
Special Issue Paper

The International Journal of High
Performance Computing Applications
2023, Vol. 37(1) 4–27
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420221127034
journals.sagepub.com/home/hpc

Data-driven scalable pipeline using national
agent-based models for real-time pandemic
response and decision support

Parantapa Bhattacharya1, Jiangzhuo Chen1, Stefan Hoops1, Dustin Machi1,
Bryan Lewis1, Srinivasan Venkatramanan1, Mandy L. Wilson1, Brian Klahn1,
Aniruddha Adiga1, Benjamin Hurt1, Joseph Outten1, Abhijin Adiga1,
Andrew Warren1, Young Yun Baek1, Przemyslaw Porebski1, Achla Marathe1,2,
Dawen Xie1, Samarth Swarup1, Anil Vullikanti1,3, Henning Mortveit1,4,
Stephen Eubank1,2, Christopher L. Barrett1,3 and Madhav Marathe1,3

Abstract
This paper describes an integrated, data-driven operational pipeline based on national agent-based models to support
federal and state-level pandemic planning and response. The pipeline consists of (i) an automatic semantic-aware scheduling
method that coordinates jobs across two separate high performance computing systems; (ii) a data pipeline to collect,
integrate and organize national and county-level disaggregated data for initialization and post-simulation analysis; (iii) a digital
twin of national social contact networks made up of 288 Million individuals and 12.6 Billion time-varying interactions
covering the US states and DC; (iv) an extension of a parallel agent-based simulation model to study epidemic dynamics and
associated interventions. This pipeline can run 400 replicates of national runs in less than 33 h, and reduces the need for
human intervention, resulting in faster turnaround times and higher reliability and accuracy of the results. Scientifically, the
work has led to significant advances in real-time epidemic sciences.

Keywords
Epidemic Simulation, COVID-19, Pandemics, Policy, Vaccination, Agent-Based Models, Data Science, AI, Network Science,
High Performance Computing

Justification for ACM Gordon Bell Special
Prize for HPC-based COVID-19 research

We describe a novel data-driven integrated pipeline for
analyzing various scenario projections using an individu-
alized agent model for COVID-19 response planning. The
pipeline can execute an experiment with over 400 replicates
(4–8 cells, 50–100 replicates per cell) for the US (288
Million nodes, 12.6 Billion edges) in under 33 h.

Performance attributes

Table 1

Overview of the problem

We study the scenario projection problem: Given the
current conditions on the ground, and a set of possible

future scenarios, the goal is to assess the likelihood of
epidemiological outcomes for each of these scenarios by
analyzing the simulated variability dictated by the
starting conditions. The scenario projection problem is
different from the forecasting problem, where the goal is

1Biocomplexity Institute and Initiative, University of Virginia,
Charlottesville, VA, USA
2Dept. of Public Health Sciences, University of Virginia, Charlottesville, VA,
USA
3Dept. of Computer Science, University of Virginia, Charlottesville, VA,
USA
4Dept. of Eng. Systems and Environment, University of Virginia,
Charlottesville, VA, USA

Corresponding Author:
Madhav Marathe, Biocomplexity Institute and Initiative, University of
Virginia, Charlottesville, Virginia, USA
Email: marathe@virginia.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420221127034
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0002-3626-9939
https://orcid.org/0000-0002-0874-8692
https://orcid.org/0000-0002-3803-2900
https://orcid.org/0000-0003-2660-0103
https://orcid.org/0000-0001-8012-5791
https://orcid.org/0000-0003-1653-0658
mailto:marathe@virginia.edu

to forecast the future course of the pandemic over a given
time period. Scenario projection is closely related to
counter-factual analysis, but differs in that counter-
factual analysis studies the impact of various interven-
tions in a what-if setting. Our group has been doing
scenario projections from the start of the COVID-19
pandemic for various state and federal agencies, in-
cluding the Commonwealth of Virginia, Department of
Defense (DoD), and the Centers for Disease Control and
Prevention (CDC).

Our state-level scenario projections are briefed to Vir-
ginia Department of Health (VDH) and senior State officials
each week (VDH, 2021). These projections use both meta-
population models and, for specific cases, agent-based
models.

In this paper, we describe the national agent-based
models that we use for the COVID-19 Scenario Model-
ing Hub—a collaborative effort to support CDC decision-
making by creating an ensemble of several distinct models
that project requested epidemiological scenarios. These
models were developed to support DoD and CDC (SHUB,
2021). Our agent-based models have been used for Rounds
6 through 9.1

Additional scenarios were considered for the DoD.
Each scenario comprises of a possible set of futures, and
modeling teams use their models to try to project the

epidemiological outcomes. Figure 1 illustrates the
timeline of policy questions driving the computational
pipelines, and Figure 2 shows the process used to respond
to a single scenario. For brevity, we describe here only
scenarios that involve vaccine allocation and distribution
during an ongoing pandemic. Figure 3 shows the data
fusion problem that is necessary to answer these
questions.

Supporting policies

The scenario projections carried out using national agent-
based models have been used to support policymaking. Our
national model is one of the 7–9 models used in the en-
semble. The projections have been summarized in the
Morbidity and Mortality Weekly Report (MMWR)
(Borchering et al., 2021), on the live website, and also
briefed to the White House by the COVID-19 Response
Team (Walensky and Fauci 2021). This work has been
discussed in the national media and by the head of the CDC
on one of their video briefings in the Summer 2021. Details
about how such models are assessed and presented can be
found in companion papers that consist of all participating
teams of Scenario HUB (Truelove et al., 2022). This paper
focuses on the national agent-based models developed by
our team.

Table 1. Performance attributes.

Category of achievement Scalability, Time-to-solution

Type of method Not applicable
Results reported (basis) Whole application including I/O
Precision reported Mixed precision
System scale Results measured on full-scale system
Measurement mechanism Timers

Figure 1. Timeline of the different preparations and response-related policy questions arising during the COVID-19 pandemic.

Bhattacharya et al. 5

Need for the pipeline

Running national-level scenario projections can be a
lengthy and compute-intensive process. The clock starts
when the question or scenario is posed to us, and runs
through data collection, model calibration, and validation,
only ending when the output is analyzed to aid in the
production of needed plots and briefings. The datasets in-
volved are quite large—our agent-based model simulations
depend on a synthetic population contact network (a “digital
twin” of the actual US population consisting of 288 Million
individuals and 12.6 Billion time-varying interactions).
Furthermore, given the stochastic nature of our work,

multiple simulations must be run per scenario, amounting to
over 400 national-level replicates (4–8 cells with 50–100
replicates for each cell). Although we were fortunate to have
access to two high performance computing systems for
running these simulations, coordinating runs across systems
while minimizing reservations—particularly important on
these widely shared resources—was an additional chal-
lenge. Finally, given the time-sensitive nature of our work in
the face of the rapidly evolving pandemic, we needed to
reduce processing time in order to be reactive.

To overcome these limitations, we developed an inte-
grated, data-driven operational pipeline to streamline our
national scenario projection process. Our pipeline can run

Figure 2. Process for responding to a CDC scenario (input, human activity, automated processes, Wormulon-enabled
simulations, and output). Our pipeline development is focused on minimizing the human supervision of the automated processes.
Details of the steps are provided in the “Overall Methodology” section.

Figure 3. An overview of the different data sources that were used to generate the realistic epidemiological models.

6 The International Journal of High Performance Computing Applications 37(1)

over 400 replicates of national runs in less than 33 h; this
time does not include the initial time for scenario specifi-
cation, organizing data products, and preparing briefings. A
number of computational advances were required to obtain
the end-to-end operational pipeline, including (i) the de-
velopment of novel methods for scheduling replicates
across multiple supercomputers; (ii) the development of a
strategy to represent the rich set of complex interventions
required to capture the ground-truth reality; and (iii) the
implementation of methods to automatically process large
amounts of input and output data, reducing human inter-
vention, resulting in faster turnaround times and higher
reliability and accuracy of the results. The implementation
details of this pipeline are described in more detail in later
sections. The pipeline has been validated over the course of
many studies, including the ones covered in this paper.

This process pipeline provides time-sensitive, large scale
data processing and analytical modeling coordination. It is
configurable for timely and direct operational support of
complex epidemic-related decision making. The decision
cycles it supports are defined by the demanding timely
response requirements for particular decisions and actions
related to crisis event management as defined by the daily
activities and processes of engaged, responsible operational
agencies.

Current state of the art

Our group was the first to publish a data-driven, agent-based
model to support epidemic analysis (Eubank et al., 2004).
Since then, the field has been steadily developed by both our
group (Bisset et al. 2009, 2012, 2014; Barrett et al., 2008;
Bhatele et al., 2017; Yeom et al., 2014) and others
(Perumalla and Seal 2012; Skvortsov et al., 2007;
Grefenstette et al., 2013).

Recently, there has been a flurry of papers on developing
agent-based and equation-based models for planning and
response for the COVID-19 pandemic; see (Google 2021;
Kerr et al., 2021; Fitzpatrick and Galvani 2021; Agrawal
et al., 2020; Ferguson et al., 2020; Verity et al., 2020;
Chinazzi et al., 2020; Kraemer et al., 2020; Peng et al.,
2020; Roosa et al., 2020; Gandon and Lion 2022). Smaller
regions have been studied with detailed models, and larger
areas with aggregate models, but excepting the work of
Ferguson et al. (2020), we are not aware of a national scale
epidemic planning and forecasting exercise for COVID-19
that uses such detailed models. Ferguson et al. (2020)
largely focused on the United Kingdom (UK), although
basic results were provided for the US as well.

We implemented a new agent-based model (EpiHiper)
and developed digital twin populations to support the
COVID-19 pandemic response. Case studies done in the
context of COVID-19 response, using earlier versions of
the modeling environment include: (i) network-based

vaccine allocation (Chen et al., 2021, 2022); (ii) contact
tracing (Hoops et al., 2021); (iii) economic impact analysis
(Chen et al., 2020a,b); and (iv) the role of basic non-
pharmaceutical interventions (Machi et al., 2021).

The present work differs from the earlier work in several
ways: (i) the digital twin of the social contact network used
here is perhaps the most detailed national model ever built;
(ii) the EpiHiper framework can represent rich sets of in-
terventions and is designed specifically to run on large
parallel machines; (iii) the modeling pipeline presented here
comprises not only the agent-based model and the synthetic
social contact network, but also an end-to-end pipeline to
ingest data, initialize the models, collect simulation output,
carry out analyses, and produce meaningful insights; (iv) it
demonstrates the operational use of the integrated distrib-
uted HPC pipeline to support real-time epidemic science. A
key novel feature of the present work is to harness multiple
supercomputers using new scheduling methods and data
intensive processing pipelines. We are not aware of any
other group that has achieved the required level of scal-
ability, speed, reliability, and automation.

The idea of providing a unified interface to multiple HPC
resources is not a novel one. With the popularity of “Grid
Computing”, many such systems, such as Argo and Balsam
(Childers et al., 2017; Salim et al., 2019), Radical Pilot
(Merzky et al., 2021), and Leiden Grid Infrastructure
(Somers 2019), were developed to provide a unified in-
terface to multiple HPC resources. However, the huge di-
versity in HPC setups—their compute node configurations,
file system layouts, compilers and supported software,
clusters management software and their configuration, se-
curity requirements, etc.—makes it difficult to maintain and
efficiently use such systems. Thus, for our system pipeline
system Wormulon, we took the inverse approach. The onus
of abstracting out the differences in HPC clusters is on the
user and not on the system. When using Wormulon, the user
has to provide a concretizer module that lets Wormulon run
abstract tasks on the different HPC clusters. We feel that this
approach is better suited for HPC tasks where users are
strongly encouraged (XSEDE 2021) to carefully optimize
setup to the specific HPC resources on which they will be
running their code.

