the trials, only insertions and one rotation of 180° were allowed, with no retraction/

reinsertion. The motions were exerted automatically by clicking corresponding keys on the 

keyboard. The rotation point was instructed through visual guidance on the graphical user 

interface (GUI), on which the reconstructed needle shape, target and predicted insertion 

trajectory were shown and updated in real time. The operator inserts the needle gradually, 

and the guidance line will move forward with the needle tip position. At one point, the 

guidance line will intersect with the target point, and this is the time the operator is required 

to rotate the needle. To avoid the case that the target goes out of the needle’s achievable 

region because of needle overshoot caused by the operator’s subjectivity, we added a safe 
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zone of 3% (Rsafe = 103 % × Rguidance) to the boundary lines as auxiliary guidance for the 

operator. In this way, the possible bias is confined to a small region between the guidance 

line and the safety line, which guarantees the conformance of the operator’s performance. 

The initial slope (θi) and radius of the guidance line (Rbicycle) are obtained from the previous 

phantom insertion study as θi = 4.3° and Rbicycle = 400 mm.

Four operators were asked to perform the experiment. The operators were kept in the control 

loop for in clinical circumstances it is necessary to have a clinician in loop for target 

selection and safety reasons. As in Experiment 1, the CCD camera is used to capture the 

needle profile as the ground truth and to calculate targeting errors.

Real-time model updating with tissue property estimation in inhomogeneous tissue

As mentioned previously, the guidance algorithm includes two important parameters: the 

initial slope and the radius of guidance lines. In homogeneous tissue, these parameters can 

be obtained from a single-bend insertion experiment and applied in further studies. However, 

in practice, soft tissue in a human body is not likely to be homogeneous, and thus it is 

essential to find a method that is able to estimate tissue–needle properties and acquire the 

parameters for different tissue layers. Furthermore, this makes it possible to predict and 

update the needle trajectory on the fly during insertion without requiring any pre-operative 

characterization of the tissue.

The needle in our design has an FBG sensor very close (11 mm) to the needle tip. We 

use the FBG information to compute a curvature value at this sensor location. According 

to the bicycle model, the curvature should keep a constant value throughout insertion in 

an isotropic, homogeneous tissue. However, for tissues with varying stiffness, the radius 

of curvature will change. By continuously tracking the tip-most FBG sensor readings, our 

needle can detect the change in tissue properties as soon as the needle enters a stiffer/softer 

medium.

The goal of needle insertions is to achieve accurate targeting results, and in our case, it 

relies on precisely estimating the guidance lines. For single-bend insertions, the guidance 

lines represent the radius of the needle tip trajectory, which in fact depends upon the tissue 

stiffness. Based on this dependence, we are able to find the mapping between the tip 

sensor readings and the guidance line radii. Therefore, as shown in Figure 6, for a tissue 

with unknown stiffness, it is possible to estimate the needle bending behavior by simply 

analyzing the reading of the tip FBG sensor. If the tissue is not homogeneous during needle 

insertion, the needle could sense the change and thereby update the estimation.

Experiment 3.1: proof of assumption.—Several experiments were carried out to 

examine the proposed approach. In order to prove the assumption that the sensor is able 

to capture the change of tissue hardness, we performed insertions into a 2-layer phantom. 

The first half of the phantom (to 50 mm insertion depth) was made of soft plastic while 

the second half of the phantom was made of much harder plastic. The needle was inserted 

in discrete steps of 5 mm and the curvature value obtained from the tip FBG sensor was 

recorded at the end of each step. We expect the curvature to stay at one value before the 

needle reaches the second layer and change to another value afterwards.
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Experiment 3.2: parameters mapping.—The next step in this study is to find 

the mapping between the curvatures measured at the tip sensor location versus the 

corresponding radius and initial slopes of the guidance lines, which are the two 

parameters that characterize the needle-to-tissue interaction. These parameters are obtained 

by performing single-bend insertions into several homogenous phantoms with different 

stiffness.

Five phantoms were made by mixing different ratios of liquid plastic materials as listed in 

Table 1. The abbreviated notation for each phantom type in Table 1 is used in the rest of 

this paper. SS represents the softest phantom, while HH is the stiffest with approximately the 

same hardness as a 30 OO Shore Hardness rubber sample. Five single-bend insertions were 

performed in each phantom to obtain the curvatures and radii of the guidance lines.

