Skip to main content
. 2022 Sep 8;297(6):1671–1687. doi: 10.1007/s00438-022-01950-x

Table 5.

Performance of classification model for prediction of response to therapy in for urothelial bladder cancer patients using different machine-learning classifiers

Classifier Hyperparameter Accuracy (%) Sensitivity Specificity
Logistic regression

Penalty: l2

C: 0.0464

85.5 ± 5.2 82.5 93.03
Decision tree

Best criterion: entropy

Best max_depth: 6

88.5 ± 3.4 91.2 83.7
K-nearest neighbor

Algorithm: auto

leaf_size: 30,

metric: minkowski

n_jobs: None

n_neighbors: 10

90.0 ± 4.5 87.7 90.7
Support vector machine

Kernel: rbf

C: 100

gamma: 0.01

86.0 ± 4.9 92.98 81.4
Random Forest

max_depth: 5

min_samples_leaf: 4

n_estimators: 100

89.5 ± 3.7 87.7 83.7
Voting KNN + DT + RF 90.0 ± 3.4 92.98 81.4