There has also been work in forecasting, and pipelines
have been created to support forecasting influenza-like
illness (ILI) dynamics; CDC runs an annual challenge in
this area. Several important advances have been made to
improve the overall forecasts. Most of the work in this space
is either statistical time series models or simple compart-
mental mass action models; see (Shaman and Karspeck
2012; Reich et al., 2019; Pei et al., 2018; Wang et al., 2019).

Developing scalable pipelines and workflows for HPC
tasks involving large datasets has also been well-studied in
the literature (Farnes et al., 2018; Hendrix et al., 2016;
Paraskevakos et al., 2019; Lyons et al., 2019). For example,

Bhattacharya et al. 7

the authors of (Farnes et al., 2018) presented a technique for
building scalable workflows for analyzing large volumes of
satellite imagery data, while Lyons et al. (2019) presented a
system for analyzing workflows related to weather-sensing
data. Other studies have presented generalized methodol-
ogies for building scalable workflows for tasks requiring
HPC platforms (Hendrix et al., 2016; Castellana et al.,
2019).

The present paper is not about our modeling work; that
work is covered in a companion paper (Truelove et al.,
2022). Here the primary focus is on the creation of a scalable
workflow that allows projections to be run on a weekly basis
through the integration of approximately 3100 county-level
surveillance datasets. The resulting challenges are unique
and form the basis for an important data-driven simulation
and artificial intelligence platform.

Overall Methodology

The overall methodology comprises five broad steps as
outlined below and depicted in Figure 2. The details of the
digital twin (synthetic population and network) and simu-
lator are published as companion papers. However, the
modeling extensions and innovations pertaining to this
report are described here.

Step 1: Create a digital twin. Instantiate a digital twin of
a time-varying social contact network of the US. We use
national-scale data to develop realistic populations and
contact networks for the 50 US states and the District of
Columbia (DC) (Mortveit et al., 2020).

To construct a population for a geographic region R (e.g.,
Virginia), we first choose a collection of person attributes
from a set D (e.g., age, gender, and employment status) and
a set T A of activity types (e.g., Home, Work, Shopping,
Other, and School). The precise choices of D and T A are
guided by the particular scenarios or analyses the population
will serve. Described at a high level, we (i) construct people
and places, (ii) assign activity sequences to people, (iii) map
each activity for each person to a location (including the
time of the visit), and, from this, (iv) derive a contact
network using co-occupancy and a contact model to infer
edges.

Step 2: Initialize. Extend the digital twin to initialize the
multi-agent simulation system. This includes dis-
aggregating observed data to the individual level, for ex-
ample, assigning individuals attributes such as infection,
vaccination, and immunity levels.

This step brings the reported case data into alignment
with the data that is needed to initialize the simulation. This
data integration process has become progressively more
complicated and important as more data has become
available. Even when it is available, the data is often
misaligned in time, aggregated, delayed, partial, and noisy.
This includes: (i) confirmed cases, for which only aggregate

county-level counts are available; (ii) age distribution of
confirmed cases, for which only limited information is
available; (iii) vaccine uptake at the state level and coarsely
stratified by age group; (iv) vaccine acceptance rates at the
state level; (v) various information on non-pharmaceutical
interventions (NPIs), including social distancing mandates,
school closure/openings, and survey results on compliance
to these interventions. The individual-level initializations
based on aggregate-level data involve the following.

1. Assign a health state. An individual can be either
never infected (susceptible), currently infected, or
previously infected but now recovered. Everyone is
susceptible by default. We consider the cumulative
confirmed cases up to 15 days prior to the simulation
start date as prior infectionswho have recovered. We
consider the confirmed cases reported in the 15 days
before the simulation start date as current infections.
We use the case ascertainment rate (the ratio between
confirmed cases and all actual infections, reported or
not, symptomatic and asymptomatic) to scale the
confirmed cases to calculate the actual number of
infections by county and age group. For prior in-
fections, we randomly select individuals and set each
of them to recovered state or partially susceptible
state if waning immunity is modeled; the latter is
determined by the waning distribution and node
infection time. For current infections, we randomly
select individuals and set each of them to exposed
state on the exposed date which is projected by a
statistical model based on their confirmation date.

2. Assign vaccination status. Each individual is set to
unvaccinated by default. Based on vaccine uptake
and hesitancy data, we generate a weekly vaccination
schedule of the number of people receiving vaccines
by vaccine type (Johnson and Johnson, Pfizer/
Moderna first dose or second dose) and age group.
For prior vaccinations on the schedule, we randomly
select individuals and set them to a vaccinated state
or partially susceptible state if waning immunity is
modeled; again, the latter is determined by the
waning distribution and node vaccination time. For
future vaccinations on the schedule, we randomly
select individuals and set them to a vaccinated state
at the scheduled time.

3. Assign behavior changes. For NPIs, we schedule
changes with dates or triggering conditions for the
affected individuals who may be randomly selected
if the NPI has a compliance rate. The changes usually
affect edges of the contact network.

Step 3: Calibrate and simulate. This step is fully au-
tomated under the Wormulon system and runs across two
separate HPC clusters.

8 The International Journal of High Performance Computing Applications 37(1)

· Step 3a: Calibrate. Calibrate the disease model to fit
the observed data. After initialization, we calibrate the
transmissibility of the disease τ to currently observed
region-specific values of effective reproductive
number Reffective. We use k = 5 replicates to obtain a
robust estimate for Reffective.

· Step 3b: Execute simulation jobs. Execute the multi-
agent simulation for each replicate in each cell of the
experimental design that represents the scenarios.

Step 4: Create probabilistic projections of scenario-
specific reportable epidemic measures. In a sense, this is
the reverse of Step 2. Construct epidemiologically relevant
aggregate data from the raw simulated outcomes. In this
step, we aggregate individual-level state transition data from
simulation outputs to desirable spatial, temporal, and social
resolutions, for example, state-level weekly new infections,
new hospital admissions, and new deaths in children and
adults, respectively. We need to map these numbers to
confirmed numbers by applying the same ascertainment rate
used in Step 2 and a statistical model to account for un-
certainties. The projections will be distributions of these
measures, which are often represented by quantiles.

Step 5: Analyze results for interpretation and policy
implications. Analyze aggregated data and detailed epi-
demic evolution data in the simulation. Run network
structure analytics to understand changes to the contact
network during the simulation due to nodes being infected
and vaccinated, and NPIs affecting person-person
interactions.

Several basic modules, including construction of digital
twins, EpiHiper, and the basic disease models, have been
described in our earlier publications (Barrett et al., 2009;
Chen et al., 2020a,b; Machi et al., 2021; Chen et al., 2021).

Extensive effort has been made to ensure the validity of
our underlying models and the quality of the synthetic data.
The published papers discuss this. Extensive effort has also
been made to ensure the correctness of our code
(verification).

Innovations realized

Policy support poses significant challenges

Challenge 1: HPC. Executing a well-powered experimental
design involving large-scale stochastic simulations requires
high performance computing (HPC) resources, and the
availability of such resources is limited.

Challenge 2: Flexible model specification. Representing lay-
ered intervention scenarios—including vaccine allocation,
waning immunity, and multiple strains, as well as a host of
non-pharmaceutical interventions—requires an easily
adaptable model.

Challenge 3: Big data. Integrating detailed county-level in-
formation about vaccine production schedules, vaccine
acceptance, disease progression parameters, and non-
pharmaceutical interventions for the US is a massive data
fusion problem.

In this paper, building on our earlier work, we report on
the following advances: first, orchestrating a workflow
distributed across two separate HPC clusters simultaneously
to reduce overall execution time, increase fault tolerance,
and improve human productivity; second, extensions to our
HPC agent-based simulator to represent vaccinated indi-
viduals, waning immunity, multiple strains, and production
schedules; third, a data integration pipeline that can execute
US-scale models and associated workflows; and, finally, a
detailed analysis of the vaccine allocation problem. We are
interested in understanding the spatial and temporal het-
erogeneity across the US. We describe these innovations in
detail below.

Reliable end-to-end HPC cloud pipeline. Wormulon is an
HPC meta-scheduler that can be used to distribute HPC
tasks across multiple HPC clusters to minimize the time to
completion of all tasks. The design philosophy of Wor-
mulon is pragmatic. Wormulon utilizes the cluster’s local
HPC schedulers to run HPC jobs, and depends on user-
provided logic—via the concretizer module—to convert
abstract task definitions into actual jobs that run on the HPC
clusters. Wormulon also uses a master coordination server,
through which cluster-local agents can coordinate the dis-
tribution of tasks. The cluster-local agents communicate
with the Wormulon master server using JSON RPC over
HTTP(S) which is hosted on the public internet outside of
the clusters. This architecture allows us to deploy Wor-
mulon easily, avoiding security concerns arising from
opening clusters to new inbound connections.

Tasks inWormulon can depend on each other, and results
from earlier tasks can be utilized by subsequent tasks.
Wormulon uses this semantic knowledge about tasks to do
semantic-aware scheduling. Wormulon also supports
semantic-aware fault tolerance. Using the user-provided
concretizer module, it can check for the successful com-
pletion of tasks and retry them in the case of failures due to,
for example, node, network, file system, or scheduler
communication failures.

Modeling innovations. EpiHiper is a general agent-based
HPC tool for computational analysis of epidemics, and
supports a broad range of interventions. The disease models
comprise parameterized disease states, disease transmis-
sions (through contacts), and disease progressions, and are
specified independently of the people and their contact
network over which the disease spreads. All individuals
have the same model, but parameter values can be functions
of individual traits, attributes, and history that may have

Bhattacharya et al. 9

resulted from, for example, vaccinations, mask-wearing,
and interventions more broadly.

All input files to EpiHiper are provided in JSON format,
with the exception of the contact network, which, due to its
large size, may be either in comma-separated value (CSV)
or binary format.

To address questions involving vaccination and waning
immunity, we enhanced the default model. Vaccination is
supported by adding states, transmissions, and progressions
describing the protection provided through vaccination. We
are considering three levels of vaccination: (i) single dose
(Johnson and Johnson), (ii) first dose, and (iii) second dose
(Pfizer or Moderna).

Waning immunity is modeled by adding states, trans-
missions, and progressions which encode the reduction in
infection and probability of severe illness for previously
vaccinated or recovered susceptible individuals. Individuals
who are vaccinated or recovered progress through the new
susceptible state with a dwell time sampled from an ex-
ponential distribution calibrated to the scenario’s specified
waning period, for example, 1 or 3 years.

We have implemented customizable interventions,
which are described in JSON format. Interventions work on
subsets of nodes or contact edges, and can modify their
attributes. Subsets can be selected based on node or edge
attributes. Customizable read-only attributes of edges and
nodes are defined in an external database, facilitating the
selection of arbitrary subsets. We provide two ways to
resolve conflicts when an edge or node attribute is changed
multiple times during a single simulation step: (i) ordering
of changes, and (ii) definition of conditions for changing the
attribute.

Figure 4 illustrates how our models have progressed over
the course of the pandemic. Our models are multi-scale,
multi-theory agent-based models. They include social
contact networks at various spatial and temporal scales, and
multi-theory behavior expressed at various levels (policies
vs individual).