Experiment 3.3: targeting experiments.—Targeting experiments in this section 

incorporates four two-layer phantoms with different hardness combinations (SS–H, S–HH, 

SS–R and R–HH) as shown in Figure 7(a). In each phantom, six targets are randomly chosen 

at insertion depths of 80, 90 and 100 mm. All trials were performed with a single user who 

has no prior clinical experience. The experimental protocol is identical to that presented in 

Experiment 2.

Experiment 3.4: in vitro insertions.—We extended our multilayer needle insertion 

study by testing the system on a nonhomogeneous bio-tissue phantom. As shown in Figure 

7(b), the phantom box was partially filled with beef tissue while the rest was filled with 

transparent porcine gelatin so that the camera can capture the needle tip position at the 

end of each insertion. Six target points were selected at 100 mm insertion depth, and five 

insertions were performed per target.

Results

Comparison of needle shape reconstruction methods

Before the experiments, the calibration matrix (Cmat) in equation 3 for our newly built 

FBG-integrated needle is obtained as:

Cmat1 =
−1224.33 511.99

205.60 −1143.93
1018.73 631.94

Cmat2 =
−1027.06 298.59

142.88 −1126.88
884.18 828.29

Cmat3

=
−1021.45 424.30

177.58 −1051.37
843.87 627.07

(13)

Single bend insertion trials

In the single bend insertion experiments, the mean absolute errors in estimated tip position 

show no significant difference among the three reconstruction methods, as shown in Figure 

8(a). Thus, the three reconstruction methods perform similarly for the single-bend scenario, 

when using our FBG-integrated needle.
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Double bend insertion trials

Figure 8(b) shows the error analysis of the double-bend insertion trials. Obviously, in 

this scenario the three methods demonstrate different results. The third method, i.e. the 

fourth-order polynomial shape reconstruction, has the least error. It is considered that the 

method has an accurate and stable output. Therefore, we choose this method for needle 

shape reconstruction in the following experiments.

Needle insertion experiments with homogenous phantoms

This section shows the result of needle insertion experiments utilizing the model-based 

human-in-loop navigation approach. The result of this experiment using the Cartesian stage 

is shown in Figure 9. The maximum targeting error for all 36 trials is 1.17 mm based on 

the acquired camera images and 1.50 mm according to the reconstructed needle shape. The 

mean targeting error and the standard deviation (SD) found by camera image and shape 

reconstruction are errimg = 0.40 ± 0.35 mm and errrec = 0.67 ± 0.49 mm, respectively.

Needle insertion experiments using inhomogeneous phantoms

Proof of assumption—The needle is inserted with no rotation into a two-layer phantom. 

The observed sensor behavior is illustrated in Figure 10. Accordingly, the curvature 

computed from the FBG sensor remains steady until reaching the boundary between the 

two layers of the phantom. The curvature increases rapidly upon transition into the stiffer 

zone and then stabilizes at a constant value. This proves that the tip-most FBG sensor of the 

needle can effectively detect changes of stiffness during insertion into a multi-layer medium.

Parameters mapping—This experiment is to find the mapping between the curvatures 

measured at the tip sensor location versus the corresponding radius and initial slopes of the 

guidance lines. Five single-bend insertions in each phantom were performed, and the results 

are summarized in Table 2.

Using the values in Table 2, the mapping between the curvature and radius values can be 

obtained. As shown in Figure 11, the curvatures in different phantoms are significantly 

different. The hardness of the tissue in a realistic needle insertion scenario may not exactly 

match one of the tested phantoms. In this case, we do linear interpolation between the mean 

values of the closest phantoms to find the radius of guidance lines which is updated in real 

time during insertion.

Targeting experiments—The result of multilayer phantom trials is given in Figure 12. 

The mean and SD of absolute targeting error for all 24 trials are errimg = 0.61 ± 0.45 mm 
and errrec = 0.80 ± 0.52 mm. The maximum error is 1.70 mm based on the camera image 

and 1.72 mm based on the reconstructed needle shape, which are approximately 0.2 mm 

larger than that in isotropic phantoms, but are still within an acceptable range considering 

the size of a clinically significant tumor in related biopsy and brachytherapy procedures 

(a spherical volume with a radius of 5 mm (34, 35). The experimental results demonstrate 

that the proposed real-time model updating approach could maintain the targeting accuracy 

despite the mechanical property changes in multilayer phantoms.
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In vitro insertions—For the set of trials in Experiment 3.4, the absolute targeting error 

from the camera image and from the reconstructed needle shape were 0.69 ± 0.25 mm and 

0.57 ± 0.26 mm, respectively, with maxima at 1.16 mm and 0.94 mm, which are similar to 

the results acquired in the multi-layer soft plastic phantom trials.

