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• Explored the challenges associated with
using machine learning algorithms for
analysis of WBE datasets

• Evaluated the performance and accuracy
of Random Forest algorithm for short-
term predictions based on WBE datasets

• Sampling frequency and training set size
were identified as key factors contributing
to accuracy.

• Contribution of catchment population on
forecast accuracy was more ambiguous.

• Determined that the factors governing
Random Forest forecast performance are
complicated and interrelated
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Wastewater-based epidemiology (WBE) has gained increasing attention as a complementary tool to conventional sur-
veillance methods with potential for significant resource and labour savings when used for public health monitoring.
UsingWBE datasets to trainmachine learning algorithms and develop predictivemodelsmay also facilitate earlywarn-
ings for the spread of outbreaks. The challenges associated with using machine learning for the analysis of WBE
datasets and timeseries forecasting of COVID-19 were explored by running Random Forest (RF) algorithms on WBE
datasets across 108 sites in five regions: Scotland, Catalonia, Ohio, the Netherlands, and Switzerland. This method
usesmeasurements of SARS-CoV-2 RNA fragment concentration in samples taken at the inlets of wastewater treatment
plants, providing insight into the prevalence of infection in upstreamwastewater catchment populations. RF's forecast-
ing performance at each site was quantitatively evaluated by determining mean absolute percentage error (MAPE)
values, which was used to highlight challenges affecting future implementations of RF forWBE forecasting efforts. Per-
formance was generally poor using WBE datasets from Catalonia, Scotland, and Ohio with ‘reasonable’ or better fore-
casts constituting 0%, 5%, and 0% of these regions' forecasts, respectively. RF's performance was much stronger with
WBE data from the Netherlands and Switzerland, which provided 55 % and 45 % ‘reasonable’ or better forecasts
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respectively. Sampling frequency and training set size were identified as key factors contributing to accuracy, while
inclusion of too many unnecessary variables (or e.g., flow data) was identified as a contributing factor to poor perfor-
mance. The contribution of catchment population on forecast accuracy was more ambiguous. This study determined
that the factors governing RF's forecast performance are complicated and interrelated, which presents challenges for
further work in this space. A sufficiently accurate further iteration of the tool discussedwithin this studywould provide
significant but varying value for public health departments for monitoring future, or ongoing outbreaks, assisting the
implementation of on-time health response measures.
1. Introduction

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2
virus, was first officially reported in December 2019. The global pandemic
caused by this disease is ongoing and has caused detrimental physical and
mental health impacts in addition to global economic, political, and envi-
ronmental consequences (Hill et al., 2020; Ramelli and Wagner, 2020).
Public health efforts have aimed to contain and mitigate the spread and as-
sociated impacts of COVID-19 through vaccine development, quarantine
requirements, travel restrictions, and considerable allocation of resources
to health departments.

COVID-19 diagnosis and case management using traditional epidemio-
logical evidence is based on the detection of SARS-CoV-2 RNA in nasopha-
ryngeal swabs or saliva samples using reverse transcription quantitative
polymerase chain reaction (PCR) testing (Sasaki et al., 2022). This
approach relies upon testing of symptomatic cases or close contacts of con-
firmed cases, introducing inaccuracies due to the frequency of asymptom-
atic COVID-19 cases. Sampling of entire populations is largely impractical
and results in underreporting of positive cases, limiting the ability for au-
thorities to make informed and timely health responses which ultimately
reduces response efficacy (Sims and Kasprzyk-Hordern, 2020).

Wastewater-based epidemiology (WBE) offers an alternative to conven-
tional surveillance practices and has gained recent attention as a supple-
mentary tool for monitoring viral prevalence within the community. This
approach facilitates detection of asymptomatic or previously undetected
cases within monitored wastewater catchments while mitigating biases
introduced through traditional surveillance methods, including spatial
and temporal differences in health-seeking behaviours, testing capacities,
and contact tracing capabilities (Larsen and Wigginton, 2020; Aberi et al.,
2021; Zhu et al., 2021). Detection can occur prior to onset of symptoms
or before detection through epidemiological methods, providing early
warning capabilities that can facilitate pre-emptive or preventative actions
by health departments (Hellmér et al., 2014; Ahmed et al., 2020; Sims and
Kasprzyk-Hordern, 2020; Róka et al., 2021).