Calibration improvements. Before the development of the
current system, this was a manual process using human

intuition to select the next trial transmission value, but this
was not sustainable. We developed a semi-automatic bi-
section method with limited human intervention to start the
next iteration for regions which had not yet achieved cal-
ibration. For Scenario Modeling Hub rounds 8 and 9, we
had completely automated this process by incorporating an
optimizer directly into the pipeline. For this study, we use
Brent’s method (Brent 1973) to minimize the required
number of iterations.

Innovations in digital twins and model initialization. The
state of the individuals and edges at the beginning of the
simulation must represent the ground truth. To correctly
represent previously diagnosed cases, we utilize New York
Times county-level data (NYT-DATA, 2020) accumulated
15 days prior to the simulation start date. To represent the
current state of the epidemic, that is, the current numbers of
exposed or infectious people, we use a burn-in period where
we expose for 15 days individuals based on daily changes in
the New York Times data. We turn off transmission during
the burn-in period to avoid additional cases. This is
achieved by using the extensive intervention framework
supported in EpiHiper. Transmission is turned on at the
beginning of the simulation. The age distribution of pre-
vious and current cases is based on the nationally observed
age distribution of cases.

Previous vaccination is handled similarly; however, we
only have state-wide age distributions of vaccinated people.
Current and future vaccination is implemented through a
scenario-defined vaccination schedule which considers the
expected percentage of vaccination and/or the start date for
vaccination of children under 12.

We also use information for current mask wearing, social
distancing, and school or work closure to disable the ap-
propriate contacts during the initialization. Individual ad-
herence to these interventions is achieved by the
customizable sampling framework.

To account for waning immunity in the current state, we
calculate the mean exposure and vaccination date of pre-
vious cases. We sample among the previous cases using the
probability 1 � exp ((mean date � start date)/waning

Figure 4. This workflow shows how models were enhanced progressively to capture complex vaccine scenarios.

10 The International Journal of High Performance Computing Applications 37(1)

period) to select people who have become partially
susceptible.

Role of data-driven AI models

The present work uses data-driven AI methods to support
scenario projections. To the best of our knowledge, this is the
first time US-scale data-driven AI models with realistic
social contact networks have been used to study the impact
of vaccines and vaccine acceptance. In (Foster et al., 2020;
Hager et al., 2019), the authors describe the use of AI-driven
multi-agent models and digital twins for studying complex
questions. In (Foster et al., 2020; Hager et al., 2019; Perrault
et al., 2019), Perrault et al. highlight the need for developing
operational AI systems, calling it a data-to-deployment
pipeline. The authors highlight the need for operational
AI. The integrated pipeline outlined here is a step in this
direction. Our work takes a step toward making compu-
tations seamless across multiple HPC systems, and dem-
onstrates how HPC clouds can be used for real-world
problems in public health. We also address emerging AI
challenges that deal with epistemic and aleatoric uncertainty
by building causal models with statistical experimental
designs, and paucity of data by developing models using
synthetic individualized data that is privacy preserving.

Wormulon: an intelligent job submission
system for HPC schedulers

Wormulon is the system that we use to run tens of
thousands of EpiHiper simulations (tasks) with real-
time deadlines using two geographically distributed
clusters concurrently. Tasks in Wormulon can be
generated statically (scenario projection mode), or
dynamically by using information from tasks that have
completed execution (calibration mode). When using
Wormulon, users need to provide a concretizer module
that makes Wormulon aware of the task and cluster
semantics—how to convert tasks to schedulable jobs on
clusters, how to check for failures, etc. The overall
objective of the Wormulon system is to minimize the
time to completion for all tasks by maximally utilizing
available resources.

Requirements for our job submission system

For our specific tasks, we needed a job submission system
that met the following requirements:

1. Ability to leverage existing HPC schedulers present
on the HPC clusters to quickly schedule HPC jobs,
preferably using the Process Management Interface
(PMI) for quick startup.

2. Ability to run on modern secure clusters where login
and services like ssh are secured with single sign-on
with central authentication, two-factor authentica-
tion, networks isolated with VPNs, etc.

3. Ability to support task-dependency networks and
dynamic on-the-fly task generation.

4. Ability to retry tasks based on task semantic-aware
fault detection and recovery.

5. Ability to support disparate HPC site-specific con-
figurations with minimal reconfiguration.

6. Ability to submit tasks to multiple HPC clusters.

Many systems exist—such as: HPC cluster schedulers
like Slurm (Yoo et al., 2003) and PBS (Feng et al., 2007),
pilot-based systems such as Radical Pilot (Merzky et al.,
2021), multi-cluster schedulers like Argo and Balsam
(Childers et al., 2017; Salim et al., 2019) and Leiden Grid
Infrastructure (Somers 2019), and modern big data and
machine learning-oriented schedulers like Mesos (Hindman
et al., 2011), Yarn (Vavilapalli et al., 2013), Dask (Rocklin
2015) and Ray (Moritz et al., 2018)—but none of these
systems satisfied all of the requirements as stated above.
Thus, we developed Wormulon to satisfy our task-specific
needs.

Design and architecture of Wormulon

Architecture overview. Figure 5 shows the overall architec-
ture of theWormulon system. AWormulon setup consists of
a single coordinator and one or more workers. The Wor-
mulon coordinator is hosted on a network that is accessible
from all HPC clusters. Each participating HPC cluster runs
its own Wormulon worker, and the workers communicate
with the coordinator, implementing a star topology. Users of
Wormulon interact with the Wormulon setup only via the
coordinator.

Task: A unit of work. In Wormulon, a task is an abstract unit
of work. To execute a task on a specific cluster, it must be
converted to a concrete schedulable job. The responsibility
of converting an abstract task to a concrete job lies with the
user-provided concretizer module, which is described later
in this section. A task can be executed on any cluster that has
the required resources available.

A task must specify a size and a runtime. Since the actual
amount of resources needed to run a task and the runtime of
the task may vary depending on which HPC cluster the task
is executed on, in Wormulon the size and runtime of tasks
are provided as abstract metrics. These are used to load
balance the tasks on different clusters. At a high level, the
size of a task is expected to be proportional to the amount of
resources that it needs from a cluster. Similarly, the runtime
estimate provided is expected to be proportional to the
actual runtime of the task. The compute load of a task is the

Bhattacharya et al. 11

product of its size and runtime, and is used for prioritizing
tasks.

Batch: a set of tasks

A batch is a set of related tasks. Tasks in a given batch can
depend on other tasks in the same batch. Let Gb = {Vb, Eb}
be the task dependency network for task batch b. Then, each
vertex t 2 Vb corresponds to a task in batch b, and each
directed edge (ti, tj) in Eb represents a dependency relation
corresponding to task tj depending on task ti. The task
dependency network for every batch Gb must be a directed
acyclic graph. In the above case, the task tj can start exe-
cution only after task ti has completed execution, and may
use results generated by ti.

Users of Wormulon can submit multiple batches of jobs
to the system. Tasks can be created and added to a batch
dynamically during runtime. Each batch is also assigned a
numeric priority by the user. A task from a lower priority
batch will be scheduled to run only when no other ready jobs
from higher priority batches are available.

Lifecycle of a task. The Wormulon coordinator tracks the
lifecycle of tasks via finite state machines with the following
states: waiting, ready, assigned, completed, and failed.
Tasks with dependencies start off in the waiting state, and
are moved to ready state when all of their dependencies are
in the completed state. Tasks without dependencies start off
in the ready state.

Wormulon workers on different HPC clusters periodi-
cally request the Wormulon coordinators for ready tasks.
The coordinator maintains a priority queue with the ready
tasks. The tasks are prioritized first by their respective parent
batch’s priority, and second by the compute load of the task.
By default, Wormulon uses the largest-job-first heuristic for

scheduling. The Wormulon coordinator ensures that, at any
point in time, the sum of the sizes of the tasks assigned to a
given worker is less than or equal to the size capacity of the
worker.

Once a ready task is assigned to a specific worker, it is
moved to the assigned state. Once the worker informs the
coordinator that the task has been executed successfully, it is
moved to the completed state. In case the worker is unable to
execute the task to completion, it is moved to the failed state.

Once a task is marked completed, all its dependent tasks
are checked to see if they are ready for execution, and, if so,
they are moved to the ready state.

Concretizer: Specifying semantic knowledge of tasks and
clusters. HPC clusters vary widely in terms of their compute
node configurations, cluster schedulers (both im-
plementation and configuration), the software im-
plementations available on them, and their file system
structures. Many HPC meta-schedulers (Merzky et al.
(2021); Salim et al. (2019)) try to abstract out these dif-
ferences. We find, however, that HPC software authors will
often optimize their software setup—compilers and libraries
used, MPI implementation used, OpenMPI CPU affinity
setups, filesystem usage, etc.—to maximize performance of
their software on the individual clusters. To allow for this
flexibility when using Wormulon, users provide a con-
cretizer module that encodes the logic of how to run a
specific task on a specific cluster. For example, on a cluster
running the Slurm scheduler, the concretizer module, given
an abstract task definition, must be able to generate the
sbatch command to be used to schedule the corresponding
job on the cluster.

Jobs on HPC schedulers can fail in numerous ways. A
particularly difficult-to-handle set of failures are the ones
that happen when the job executes successfully (finishing

Figure 5. Overall architecture of the Wormulon meta scheduler.

12 The International Journal of High Performance Computing Applications 37(1)

with exit code zero), but, due to intermittent issues of the
network and the underlying networked file system, the
results are not committed to the filesystem/data store cor-
rectly. Thus, the concretizer module in Wormulon has an
additional role in semantic fault tolerance, where it en-
capsulates the semantic knowledge to check if the job
finished successfully. The concretizer is also used to provide
Wormulon with the logic on how to restore a failed job’s
runtime environment to a runnable state.

Life cycle of a job. Once a Wormulon worker is assigned a
task by the coordinator, it converts the task into a concrete
job using the user-provided concretizer module. Similar to
how the Wormulon coordinator tracks the lifecycle of tasks,
Wormulon workers track the lifecycle of jobs via finite state
machines with the following states: ready, running, failed,
completed, and aborted (Figure 6). All jobs start off in the
ready state. During the processing of the ready jobs, each
job is scheduled to run using the local cluster’s scheduler,
and is moved to the running state.

Wormulon workers periodically check to see if the
running jobs have finished execution. Jobs that have
completed successfully—as determined by the concretizer
module—are moved to the completed state; otherwise, they
are moved to the failed state.

During handling of failed jobs, they are cleaned up—
using the concretizer module—and moved to ready state. If
a job fails more than a preconfigured number of times, it is
moved to the aborted state.

When the job corresponding to a task moves to the
aborted or completed state, the Wormulon worker informs
the coordinator of this status.

The Wormulon data store. The Wormulon coordinator and
workers together implement a distributed key-value data
store. This data store is used to provide shared configuration
parameters and configuration files to the tasks. Additionally,
the data store is also used to share results of tasks such that
any dependent tasks may use those results.

Note that this data store is not intended to distribute large
datasets. For that purpose, we recommend using alternate
methods—such as Globus—to distribute the data among the
HPC clusters.

The key-value store implemented by Wormulon is im-
mutable, and the addition operation is idempotent with “first
writer wins” semantics. Keys once added to a running
Wormulon setup may not be removed during the runtime of
the setup.

The primary copy of the data store is kept at the coor-
dinator. The worker processes maintain read-only copies of
the data store. All write operations go directly to the co-
ordinator. The worker processes periodically query the
coordinator for changes and update their local copy.

The workers always update the local copy of the data
store before requesting new tasks to execute. This ensures
that the configuration parameters needed for executing the
tasks are always available locally at the HPC cluster.