Discussion and conclusion

From the targeting experiment results, both mean errors and maximum errors in multilayer 

tissues are slightly larger than that in homogeneous tissues. Beef is a relatively soft tissue 

where blood and fats act as lubricant during needle insertions. From the experiment data, the 

stiffness of the piece of beef we use is between SS and R in Table 1. This leads to a smaller 

tip deflection during insertions, and might be a reason for the smaller maximum errors in 

this experiment. Accuracy requirement for needle placement is determined by the clinically 

significant size of prostate cancer foci, which however, does not have a generally agreed 

value currently. In (35) and (36), 0.5 mL tumor volume (about 5 mm radius if spherical) 

was proposed as the limit for significant prostate cancer foci. This means needle placement 

errors should smaller than ±2.5 mm. In (25), 3 mm was used as the accuracy limit. Using 

the proposed setup and the guidance approach in this paper, we consider our result meets the 

accuracy requirement.

Image-guided interventional surgery is a widely-adopted clinical practice in diagnosis and 

treatment of prostate cancer. To reduce patient trauma caused by radiation, ineffective 

needle placements or long-term medical procedure, robot assisted surgery under MRI 

is a promising solution. Conventional approaches have limitations due to the strong 

electromagnetic environment, the artefact problem and the low updating frequency, 

therefore, approaches with less dependence on intraoperative imaging are highly demanded. 

Our goal is to use the real-time reconstructed shape of our FBG-integrated needle to assist 

clinicians to perform accurate and safe needle insertion using the in-bore MRI-compatible 

teleoperated robot. The innovations of this paper mainly incorporate: (1) a fourth-order 

polynomial shape reconstruction method for an FBG-integrated 20 G bevel tip needle, and 

comparison among the shape reconstruction approaches in prior work; (2) a model-based 

computer-assisted navigation method for needle steering; and (3) an adaptive parameter 

updating method for targeting in inhomogeneous tissue. We performed multiple concept-

verification experiments and targeting experiments utilizing the proposed system and 

methods, including experiments in soft plastic phantoms (average targeting error is 0.40 

± 0.35 mm), in multilayer phantoms (average error is 0.61 ± 0.45 mm) and in bio-tissue 

(average error is 0.69 ± 0.25 mm).

This is an ongoing work, and future tasks involve improvement of the FBG-integrated needle 

and extending of the navigation approach in 3D. Although the tip sensor is only 11 mm from 

the needle tip, there is visible delay before the sensor detects the tissue property change. 

As shown in Figure 11, there is an 18 mm ‘rising zone’ before the sensor readings become 

stable and parameters are completely confirmed. As a solution, we are trying to enhance 

the needle with a center fiber, which is specifically used to capture force applied in the 

longitudinal direction of the needle. The feasibility of adding such a fiber has been reported 

in previous FBG-integrated eye-surgery tools developed by our group (37). We believe such 
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a design will make it possible to detect tissue change with much less time delay, thus further 

improving targeting accuracy.

The needle used in this study has three sensing regions. Two of them (the first two closer 

to the tip) are very close to each other, which limits the order of interpolation during needle 

shape reconstruction. Thus, if the needle is rotated multiple times resulting in too many 

bends in the insertion path, it cannot be accurately reconstructed. Adding more sensors along 

the needle will effectively improve the shape reconstruction accuracy, and the ability to 

perform multiple rotations. In addition, the targets in all experiments presented in this paper 

were fixed, which is not necessarily the case in a clinical scenario. If the target moves during 

insertion, using the GUI, the operator may decide to rotate the needle earlier or later in order 

to keep the target still within the reachable region based on the visual guidance provided. 

With more FBG sensors along the needle, we will be able to plan higher order trajectories to 

reach moving targets as well.

The methods and experiments in this work were focused on needle steering in 2D. For better 

utility in clinical practice we will extend this approach to 3D while using an MRI scanner 

to find the final needle tip position to verify targeting accuracy. In this approach, we could 

capture MR images during critical insertion stages as an auxiliary feedback to compare with 

the needle shape reconstructed from the FBG sensors, correct any potential error in the 

shape estimation, and update the planned trajectory towards the target.

