Skip to main content
. Author manuscript; available in PMC: 2023 May 1.
Published in final edited form as: Addiction. 2022 Jan 10;117(5):1450–1457. doi: 10.1111/add.15766

Table 2.

Results for Bayesian hierarchical spatial negative binomial models for SA2-weeks (n = 178,464) and SA3-weeks (n = 28,392)

Model 1: SA2-weeks Model 2: SA3-weeks
IRR (95% CrI) IRR (95% CrI)
Local checkpoints per 500 roadway kms
 Lag 0 * 0.975 0.973 0.978 0.945 0.937 0.953
 Lag 1 * 0.996 0.992 1.000 0.995 0.984 1.006
 Lag 2 * 0.995 0.991 0.999 0.981 0.970 0.992
Adjacent checkpoints per 500 roadway kms
 Lag 0 * 0.981 0.971 0.991 0.942 0.912 0.973
 Lag 1 * 0.994 0.983 1.005 0.969 0.937 1.003
 Lag 2 * 0.981 0.970 0.992 0.949 0.917 0.982
Temporal structure
 Timepoint * 0.690 0.671 0.710 0.714 0.692 0.736
 Timepoint squared * 1.458 1.417 1.501 1.409 1.365 1.454
 Cosine (annual) 1.008 0.998 1.018 1.006 0.996 1.017
 Sine (annual) 0.989 0.979 0.999 0.994 0.983 1.005
Space-time varying covariates
 Total rainfall (per 100mm increase) 1.112 1.094 1.131 1.106 1.085 1.126
 Maximal temperature (per 10°C increase) 1.090 1.068 1.112 1.100 1.076 1.124
Overdispersion 0.490 0.427 0.563 0.190 0.184 0.197
ICAR variance 0.576 0.563 0.590 0.193 0.143 0.270
*

centered and scaled before model fitting

CI: credible interval