System implementation. The Wormulon coordinator and
workers are written in the Python programming language.

Both the Wormulon coordinator and workers expose
remote procedure call (RPC) endpoints for interaction.
Wormulon uses JSON RPC over HTTP(S) for im-
plementing remote procedure calls.

The Wormulon coordinator and workers use SQLite3
files to maintain state and store the local copy of the dis-
tributed configuration data store.

When configuring a Wormulon setup, a concretizer
module must be provided to each Wormulon worker at each
HPC cluster. The concretizer module is implemented as a
Python module and defines a class which inherits from an
abstract concretizer class. The abstract concretizer class
defines the set of methods that the provided concretizer class
must implement.

How performance was measured

Performance of EpiHiper. EpiHiper is used to efficiently
simulate an epidemic spreading over a contact network. It
supports configurable disease models and complex inter-
ventions changing individual (node) and contact (edge)
attributes. We measured the total runtime of each simula-
tion, as well as the time used in different sections. The
internal time was measured in nanoseconds and recorded for
each simulation step and for each MPI process. The time for
each section was accumulated during the whole simulation
for all processes. The internal statistics were collected on
Rivanna (see Table 2) for individual replicate runs.

Figure 6. Life cycle of job.

Bhattacharya et al. 13

Performance of Wormulon. The primary goal of the Wor-
mulon system is to minimize the time to completion of all
tasks. Here, all tasks can be created statically, as in the case
of the scenario projection pipeline, or dynamically, as in the
case of the calibration pipeline.

In the following sections, the primary metric presented
when evaluating the Wormulon system is the time to
completion of a given set of tasks. The time to completion is
computed as the difference between the start time—when
the (initial) tasks are submitted to the master Wormulon
server—to the end time—when the result of the last task
reaches the master Wormulon server. Additionally, we also
use the number of simulated days (for the whole US
population) per unit wall clock time as a metric for mea-
suring system performance.

For the strong scaling experiments, 40 replicates of the
national simulation (scenario projection pipeline) were used
corresponding to four different configurations/cells. The
four configurations (or cells) correspond to the four sce-
narios from round 8 of the Scenario Modeling hub.

We also report the time to completion for a typical
scenario consisting of 400 national-level replicates, which is
the typical number of replicates used for actual submissions
to Scenario Modeling Hub.

Additionally, we also present the time to completion for
the calibration pipeline, which tunes the effective trans-
missibility, τ, for each of the 50 US states and DC, so that the
resulting reproductive number R measured from simulated
outcomes matches the state’s reported value for COVID-19.
In this case, the tasks are generated dynamically by the
optimization algorithm (Brent’s method) given a range for
the effective transmissibility.

All experiments were run using the Bridges2 and Ri-
vanna clusters. The Wormulon master server was hosted at
University of Virginia on a server with a similar configu-
ration to the Rivanna compute nodes. TheWormulon cluster
agents were run on one of the compute nodes on Rivanna
and Bridges2. Table 2 describes the configuration of the
Rivanna and Bridges2 clusters. Note that we only use 30
compute nodes on Rivanna and 50 compute nodes on

Bridges2. Additionally, the configurations of the compute
nodes on the two clusters are very different in terms of the
number of CPU cores per compute node, the memory
available per CPU core, and the clock frequency of the
CPUs.

Performance results

Performance of a single EpiHiper replicate. In order to respond
to the request, we must be able to run the maximum number
of simulations within the given resource and time limits.
Therefore, we did not strive to get the shortest time per
simulation; instead, we opted for the minimal resources
which supported any given problem.

All EpiHiper single replicate performance evaluations
have been performed on Rivanna, but results on Bridges2
are comparable. The strong-scaling experiment (Figure 7)
shows good scaling behavior for large problems (NY, TX)
up to 120 CPU cores, and for medium-sized problems (VA)
up to 80 CPU cores. Since the scaling curves are concave,
the smallest number of CPU cores would lead to the highest
throughput. On Rivanna, we chose 80 cores for NYand TX,
and 24 cores for VA, with 9.6 GB of memory per core. For

Table 2. Compute node configuration of Bridges2 and Rivanna.

Bridges2 Rivanna

Total nodes 488 115
Allocated nodes 50 30
CPUs/node 2 2
Cores/CPU 64 20
RAM per node 256 GB (DDR4) 384 GB (DDR4)
CPU AMD EPYC 7742 Intel Xeon Gold 6148
Network Mellanox ConnectX-6 Mellanox ConnectX-5
OS CentOS Linux 8 CentOS Linux 7
Filesystem Lustre Lustre

Figure 7. Speedup of EpiHiper simulations for the states of New
York (NY), Texas (TX) and Virginia (VA) with increasing
numbers of CPU cores on Rivanna.

14 The International Journal of High Performance Computing Applications 37(1)

Bridges2, which has only 2 GB per core, we experimentally
determined that limiting the number of utilized cores per
node to half of the available, that is, effectively doubling the
amount of available memory to 4 GB per core, leads to
reduced runtime. The reason for this is that the memory bus
is the limiting performance factor. By reducing the number
of cores, we avoided this problem. Furthermore, we
benefited from the processor’s capability to increase the
clock speed if not all the cores are utilized (Klonower 2021).
This led to the following number of cores: (i) NY: 64, (ii)
TX: 128, and (iii) VA: 26.

Figure 8 indicates that increasing the number of cores by
a factor of 60 (from two for small states—AK, DC,MT, ND,
SD, VT, WY—to 120 for CA) only increases the syn-
chronization by a factor of 8 (3.23%–25.2%), indicating that
inter-processes communication scales approximately

ffiffiffiffi

N
p

where N is the number of cores.
Figures 9 and 10 show that the scaling of the EpiHiper

runtime for our resource configuration, which targets

Figure 9. EpiHiper runtime depending on contact edges of states.

Figure 10. EpiHiper runtime depending on contact nodes of
states.

Figure 8. Distribution of simulation tasks for scenario A (other scenarios lead to similar results). A large amount of time is spent in
interventions, whereas the disease transmission uses less than 1/4 of the time. The states are sorted by the time spent in
synchronization.

Figure 11. Strong scaling results of the scenario projection
pipeline for the entire US with four cells and 10 replicates.

Bhattacharya et al. 15

throughput, is linear relative to the size of the problem
measured, either in nodes or edges.

Performance for Wormulon, the cluster meta-
scheduler. Figure 11 shows strong scaling results when
running a US-scale scenario projection pipeline with four
configurations—corresponding to configurations from CDC
ScenarioModelingHub round eight setting—and 10 replicates
per configuration with three different setups: (A) using
Bridges2 and Rivanna together, (B) using Bridges2 only, and
(C) using Rivanna only. In (A), we use three different compute
node pairings: 50 nodes on Bridges2 + 30 nodes on Rivanna,
33 nodes on Bridges2 + 20 nodes onRivanna, and 17 nodes on
Bridges2 + 10 nodes on Rivanna. For (B) we use 50, 30, and
10 nodes on Bridges2. Finally, for (C) we use 30, 20, and 10
nodes on Rivanna. Figure 11 shows that for each of the setups,
the runtime drops almost linearly on a log-log scale with
increasing numbers of CPU cores. Table 3 shows the number
of simulated days per minute (realtime) and corresponding
speedup when using the different setup configurations.

Finally, we also ran a US-scale scenario projection
pipeline with the four configurations and 100 replicates.
This is the typical number of replicates necessary to
compute the confidence interval ranges that we report to
Scenario Modeling Hub. We ran the pipeline using 50
compute nodes on Bridges2 and 30 compute nodes on
Rivanna, which is the typical setup that we actually use to
run the pipelines. This run, with 400 national-level repli-
cates, completed in 32 h and 42 min.

Table 4 shows the runtime of the US-scale calibration
pipeline using three different setups: (A) using Bridges2 and
Rivanna together, (B) using Bridges2 only, and (C) using
Rivanna only. As can be observed from the table, while
there is some gain in using the two systems together, the
improvement is not as significant as in the case of the
scenario projection pipeline. This is because the calibration
process currently used for each state is largely sequential. At
each round, the optimizer used in the calibration pipeline
uses Brent’s method for optimization (Brent 1973) to select
an effective transmissibility value τ, and runs k = 5 replicates
to get a robust estimate of basic reproduction ratio R for
COVID-19. The optimizer continues to generate and test
new effective transmissibility values τ until a termination
condition is met—the obtained R is within 0.02 absolute
distance of the publicly reported value R. Thus, the time-to-
completion/runtime of the pipeline is dominated by the state
which is slowest to converge.

This limitation, however, is entirely due to the current
optimizer used, and due to running the scenario projection
pipeline only after the whole calibration pipeline completes.
Recently, a number of innovations in the area of black box
optimization have been made, motivated by hyperparameter
tuning issues in machine learning (Wu et al., 2019). A
number of new Bayesian optimization frameworks have
been developed (Nogueira 2014; Louppe 2017) that allow
testing of multiple candidates in parallel to alleviate the
issue of sequential testing. Additionally, in the future we
intend to combine the calibration and scenario projection
pipelines to minimize the time-to-completion of the joint
pipeline.

Case study: role of waning immunity

In this section, we study the role of waning immunity, both
natural immunity obtained from infections and vaccine
immunity in the COVID-19 epidemic evolution.

Scenarios. In summer 2021, we started to see more and
more cases of COVID-19 in people who were vaccinated.
Some of these cases were breakthrough infections, but many
were due to waning of immunity from their initial vacci-
nations (Naaber et al., 2021; Juthani et al., 2021). There
were also many cases of reinfection in previously infected
people whose naturally-obtained immunity had waned. To
study the impact of waning immunity and its co-dynamics
with infections and vaccination, we considered four sce-
narios: (A) no waning at all; (B) waning of natural and
vaccine-induced immunity with 1-year average time, and
high protection against infection and severe disease after
waning; (C) waning with 3-year average time and low
protection; (D) waning with 1-year average time and low
protection.

Implementation. In addition to the settings on waning,
we considered the same parameterizations of simulation

Table 3. Number of simulated dates per minute (realtime) and
speedup when using different configuration setups. Here R(X) and
B(Y) means when using X compute nodes on Rivanna and Y
compute nodes on Bridges2, respectively.

Setup # CPU cores Sim days/min Speedup

R (10) 400 51.93 1.00
R (20) 800 107.06 1.93
R (30) 1200 156.55 2.83
B (10) 1280 58.69 1.06
B (30) 3840 173.62 2.95
B (50) 6400 282.05 4.80
B (17)+R (10) 2576 153.27 2.77
B (33)+R (20) 5024 294.46 5.32
B (50)+R (30) 7600 426.54 7.72

Table 4. Runtime of calibration pipeline for entire USA.

Setup # Compute nodes Runtime (minutes)

Bridges2 and Rivanna 30 + 50 153
Bridges2 Only 50 175
Rivanna Only 30 324

16 The International Journal of High Performance Computing Applications 37(1)

initializations, vaccine efficacy and age-stratified vaccine
uptake with hesitancy in different states, and non-
pharmaceutical interventions (NPIs), including reduced
generic social distancing and mask wearing, voluntary
home isolation of symptomatic cases, and school reopening
with in-person learning from the end of August 2021. For
the disease model, we assumed that in August 2021 the
more infectious Delta variant was responsible for almost
100% of US cases and would remain so for the next
6 months. Therefore, we used a single-variant COVID-19
disease model for our simulations, and made the following
extensions to model waning immunity.