In addition, a complete setup taking consideration of system integration with the MRI table 

and device sanitation procedures that meet medical standards will help our future in vitro 
and animal experiments.
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Figure 1. 
Configuration of the FBG-integrated needle. Optical fibers are attached on the needle’s inner 

stylet, which has been fabricated with three grooves at 120° to each other. The FBG sensors 

are located at positions 11, 26 and 70 mm from the needle tip
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Figure 2. 
Needle shape reconstruction procedure. First, curvatures at sensor loci are calculated from 

FBG wavelength readings. Then, different interpolation methods are applied and the needle 

shape is achieved by integrating the curvature equation twice
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Figure 3. 
The experimental setup and information flow. A series of image processing steps are 

undergone in order to automatically fit the sampling points of the needle into a polynomial 

line as the ground truth of the needle shape. In the top right figure, the extracted needle 

shape (cyan) is overlaid onto the original needle (black) in the image. The error is defined as 

the difference between ground and the shape reconstructed from FBG measurements
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Figure 4. 
Defined by the two guidance lines starting from the needle tip, the reachable region shows 

the maximum range of needle motion. The initial slope and the slope shift are caused by the 

needle’s bevel tip cut angle
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Figure 5. 
The experiment setup for insertion trials under computer-assisted navigation. The operator 

controls the Cartesian stage to steer the needle via an MRI-compatible keyboard under 

visual guidance. (a) Guidance lines are generated from FBG-based reconstructed needle 

shape. (b) A scene during the experiment. (c) A remote monitor panel functions as a control 

console to set up parameters and record data. In this phantom insertion study, needle shapes 

extracted from camera images are used as ground truths
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Figure 6. 
Work principle of the needle-tissue property estimation. First, the mapping between the 

sensor location curvature and the radius of guidance lines is obtained experimentally. Then 

during needle insertion into tissue with unknown stiffness, the guidance lines are updated by 

using the curvature information at the sensor location
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Figure 7. 
Multilayer phantoms. (a) A two-layer plastic phantom is made of a combination of plastics 

with different stiffness. (b) The bio-tissue is made with beef and transparent porcine gelatin
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Figure 8. 
Error analysis of the single-bend and double-bend insertion experiments. Needle tip 

positions captured by the camera image are used as ground truth. (a) The three 

reconstruction methods show no obvious difference in absolute errors. At the insertion depth 

around 70 mm, the errors appear to be larger than average, because this area is the deepest 

position with only two sensors activated inside the phantom. At 75 mm, errors are decreased 

because the third sensor is activated, introducing one more curvature information. The mean 

errors are all below 1 mm throughout the whole depth. (b) The fourth-order reconstruction 

method (method 3) provides the best fit among the three methods. Average errors are mostly 

below 0.5 mm and maximum error is below 1 mm, compared with maximum average error 

of 1 mm and maximum error of 1.8 mm for the other two methods.
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Figure 9. 
Results of insertion trials under computer-assisted navigation. (a) This figure shows the nine 

targets located at 80–100 mm depths for each operator, and the distribution of the final 

needle tip position captured by the camera. Different colors illustrate different targets. (b) 

The absolute tip positioning errors in camera images (ground truth) and reconstructions. The 

maximum errors are 1.17 mm and 1.50 mm, respectively. The overall errors are 0.40 ± 0.35 

mm and 0.67 ± 0.49 mm. The results prove the effectiveness of the guidance algorithm
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Figure 10. 
Tip sensor behavior during insertion into a 2-layer phantom
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Figure 11. 
The mapping between the curvatures of tip sensor and corresponding guidance line radius 

during single-bend insertions into five phantoms with different stiffness. From soft to hard 

phantom, the curvature increases distinguishably
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Figure 12. 
Results of multilayer needle insertion experiments. (a) Six targets are located at 80–100 

mm depths and the distribution of the final needle tip position captured by the camera. 

Different colors illustrate different targets. (b) The absolute tip positioning errors in camera 

images (ground truth) and reconstructions. The maximum errors are 1.70 mm and 1.72 

mm, respectively. The overall average errors are 0.61 ± 0.45 mm and 0.80 ± 0.52 mm, 

respectively
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Table 1.

Phantom characteristics

Phantom Notation Ingredient

1 Soft SS Super soft plastic, 3:1 Softener

2 ↓ S Super soft plastic

3 ↓ R Regular plastic

4 ↓ H Regular plastic, 4:1 Hardener

5 Hard HH Regular plastic, 2:1 Hardener
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Table 2.

Mapping of curvature and radius

PhantomNotation Curvature at the tip sensor location (10−4 mm−1) Radius of guidance lines (mm)

1 SS 1.32 ± 0.21 1111 ± 26

2 S 2.74 ± 0.51 570 ± 15

3 R 5.59 ± 0.72 463 ± 7

4 H 6.90 ± 0.70 379 ± 11

5 HH 8.15 ± 0.86 342 ± 10
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