We added a partially susceptible state immS which has a
smaller susceptibility than a naively susceptible state S; and
added state transitions from the recovered and vaccinated
states to immS with probability 1.0 and dwell time t fol-
lowing an exponential distribution p(t) = λe�λt, 1/λ = 1-year
(fast waning) or 3-year (slow waning). Note that, in this
implementation, there are nodes entering and leaving the
immS state continuously at the population level instead of
reducing the immunity of individual nodes continuously.
This assumption substantially reduces the model’s com-
putational complexity model while computing the same
aggregate dynamics. To implement protection against in-
fections and severe disease for nodes in the immS state, we
assign a reduced susceptibility and smaller transition
probability from exposed to symptomatic states for those
nodes in immS state compared to those in S state, and the
exact parameterizations are age specific: people ≤65 years
old have more protection than those > rbin65.

In simulation initializations, we implemented the fol-
lowing for waning in prior infections and vaccinations. In
this case study, our simulations start in July 2021. For
infections prior to the beginning of the simulation period,
we chose nodes based on age distribution of cases, and set
them to either recovered state or immS state, depending on
when they were infected. For nodes vaccinated prior to the
beginning of the simulation period, we move them into the
immS state depending on when they were vaccinated, and
following the exponential distribution defined for the par-
ticular scenario.

Results. Figure 13 shows the projections of weekly in-
cident cases and hospitalizations in the US for 6 months
from August 2021 under different scenarios of waning
immunity. As expected, there will be more cases with fast
waning, and the assumption of no waning substantially
underestimates the cases. The reason is that more people
become susceptible to SAR-CoV-2 again with fast waning,
even if they are partially protected against infection.
Without waning, the population reaches herd immunity at a
lower peak and a smaller total number of cases. In all
scenarios, we can expect that cases peak in early October.
We have similar observations regarding hospitalizations,

except that the effect of protection on hospitalizations seems
more significant than its effect on infections.

Implications

As mentioned earlier, the integrated end-to-end pipeline has
been used for a number of case studies, including scenario
projections. The pipeline has continually improved during
this time, taking into account the challenges we identified
along the way. Here, we briefly describe a set of case studies
addressing the complex question of vaccine allocation as
COVID-19 was evolving. Our studies for this series of tasks
started around October 2020, and have continued as the
pandemic continues to evolve. We describe these five studies
briefly here, and two of the case studies in more detail in
Appendix B. Figure 12 and 13 shows the workflow of a
typical case study, which includes steps 2 to 5 described in the
“Overall Methodology” section, and the sizes of the input and
output datasets fed into and generated by the simulations.

Implications for understanding the spread of
COVID-19 and the role of vaccines

Case Study 1. Oct 2020–January 2021: Optimal allocation
of limited vaccine supplies. During this period, authorities
were interested in understanding how to allocate the limited
supply of vaccines. Vaccine allocation is a complex problem
that has been studied extensively; the novelty of this study
was in studying the problem when we have a schedule for
vaccine production and delivery. We investigated the use of
social networks to design and analyze network-based pri-
oritization schemes. Our results show that the strategy is
extremely effective.

Case Study 2. January 2021–March 2021: Optimal
spatial and age-based allocation. Interest turned to allo-
cation strategies on two levels: (i) between-state allocation
based on population and prevalence, and (ii) within-state
allocation using age-based prioritization.

Case Study 3. April 2021–June 2021: Evaluating the role
of vaccine hesitancy. As vaccines became available, the
question turned to hesitancy. Initially the problem with
vaccine allocation was largely a supply-side problem, but
starting around May it became a demand-side problem. We
saw that hesitancy varied across states, and weekly uptake
of vaccines started slowing down significantly. This study
focused on the impact of hesitancy.

Case Study 4. June 2021–July 2021: Layered interven-
tions to control the new outbreak caused by the new Delta
variant (Round 6 and 7 of the Scenario Modeling Hub).
Summer 2021 saw the quick spread of the Delta variant
which led to significant outbreaks across many parts of the
country. This study built on case study three to assess the role
of vaccine uptake and hesitancy in light of the Delta variant.

Bhattacharya et al. 17

Case Study 5. August 2021–September 2021: Under-
standing the impact of waning immunity (Round 8 of the
Scenario Modeling Hub). The most recent question per-
tained to waning immunity. As the outbreak slowed and

vaccine mandates began to be put in place, there was
concern that waning immunity might cause a new outbreak
in the fall. Our results show that, depending on assumptions
about the rate of waning, residual immunity, and protection

Figure 12. COVID-19 Scenario Modeling Hub study workflow. This figure illustrates a workflow for case studies of the COVID-19
ScenarioModelingHubwhere various scenarios aremodeled and simulated to generate projections of cases, hospitalization, and deaths in theUS
at national and state levels. [1] Confirmed case count data includes over 3100 US counties × over 500 days [2] The calibration involves a base
configuration and about 5 iterations, 10 replicates per iteration, and generates about 1 TB individual-level output data from 51 states × 50 replicates
= 2550 simulation instances. [3] The factorial design in this case study has 4 scenarios × 51 states × 50 replicates = 10,200 simulation instances. [4]
The size of individual-level output data: 4 cells × 51 states × 50 replicates × multi-million state transitions = multi-billion entries, about 4 TB. [5]
Synthetic population data includes person, household, location, and activities data. Our analysis mainly uses person data, which is over 20 GB. [6]
The size of the aggregate epidemiological data: 4 cells × 51 states × 50 replicates × 250 days × 200 health states × 3 counts (number of nodes
entering a state, number of nodes currently in a state, and cumulative number of nodes entering a state) = 1.5 billion entries, or 4 GB.

Figure 13. Projections of (a) weekly incident cases and (b) weekly incident hospitalizations in the US from Aug. 2021 to Feb. 2022 under
four different scenarios. Note that the ribbons show interquartile ranges of the probabilistic projections. (a) As expected, there will be
more cases with fast waning and the effect of protection is relatively small; and the assumption of no waning substantially underestimates
the cases. In all scenarios, we will see cases peak in early October, then start decreasing. (b) We have similar observations regarding
hospitalizations, except that the effect of protection on hospitalizations seems more significant.

18 The International Journal of High Performance Computing Applications 37(1)

against infection and severe disease, cases and hospitali-
zations may peak in early October before they drop.

We have continued our effort to support Scenario
Modeling Hub using our simulations. At the time of this
writing, Round 12 of Scenario Modeling Hub was con-
cluded, focusing on understanding the impact of the
Omicron variant of COVID-19 in the United States.

Implications for future HPC systems

We have been using HPC models for about 20 years to
support pandemic planning and response. Based on this
experience and the ongoing effort, we are able to identify a
few key considerations for the designers of next generation
HPC systems to support such large-scale socio-technical
simulations.

First, our application is interaction-intensive. Running
the simulation without any interventions already poses
challenges on the effective use of GPUs. We had done
earlier tests where we saw modest improvements for an
older version of our simulator. Second, from the per-
spective of system support, scaling our systems to ex-
ascale platforms will require us to explore program
models such as Charm++. We have already begun col-
laboration within the team to explore this. Finally, use of
parallel machines for long periods of time poses chal-
lenges in terms of dedicated accessibility. The HPC
consortium and Pittsburgh Supercomputing Center (PSC)
have generously given us cycles over these 18 months,
but those are still not adequate. It is unwise to rely on
large portions of any machine being dedicated to a single
application over extended periods of time, especially
during a crisis. Establishing strategic computing reserves
will help. The multi-system scheduling system we have
built is a step towards harnessing such HPC systems in a
reliable, efficient, and fair way. We believe the proposed
solution can be generalized for other applications as well.
Recently, Stoica and Shenker (2021) have also discussed
the need to harness multiple cloud resources to support
complex workflows; the general idea of hybrid clouds is
closely related to the work described here and needs to be
developed in the context of high performance computing
systems. Our work takes a step in that direction.

Acknowledgements

The authors would like to thank members of the Biocomplexity
COVID-19 Response Team, Network Systems Science and Ad-
vanced Computing (NSSAC) Division, UVAResearch computing,
Shawn Brown, John Towns, Tom Maiden, and our partners at
CDC, VDH, NSF and members of the Scenario Modeling Hub for
discussions related to the paper. We also sincerely thank the
Scenario Modeling Hub Coordination team, and, in particular,
Cecile Viboud, Katriona Shea, Michael Runge, Rebecca

Borchering, Justin Lessler, Shaun Truelove and others for their
incredible work to bring the teams together and for their invaluable
comments and suggestions. Additionally, their efforts also ensured
that the work presented here was relevant and timely.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was partially supported by the National Institutes of Health
(NIH) Grant R01GM109718, VDH Grant PV-BII VDH COVID-19
Modeling Program VDH-21-501-0135, NSF Grant No.: OAC-
1916805, NSF Expeditions in Computing Grant CCF-1918656,
CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-
2027541, US Centers for Disease Control and Prevention
75D30119C05935, DTRA subcontract/ARA S-D00189-15-TO-01-
UVA, NSF XSEDE TG-BIO210084. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
funding agencies. This work used resources, services, and support
from the COVID-19 HPC Consortium (https://covid19-hpc-
consortium.org/), a private-public effort uniting government, in-
dustry, and academic leaders who are volunteering free compute
time and resources in support of COVID-19 research.

ORCID iDs

Parantapa Bhattacharya  https://orcid.org/0000-0002-3626-
9939
Srinivasan Venkatramanan  https://orcid.org/0000-0002-0874-
8692
Benjamin Hurt  https://orcid.org/0000-0002-3803-2900
Andrew Warren  https://orcid.org/0000-0003-2660-0103
Przemyslaw Porebski  https://orcid.org/0000-0001-8012-5791
Madhav Marathe  https://orcid.org/0000-0003-1653-0658

Note

1. Since the submission of this paper, our group has continued to
contribute to the CDC Scenario Hub effort. Most recently, we
contributed our projections for Round 13.

References

Agrawal S, Bhandari S, Bhattacharjee A, et al. (2020) City-scale
agent-based simulators for the study of non-pharmaceutical
interventions in the context of the covid-19 epidemic. Journal
of the Indian Institute of Science 100(4): 809–847.

Barrett CL, Beckman RJ, Khan M, et al. (2009) Generation and
analysis of large synthetic social contact networks. Pro-
ceedings of the 2009 Winter Simulation Conference (WSC).
IEEE, pp. 1003–1014.

Bhattacharya et al. 19

https://covid19-hpc-consortium.org/
https://covid19-hpc-consortium.org/
https://orcid.org/0000-0002-3626-9939
https://orcid.org/0000-0002-3626-9939
https://orcid.org/0000-0002-3626-9939
https://orcid.org/0000-0002-0874-8692
https://orcid.org/0000-0002-0874-8692
https://orcid.org/0000-0002-0874-8692
https://orcid.org/0000-0002-3803-2900
https://orcid.org/0000-0002-3803-2900
https://orcid.org/0000-0003-2660-0103
https://orcid.org/0000-0003-2660-0103
https://orcid.org/0000-0001-8012-5791
https://orcid.org/0000-0001-8012-5791
https://orcid.org/0000-0003-1653-0658
https://orcid.org/0000-0003-1653-0658

Barrett CL, Bisset KR, Eubank SG, et al. (2008) Episimdemics: An
efficient algorithm for simulating the spread of infectious
disease over large realistic social networks. In: SC ’08:
Proceedings of the 2008 ACM/IEEE Conference on Super-
computing, pp. 1–12. DOI: 10.1109/SC.2008.5214892.

Bhatele A, Yeom JS, Jain N, et al. (2017) Massively parallel
simulations of spread of infectious diseases over realistic
social networks. In: 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, pp. 689–694.

Bisset KR, Aji AM, Bohm E, et al. (2012) Simulating the spread of
infectious disease over large realistic social networks using
charm++. In: 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops PhD Forum,
pp. 507–518. DOI: 10.1109/IPDPSW.2012.65.

Bisset KR, Chen J, Deodhar S, et al. (2014) Indemics: An in-
teractive high-performance computing framework for data-
intensive epidemic modeling. ACM Trans. Model. Comput.
Simul 24(1). URL. DOI: 10.1145/2501602.

Bisset KR, Chen J, Feng X, et al. (2009) Epifast: a fast algorithm
for large scale realistic epidemic simulations on distributed
memory systems. In: Proceedings of the 23rd international
conference on Supercomputing, pp. 430–439.

Borchering RK, Viboud C, Howerton E, et al. (2021) Modeling of
future covid-19 cases, hospitalizations, and deaths, by vac-
cination rates and nonpharmaceutical intervention scenarios–
united states, april–september 2021. MMWR Morb Mortal
Wkly Rep 2021 70(19): 719–724. DOI: 10.15585/mmwr.
mm7019e3.

Brent RP (1973) Algorithms for Minimization without Derivatives,
Chapter 4: An Algorithm with Guaranteed Convergence for
Finding a Zero of a Function. Englewood Cliffs, NJ: Pren-
tice-Hall.

Castellana VG, Drocco M, Feo J, et al. (2019) A parallel graph
environment for real-world data analytics workflows. In:
2019 Design, Automation Test in Europe Conference Exhi-
bition (DATE), pp. 1313–1318.

Chen J, Hoops S, Marathe A, et al. (2022) Effective Social
Network-Based Allocation of COVID-19 Vaccines. In:
Proceedings of the KDD Health Day 2022.

Chen J, Hoops S, Marathe A, et al. (2021) Prioritizing Allocation
of Covid-19 Vaccines Based on Social Contacts Increases
Vaccination Effectiveness. medRxiv.

Chen J, Vullikanti A, Hoops S, et al. (2020a) Medical costs of
keeping the us economy open during covid-19. Scientific
Reports 10(1): 1–10.

Chen J, Vullikanti A, Santos J, et al. (2020b) Epidemiological and
Economic Impact of Covid-19 in the Us. medRxiv.

Childers JT, Uram TD, Benjamin D, et al. (2017) An Edge Service
for Managing HPCWorkflows. In: Proceedings of the Fourth
International Workshop on HPC User Support Tools. DOI:
10.1145/3152493.3152557.

Chinazzi M, Davis JT, Ajelli M, et al. (2020) The effect of travel
restrictions on the spread of the 2019 novel coronavirus

(covid-19) outbreak. Science 368(6489): 395–400. DOI: 10.
1126/science.aba9757.

Eubank S, Guclu H, Kumar VA, et al. (2004) Modelling disease
outbreaks in realistic urban social networks. Nature
429(6988): 180–184.

Farnes J, Mort B, Dulwich F, et al. (2018) Science pipelines for the
square kilometre array. Galaxies 6(4): 120.

Feng H, Misra V and Rubenstein D (2007) Pbs: A unified
priority-based scheduler. In: Proceedings of the 2007
ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems,
pp. 203–214.

Ferguson N, Laydon D, Nedjati Gilani G, et al. (2020) Report 9:
Impact of Non-pharmaceutical Interventions (Npis) to Re-
duce Covid19 Mortality and Healthcare Demand.

Fitzpatrick MC and Galvani AP (2021) Optimizing age-specific
vaccination. Science 371(6532): 890–891.

Foster I, Parkes D and Zheng S (2020) The Rise of Ai-Driven
Simulators: Building a New Crystal Ball. arXiv preprint
arXiv:2012.06049.

Gandon S and Lion S (2022) Targeted vaccination and the speed of
sars-cov-2 adaptation. Proceedings of the National Academy
of Sciences 119(3): e2110666119.

Google (2021) Agent based epidemic simulator. https://github.
com/google-research/agent-based-epidemic-sim

Grefenstette JJ, Brown ST, Rosenfeld R, et al. (2013) Fred (a
framework for reconstructing epidemic dynamics): an open-
source software system for modeling infectious diseases and
control strategies using census-based populations. BMC
Public Health 13(1): 940.

Hager GD, Drobnis A, Fang F, et al. (2019) Artificial Intelligence
for Social Good. arXiv preprint arXiv:1901.05406.

Hendrix V, Fox J, Ghoshal D, et al. (2016) Tigres workflow library:
Supporting scientific pipelines on hpc systems. In: 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), pp. 146–155.

Hindman B, Konwinski A, Zaharia M, et al. (2011) Mesos: A
platform for fine-grained resource sharing in the data center.
In: NSDI, Volume 11, pp. 22–22.

Hoops S, Chen J, Adiga A, et al. (2021) A scalable agent-based
modeling framework to study realistic contact tracing pro-
tocols. In: Proceedings of the 2021 Winter Simulation
Conference (WSC). IEEE.

Juthani PV, Gupta A, Borges KA, et al. (2021) Hospitalisation
among vaccine breakthrough covid-19 infections. The Lan-
cet. Infectious diseases 21(11): 1485–1486. DOI: 10.1016/
S1473-3099(21)00558-2.

Kerr CC, Stuart RM, Mistry D, et al. (2021) Covasim: An agent-
based model of covid-19 dynamics and interventions. PLOS
Computational Biology 17(7): 1–32. DOI: 10.1371/journal.
pcbi.1009149.

Klonower M (2021) AMD EPYC Advanced User Training on
Expanse. https://education.sdsc.edu/training/interactive/
202104_amd_epyc/index.html

20 The International Journal of High Performance Computing Applications 37(1)

https://doi.org/10.1109/SC.2008.5214892
https://doi.org/10.1109/IPDPSW.2012.65
https://doi.org/10.1145/2501602
https://doi.org/10.15585/mmwr.mm7019e3
https://doi.org/10.15585/mmwr.mm7019e3
https://doi.org/10.1145/3152493.3152557
https://doi.org/10.1126/science.aba9757
https://doi.org/10.1126/science.aba9757
https://github.com/google-research/agent-based-epidemic-sim
https://github.com/google-research/agent-based-epidemic-sim
https://doi.org/10.1016/S1473-3099(21)00558-2
https://doi.org/10.1016/S1473-3099(21)00558-2
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1371/journal.pcbi.1009149
https://education.sdsc.edu/training/interactive/202104_amd_epyc/index.html
https://education.sdsc.edu/training/interactive/202104_amd_epyc/index.html

Kraemer MU, Yang CH, Gutierrez B, et al. (2020) The effect of
human mobility and control measures on the covid-19 epi-
demic in china. Science 368(6490): 493–497. DOI: 10.1126/
science.abb4218.

Louppe G (2017) Bayesian Optimisation with Scikit-Optimize.
Lyons E, Papadimitriou G, Wang C, et al. (2019) Toward a dynamic

network-centric distributed cloud platform for scientific work-
flows: A case study for adaptive weather sensing. In: 2019 15th
International Conference on eScience (eScience), pp. 67–76.

Machi D, Bhattacharya P, Hoops S, et al. (2021) Scalable epi-
demiological workflows to support covid-19 planning and
response. In: 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 639–650.

Merzky A, Turilli M, Titov M, et al. (2021) Design and perfor-
mance characterization of radical-pilot on leadership-class
platforms. CoRR abs/2103.00091URL https://arxiv.org/abs/
2103.00091.

Moritz P, Nishihara R, Wang S, et al. (2018) Ray: A distributed
framework for emerging AI applications. In: 13th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 18), pp. 561–577.

Mortveit HS, Adiga A, Barrett CL, et al. (2020) Synthetic pop-
ulations and interaction networks for the U.S.. In: Technical
Report, NSSAC. University of Virginia. NSSAC Technical
Report: #2019-025.

Naaber P, Tserel L, Kangro K, et al. (2021) Dynamics of antibody
response to bnt162b2 vaccine after six months: a longitudinal
prospective study. The Lancet Regional Health - Europe 10:
100208.

Nogueira F (2014) Bayesian Optimization: Open Source Con-
strained Global Optimization Tool for Python. URL https://
github.com/fmfn/BayesianOptimization.

NYT-DATA (2020) Coronavirus (Covid-19) Data in the United
States. https://github.com/nytimes/covid-19-data.

Paraskevakos I, Turilli M, Gonçalves BC, et al. (2019) Workflow
design analysis for high resolution satellite image analysis. In:
2019 15th International Conference on eScience (eScience),
pp. 47–56.

Pei S, Kandula S, Yang W, et al. (2018) Forecasting the spatial
transmission of influenza in the united states. Proceedings of
the National Academy of Sciences 115(11): 2752–2757.

Peng L, Yang W, Zhang D, et al. (2020) Epidemic analysis of
covid-19 in china by dynamical modeling. arXiv preprint
arXiv:2002.06563.

Perrault A, Fang F, Sinha A, et al. (2019) Ai for social impact:
Learning and planning in the data-to-deployment pipeline.
arXiv preprint arXiv:2001.00088.

Perumalla KS and Seal SK (2012) Discrete event modeling and
massively parallel execution of epidemic outbreak phe-
nomena. SIMULATION 88(7): 768–783. DOI: 10.1177/
0037549711413001.

Reich NG, Brooks LC, Fox SJ, et al. (2019) A collaborative
multiyear, multimodel assessment of seasonal influenza

forecasting in the united states. Proceedings of the National
Academy of Sciences 116(8): 3146–3154.

Rocklin M (2015) Dask: Parallel computation with blocked al-
gorithms and task scheduling. In: Proceedings of the 14th
python in science conference, volume 130. Citeseer, p. 136.

Roosa K, Lee Y, Luo R, et al. (2020) Real-time forecasts of the
covid-19 epidemic in china from february 5th to february
24th, 2020. Infectious Disease Modelling 5: 256–263.

Salim MA, Uram TD, Childers JT, et al. (2019) Balsam: Auto-
mated Scheduling and Execution of Dynamic, Data-Intensive
HPC Workflows. https://arxiv.org/abs/1909.08704v1.

Shaman J and Karspeck A (2012) Forecasting seasonal outbreaks
of influenza. Proceedings of the National Academy of Sci-
ences 109(50): 20425–20430.

SHUB (2021) ScenarioModelingHub. https://covid19scenariomodelinghub.
org/

Skvortsov CAR, Dawson P and Gailis R (2007) Epidemic mod-
elling: Validation of agent-based simulation by using simple
mathematical models.

Somers M (2019) Leiden Grid Infrastructure. https://lgi.tc.lic.
leidenuniv.nl/LGI/docs/LGI.pdf

Stoica I and Shenker S (2021) From cloud computing to sky
computing. In: Proceedings of theWorkshop on Hot Topics in
Operating Systems, pp. 26–32.

Truelove S, Smith CP, Qin M, et al. (2022) Projected resurgence of
COVID-19 in the United States in July–December 2021
resulting from the increased transmissibility of the Delta
variant and faltering vaccination. eLife 11: e73584. DOI: 10.
7554/eLife.73584.

Vavilapalli VK, Murthy AC, Douglas C, et al. (2013) Apache
hadoop yarn: Yet another resource negotiator. In: Proceedings
of the 4th annual Symposium on Cloud Computing, pp. 1–16.

VDH (2021) UVA COVID-19 Modeling Weekly Update. https://
www.vdh.virginia.gov/coronavirus/category/covid-19/
model/

Verity R, Okell LC, Dorigatti I, et al. (2020) Estimates of the
severity of coronavirus disease 2019: a model-based analysis.
The Lancet Infectious Diseases 20(6): 669–677. DOI: 10.
1016/S1473-3099(20)30243-7.

Walensky R and Fauci A (2021). Last accessed: October
2021https://www.whitehouse.gov/briefing-room/press-
briefings/2021/05/05/press-briefing-by-white-house-covid-
19response-team-and-public-health-officials-34/

Wang L, Chen J and Marathe M (2019) Defsi: Deep learning based
epidemic forecasting with synthetic information. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33. pp. 9607–9612.

Wu J, Chen XY, Zhang H, et al. (2019) Hyperparameter opti-
mization for machine learning models based on bayesian
optimization. Journal of Electronic Science and Technology
17(1): 26–40.

XSEDE (2021) Webinar: How to Write a Successful XSEDE
Proposal. https://portal.xsede.org/allocations/research

Bhattacharya et al. 21

https://doi.org/10.1126/science.abb4218
https://doi.org/10.1126/science.abb4218
https://arxiv.org/abs/2103.00091
https://arxiv.org/abs/2103.00091
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://github.com/nytimes/covid-19-data
https://doi.org/10.1177/0037549711413001
https://doi.org/10.1177/0037549711413001
https://arxiv.org/abs/1909.08704v1
https://covid19scenariomodelinghub.org/
https://covid19scenariomodelinghub.org/
https://lgi.tc.lic.leidenuniv.nl/LGI/docs/LGI.pdf
https://lgi.tc.lic.leidenuniv.nl/LGI/docs/LGI.pdf
https://doi.org/10.7554/eLife.73584
https://doi.org/10.7554/eLife.73584
https://www.vdh.virginia.gov/coronavirus/category/covid-19/model/
https://www.vdh.virginia.gov/coronavirus/category/covid-19/model/
https://www.vdh.virginia.gov/coronavirus/category/covid-19/model/
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://www.whitehouse.gov/briefing-room/press-briefings/2021/05/05/press-briefing-by-white-house-covid-19response-team-and-public-health-officials-34/
https://www.whitehouse.gov/briefing-room/press-briefings/2021/05/05/press-briefing-by-white-house-covid-19response-team-and-public-health-officials-34/
https://www.whitehouse.gov/briefing-room/press-briefings/2021/05/05/press-briefing-by-white-house-covid-19response-team-and-public-health-officials-34/
https://portal.xsede.org/allocations/research

Yeom JS, Bhatele A, Bisset K, et al. (2014) Overcoming the
scalability challenges of epidemic simulations on blue waters.
In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. IEEE, pp. 755–764.

Yoo AB, Jette MA and Grondona M (2003) Slurm: Simple linux
utility for resource management. In: Workshop on Job
Scheduling Strategies for Parallel Processing. Springer,
pp. 44–60.

Author biographies

Parantapa Bhattacharya is a Research Scientist at the
Biocomplexity Institute at University of Virginia. His re-
search areas include High Performance Computing, Agent-
Based Modeling, and Explainable AI methods for Natural
Language Processing (NLP) models.

Jiangzhuo Chen is a Research Associate Professor at the
Biocomplexity Institute at University of Virginia. His re-
search areas include big data analytics, model-based fore-
casting modeling, simulation, and analysis of large-scale
social networks, computational epidemiology, and com-
putational economics.

Stefan Hoops is a Research Associate Professor at the
Biocomplexity Institute at University of Virginia. His re-
search areas include modeling and simulation of bio-
chemical systems, management and analysis of systems
biology data sets, and reverse-engineering of biochemical
networks.

Dustin Machi is a Senior Software Architect at the Bio-
complexity Institute at University of Virginia. His research
areas include cyberinfrastructure, high-performance com-
puting (HPC), and software engineering.

Bryan Lewis is a computational epidemiologist with two
decades of experience crafting infectious disease models for
public policy and decision support. He has provided real-
time epidemic support to federal and state partners for the
2009 influenza pandemic, 2014-15 West African Ebola
pandemic, and the COVID-19 pandemic.

Srinivasan (Srini) Venkatramanan is a Research Assistant
Professor at the Biocomplexity Institute at University of
Virginia. His areas of expertise include computational ep-
idemiology, mathematical modeling, data science, and
network science.

Mandy Wilson is a Research Scientist at the Biocomplexity
Institute at University of Virginia. Her primary areas of
interest are database architectures and data mining, but she
also has expertise in graphical user interface design and
data-driven web applications.

Brian Klahn is a Research Scientist at the Biocomplexity
Institute at University of Virginia. Brian has years of ex-
perience with production-grade software and data systems.

Brian often draws on connections and parallels from his
diverse experiences. This includes an M.S. in [neuro]
physiology, molecular biology, genetics, multiple pro-
gramming languages and paradigms, and even nuclear
engineering (U.S. Navy).

Aniruddha Adiga is a Research Scientist at the Bio-
complexity Institute at University of Virginia. His research
areas include signal processing, machine learning, data
mining, forecasting, big data analysis etc.

Benjamin Hurt is a Data Scientist at the Biocomplexity
Institute at University of Virginia. His focus has been the
development of epidemiological forecasting, analysis, and
visualization, along with financial contagion modeling.

Joseph Outten is a Software Engineer at the Biocomplexity
Institute at University of Virginia. His research interests and
projects revolve around synthetic biology and bio-
informatics, as well as some machine learning and algo-
rithm design.

Abhijin Adiga is a Research Assistant Professor at the
Biocomplexity Institute at University of Virginia. His in-
terests include network science, modeling, algorithms,
combinatorics, and game theory, with current focus on
dynamical processes over networks and design and im-
plementation of complex simulation systems.

Andrew Warren is a Research Assistant Professor at
the Biocomplexity Institute at University of Virginia.
His interests lie in developing and applying algorithms for
processing biological data for insight and hypothesis testing
using comparative genomics, experimental analysis, ma-
chine learning, data mining, and graph modeling with a
focus on promoting human health and security.

Young Yun Baek is a Senior Scientist at the Biocomplexity
Institute at University of Virginia. Her interests include
statistical methodologies for data analyses, data imputation,
agent-based modeling, and synthetic information.

Przemyslaw Porebski is a Software Engineer and Data
Scientist at the Biocomplexity Institute at University of
Virginia. Currently he supports the computational epide-
miology efforts at the institute.

Achla Marathe is a Professor at the Biocomplexity Institute
and at the Department of Public Health Sciences at Uni-
versity of Virginia.

Dawen Xie is a Research Scientist at the Biocomplexity
Institute at University of Virginia. His primary work fo-
cuses on Geographic Information Systems (GIS), visual
analytics, information management systems, and
databases.

Samarth Swarup is a Research Associate Professor at the
Biocomplexity Institute at University of Virginia.

22 The International Journal of High Performance Computing Applications 37(1)

Anil Vullikanti is a Professor at the Biocomplexity Institute
and the Dept. of Computer Science at University of Vir-
ginia. His research interests are in the broad areas of net-
work science, dynamical systems, foundations of machine
learning, combinatorial optimization, and distributed
computing, and their applications to computational epide-
miology and social networks.

Henning S. Mortveit is an Associate Professor at the Bio-
complexity Institute and at the Department of Engineering
Systems and Environment at University of Virginia. His
interests include massively interacting systems (MMS),

mathematical frameworks and modeling for MMS, software
architectures and designs for MMS, and the construction of
digital twins in support of their simulation models.

Stephen Eubank is a Professor at the Biocomplexity In-
stitute and in the Dept. of Public Health Sciences at Uni-
versity of Virginia. He was PI on one of three original
research groups in the NIH-sponsored Models of Infectious
Disease Agent Study (MIDAS). He currently serves as a
Jefferson Science Fellow at the US Dept. of State.

Christopher L. Barrett is an endowed Distinguished Pro-
fessor in Biocomplexity, the Executive Director of the
Biocomplexity Institute, and Professor of the Department of
Computer Science at the University of Virginia. Over the
past 35 years, Barrett has conceived, founded, and led large
interdisciplinary complex systems research projects and
organizations, established national and international tech-
nology programs, and co-founded organizations for federal
agencies such as the Department of Defense, the Depart-
ment of Energy and the Department of Homeland Security.
He has served in various advisory and collaborative sci-
entific roles internationally.

Figure 14. The COVID-19 disease model with both unvaccinated and vaccinated states. This disease progression model is represented
as a probabilistic timed transition system (PTTS): the state transitions are probabilistic, and, in many cases, are timed, that is, transitions
after a given time period. An individual starts from the upper state S (Susceptible). If an individual receives a vaccine, the individual enters
a new susceptible state represented by a dotted box. The dashed lines represent state transitions triggered by either interactions with
infectious individuals or vaccination. The solid lines represent probabilistic timed state transitions. The shapes with a solid border
represent states of an unvaccinated individual; those with a dashed border represent states of a vaccinated individual. The thicker lines
represent larger probabilities. Therefore, a vaccinated individual has a smaller probability of getting infected (protection against infection),
and, even if infected, the individual has a smaller probability of being hospitalized, needing ventilation, or dying (protection against
severe illness).

Table 5. Disease transmission parameters.

State Attribute Value

Transmissibility 0.18
Presymptomatic Infectivity 0.8
Symptomatic Infectivity 1.0
Asymptomatic Infectivity 1.0
Susceptible Susceptibility 1.0
RX Failure Susceptibility 1.0

Bhattacharya et al. 23

Madhav Marathe is a Distinguished Professor at the Bi-
ocomplexity Institute and division director of the Network
Systems Science and Advanced Computing Division at the
Institute. He is also a Professor in the Department of
Computer Science at University of Virginia. Over the last

20 years, his division has supported federal and state
authorities in their effort to combat epidemics in real-time,
including the H1N1 pandemic in 2009, the Ebola outbreak
in 2014 and, most recently, the COVID-19 pandemic. He is
a Fellow of the IEEE, ACM, SIAM, and AAAS.

Table 6. Disease progression parameters as given by the CDC document (CDC-Planning-Parameters). One value per line applies to all
age groups. Abbreviations: prob: probability, dt: dwell time, Attd: attended, Hosp: hospitalized, Vent: ventilated, (D): resulting in death,
and (H): resulting in hospitalization.

Age

Progression Attribute 0–4 5–17 18–49 50–64 65+
Exposed - Asympt prob 0.35
Exposed - Asympt dt-mean 5
Exposed - Asympt dt-std dev 1
Asympt - Recovered prob 1
Asympt - Recovered dt-mean 5
Asympt - Recovered dt-std dev 1
Exposed - Presympt prob 0.65
Exposed - Presympt dt-fixed 3
Presympt - Sympt prob 1
Presympt - Sympt dt-fixed 2
Sympt - Attd prob 0.9594 0.9894 0.9594 0.912 0.788
Sympt - Attd dt-discrete 1:0.175, 2:0.175, 3:0.1, 4:0.1, 5:0.1,

6:0.1, 7:0.1, 8:0.05, 9:0.05, 10:0.05
Attd - Recovered prob 1
Attd - Recovered dt-mean 5
Attd - Recovered dt-std dev 1
Sympt - Attd(D) prob 0.0006 0.0006 0.0006 0.003 0.017
Sympt - Attd(D) dt-fixed 2
Attd(D) - Hosp(D) prob 0.95
Attd(D) - Hosp(D) dt-fixed 2
Hosp(D) - Vent(D) prob 0.06 0.06 0.06 0.15 0.225
Hosp(D) - Vent(D) dt-fixed 2
Vent(D) - Death prob 1
Vent(D) - Death dt-fixed 4
Hosp(D) - Death prob 0.94 0.94 0.94 0.85 0.775
Hosp(D) - Death dt-fixed 6
Attd(D) - Death prob 0.05
Attd(D) - Death dt-fixed 8
Sympt - Attd(H) prob 0.04 0.01 0.04 0.085 0.195
Sympt - Attd(H) dt-fixed 1
Attd(H) - Hosp prob 1
Attd(H) - Hosp dt-mean 5 5 5 5.3 4.2
Attd(H) - Hosp dt-std dev 4.6 4.6 4.6 5.2 5.2
Hosp - Recovered prob 0.2
Hosp - Recovered dt-mean 3.1 3.1 3.1 7.8 6.5
Hosp - Recovered dt-std dev 3.7 3.7 3.7 6.3 4.9
Hosp - Vent prob 0.06 0.06 0.06 0.15 0.225
Hosp - Vent dt-mean 1
Hosp - Vent dt-std dev 0.2
Vent - Recovered prob 1
Vent - Recovered dt-mean 2.1 2.1 2.1 6.8 5.5
Vent - Recovered dt-std dev 3.7 3.7 3.7 6.3 4.9

24 The International Journal of High Performance Computing Applications 37(1)

Figure 15. Total number of cases, hospitalizations, and deaths averted due to vaccinations over the entire US. Case study 3: the role of
vaccine acceptance in controlling COVID-19 spread.

Figure 16. Due to vaccine saturation, vaccination rate decreases after the initial acceleration. This leads to less averted infections (a) and
less averted deaths (b), comparing with a constant acceleration of vaccination rate.

Figure 17. If we can increase vaccine acceptance by 10%, we can reduce cases further in terms of (a) infection and (b) deaths.

Bhattacharya et al. 25

Appendix

The Appendix is organized as follows: in Appendix A, we
describe the disease model, and in Appendix B we provide
additional details on two of the case studies. The disease
model, EpiHiper, and the construction of the digital twin are
described in our earlier published works; see (Chen et al.,
2020a,b; Machi et al., 2021; Barrett et al., 2009; Chen et al.,
2021).

A. The disease model parameters

The within-host disease transmission model is shown in
Figure 14. Transmission may occur when an individual in
one of the states Susceptible or RX Failure comes in contact
with one or more individuals in the states Presymptomatic,
Symptomatic, or Asymptomatic. The individual transmis-
sions are governed by the parameters in Table 5. Progression
from one disease state to the next is governed by the pa-
rameters in Table 6.

B. Selected case studies and scenario projections

As discussed earlier in the paper, the integrated pipeline has
been used for a number of case studies over the past year.
The pipeline as presented here has been improved iteratively
during this time period. Here we describe two case studies in
some detail.

Case study 2: the role of vaccine allocation strategies. In this
section, we study the role of vaccine distribution strategies
in controlling the spread and negative effects of COVID-19
in the US.

In early 2021, the Pfizer and Moderna vaccines started
becoming available for larger portions of the US population.
However, due to production and logistical issues, not
enough vaccines were available for everyone eligible. Thus,
because of high demand and low supply, a key question at
the time was: how should we fairly distribute vaccines
across the US states?

During that time, we studied this issue and tried to find
answers for the following questions: (i) What are the dif-
ferent “fair” allocation strategies for distributing vaccines to
the different states? (ii) By how much do these vaccine
distribution strategies reduce the impact of COVID-19 on
the US population as a whole? (iii) What effect do these
global vaccine distribution strategies have on the reduction
of COVID-19 in the Commonwealth of Virginia (our in-
stitution’s home state)?

Scenarios. To answer these questions, we studied the
following scenarios for different vaccine distribution
strategies by using an agent-based simulation model. The
experimental design consisted of two factors: (i) three in-
terstate vaccine distribution strategies, and (ii) two intrastate

vaccine distribution strategies. The interstate vaccine dis-
tribution strategies were: (a) vaccines are distributed to the
US states in proportion to their population size (popsize) (b)
vaccines are distributed to the US states in proportion to the
prevalence of COVID-19 in the state (prevalence) and (c)
vaccines are distributed to the US states in proportion to the
progress of vaccination in the state (progress). The two
intrastate vaccine distribution strategies were: (a) preference
given to older individuals (old) and (b) available vaccines
were distributed to eligible individuals uniformly at ran-
dom. In addition, a baseline strategy was considered which
involved letting the epidemic progress without any vacci-
nation. Combining the above cases, we have seven sce-
narios (a 7-cell experiment).

Implementation. Our simulations used synthetic pop-
ulations, with accompanying synthetic contact networks, for
the 50 US states andWashington DC. The initial conditions of
the simulation were calibrated such that they matched the
COVID-19 conditions of each state as of early Feburary 2021.
Each simulation was run for 300 days. Due to the stochastic
nature of the simulations, we ran each simulation configuration
15 times to get a robust estimate of the metrics of interest.

The disease model used for the simulation was the best
guess version of the “COVID-19 Pandemic Planning
Scenarios” as prepared by the US Centers for Disease
Control and Prevention (CDC) SARS-CoV-2 modeling
team (CDC-MODEL). The above disease model is a
Susceptible-Exposed-Infectious-Recovered (SEIR) model,
where state transitions follow the parameters as defined in
(CDC-MODEL). The model provides different transition
probabilities for five different age groups: preschool (0–
4 years), students (5–17), adults (18–49), older adults (50–
64) and seniors (65+). The transition probabilities also
change depending on whether a person is vaccinated or not.

Results. Figure 15(a) shows that the progress-based
vaccine allocation strategy paired with random distribu-
tion (without preference), maximizes the total number of
averted cases. However, in terms of the number of averted
deaths, Figure 15(c) shows that the progress-based vaccine
allocation strategy paired with the age-prioritized intrastate
distribution strategy works the best. Finally, Figure 15(b)
shows that, in terms of averted hospitalizations, both
population-based allocation (popsize) and vaccination
progress-based allocation (progress), when taken together
with the age-based intrastate prioritization strategy, work
the best among the choices.

In this section, we study the role of vaccine hesitancy in
controlling the spread of COVID-19 in the US using AI-
driven agent-based models.

With the introduction of COVID-19 vaccines, the US has
seen a significant decline in cases as an increasingly larger
fraction of the population is vaccinated. When vaccine rollout
initially began, the availability of vaccines was the biggest
bottleneck. However, since mid-2021, the problem of vaccine

26 The International Journal of High Performance Computing Applications 37(1)

allocation in the US has shifted from a supply-side problem to
a demand-side problem due to vaccine hesitancy.

We are interested in the following questions: (i) Do
differences in vaccine hesitancy across different states
change the effectiveness of vaccinations in those states? (ii)
By how much does vaccine hesitancy reduce the effec-
tiveness of vaccinations? (iii) By how much would infec-
tions and deaths due to COVID-19 be reduced if the
hesitancy levels could be reduced?

Scenarios. The experimental design consists of three
factors: (i) two vaccine acceptance levels: survey-based
acceptance rate and improved acceptance rate (improved
by 10%); (ii) two vaccination demand schedules:
accelerated (accel) and accelerated-decelerated (accel-
decel); (iii) two prioritization schemes: no priority and
age-based prioritization. Combining these three factors, we
have eight cells, plus a cell (no-vax) where the NPIs are in
place, but the vaccinations are not applied.

Implementation. To run this study, we used the same
agent-based simulation model, with the same simulation
initializations and NPIs, as in case study 2. But instead of a
constant vaccination rate proportional to either state pop-
ulation size, disease prevalence, or vaccination progress, we
took state-specific vaccine acceptance rates and im-
plemented both an accelerated vaccination schedule where
each week vaccinations increase and an accelerated-
decelerated schedule where vaccinations first increase
each week, then start to decrease, both schedules having
cumulative vaccine uptake upper-bounded by vaccine ac-
ceptance level.

Results. At the national level, the accelerated-decelerated
vaccination demand due to vaccine hesitancy leads to more
infections/deaths (fewer averted infections/deaths), com-
pared to the accelerated vaccination schedule. This is shown
in Figure 16. With an accelerated vaccination schedule,
2042 infections and 12 deaths can be averted per 100K

people. At the national level, this results in a total reduction
of 6.7 M infections and 39.4 K deaths. With an accelerated-
decelerated vaccination demand schedule, the averted in-
fections and deaths decrease to 1364 and 8.6, respectively,
per 100K. At the national level, it reduces 4.5 M infections
and 28.2 K deaths in total.

These numbers highlight the health and human costs of a
slower vaccination schedule due to saturation in demand for
vaccination and vaccine hesitancy. Although the same number
of people are vaccinated at the end of both vaccination
schedules, because vaccines are administered faster in one
schedule than the other, the vaccines protect more people in the
accelerated scenario through indirect protections, that is, more
people avoid getting infected before getting vaccinated.

Suppose we can increase the vaccine acceptance rate
by 10% in each state. Figure 17 shows that this can
improve aversion of infections and deaths over the effect
of vaccination at the current acceptance level. With an
accelerated-decelerated vaccination schedule, 10% more
vaccine acceptance can increase infection aversion from
1364 to 1445 and death aversion from 8.6 to 9.1 per 100K
of the national population, corresponding to a total
aversion of 4.7 M infections and 29.9 K deaths. Although
a smaller effect compared to what an accelerated vac-
cination schedule can achieve, the improvement is still
significant.

Additional References

CDC-MODEL (2020) Covid-19 pandemic planning sce-
narios. https://www.cdc.gov/coronavirus/2019-ncov/
hcp/planning-scenarios.html. [Online, accessed 10
May 2021].

CDC-Planning-Parameters (2020) Planning parameters for
COVID-19 outbreak scenarios. In: Circulated in
COVID-19 Modeling working groups.

Bhattacharya et al. 27

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html

	Data-driven scalable pipeline using national agent-based models for real-time pandemic response and decision support
	Justification for ACM Gordon Bell Special Prize for HPC-based COVID-19 research
	Performance attributes
	Overview of the problem
	Supporting policies
	Need for the pipeline
	Current state of the art
	Overall Methodology

	Innovations realized
	Policy support poses significant challenges
	Challenge 1: HPC
	Challenge 2: Flexible model specification
	Challenge 3: Big data
	Reliable end-to-end HPC cloud pipeline
	Modeling innovations
	Calibration improvements
	Innovations in digital twins and model initialization

	Role of data-driven AI models

	Wormulon: an intelligent job submission system for HPC schedulers
	Requirements for our job submission system
	Design and architecture of Wormulon
	Architecture overview
	Task: A unit of work

	Batch: a set of tasks
	A batch is a set of related tasks
	Lifecycle of a task
	Concretizer: Specifying semantic knowledge of tasks and clusters
	Life cycle of a job
	The Wormulon data store
	System implementation

	How performance was measured
	Performance of EpiHiper
	Performance of Wormulon

	Performance results
	Performance of a single EpiHiper replicate
	Performance for Wormulon, the cluster meta-scheduler

	Case study: role of waning immunity

	Implications
	Implications for understanding the spread of COVID-19 and the role of vaccines
	Implications for future HPC systems

	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Note
	References
	Author biographies
	Appendix
	A. The disease model parameters
	B. Selected case studies and scenario projections
	Outline placeholder
	Case study 2: the role of vaccine allocation strategies

	Additional References