Faeces from infected individuals, including asymptomatic cases, con-
tain SARS-CoV-2 viral genome fragments (Zhu et al., 2021; Zhang et al.,
2022). Fragments are transported through sewers towards wastewater
treatment plants (WWTPs), where samples can be collected and analysed
to quantify viral prevalence. Since samples collected at WWTP inlets are
composed of wastewater from across an entire catchment area, they can
represent a region's entire population provided their sanitary systems are
connected to sewerage networks. Inclusion of other measured parameters
including volumetric flow rate and catchment population can then be
used to calculate active community COVID-19 cases, facilitating effective
allocation of medical resources and reducing pressure on health systems
(Ahmed et al., 2020; Xagoraraki and O’Brien, 2020; Zhu et al., 2021).

Machine learning (ML) provides value for the analysis of large datasets
due to its capability for self-improvement based on supplied data. While
time series analysis is easier to model and use, root causes and factors are
not taken into account. Specific ML models can be selected to learn from
data, identify patterns, and make predictions with minimal human inter-
vention (De Las Heras et al., 2020; Yadav, 2020; Abdalla et al., 2022;
Truong, 2022). ML models have been widely applied to both COVID-19
forecasting and WBE data interpretation, however studies considering
the former have largely utilised traditional epidemiological datasets.
Riberio et al. (2020) evaluated autoregressive integrated moving average
2

(ARIMA), cubist regression (CUBIST), random forest (RF), ridge regression
(RIDGE), support vector regression (SVR), and stacking-ensemble learning
to forecast the growth of COVID-19 cases in Brazil using cumulative case
counts as a training parameter. Singh et al. (2020) also tested ARIMA for
COVID-19 spread prediction. Chimmula and Zhang (2020) applied long
short-term memory (LSTM) networks to predict future infection conditions
and indicate a potential stopping time for COVID-19 outbreaks in Canada.
Within WBE contexts historical data can be provided to an algorithm
and used for future predictions of targeted water quality parameters or
chemical/biological indicators within wastewater (Granata et al., 2017;
Tomperi et al., 2017). These authors considered lead time of 1 to 6 days,
however the current knowledge on lead time for pandemic early warning
systems is very limited.

Few examples ofML analysis of COVID-19WBEdata could be identified
by the authors of this paper. Using time-series forecasting algorithms, fu-
ture prevalence of SARS-CoV-2 RNA fragments within wastewater can be
predicted to provide early warnings and vital time for the development of
response strategies,with further development presenting a potentially valu-
able tool for management of future and ongoing epidemics (Chimmula and
Zhang, 2020; Ribeiro et al., 2020; Aberi et al., 2021; Li et al., 2021; Abdalla
et al., 2022; Daza-Torres et al., 2022). Koureas et al. (2021) examined the
relationship between viral fragments and recorded COVID-19 cases in
two Greek municipalities with two supervised ML models, Random Forest
(RF) and Linear Regression (LR), which were trained and evaluated. RF
exhibited superior performance within this study as evidenced by higher
correlations and smaller mean absolute percentage error (MAPE) values
relative to LR. Several additional ML algorithms are commonly used in
timeseries forecasting and therefore demonstrate potential value within
WBE studies, including Multilayer Perceptron (MLP), and Decision
Tree (DT); furthermore, strengths and limitations for specific forecasting
purposes must be considered (Hastie et al., 2009; Zhou et al., 2019).

Multilayer perceptron (MLP) is a feedforward artificial neural network
that is trained through backpropagation. This algorithm is used widely for
solving problems requiring supervised learning and for research in compu-
tational neuroscience and parallel distributed processing. It is capable of
learning nonlinear relationships but is has high complexity due to its
large number of parameters and is sensitive to feature scaling (Hastie
et al., 2009). Linear regression (LR) is a simple model used to find the
best fit linear line between two variables, however for many cases the rela-
tionship between variables is non-linear which results in low accuracy. In
addition, LR is sensitive to outliers, which further disrupts model perfor-
mance and accuracy; while non-linear regression techniques provide better
performance for greater complexity and cost (Khamis et al., 2005; Yan and
Su, 2009). Decision trees (DT) are a widely used data mining and machine
learningmethod due to their relative simplicity and ease of implementation
(Wu et al., 2008). A binary classification process splits analysed data at de-
cision nodes into progressively more refined ‘branches’, ‘twigs’, and ‘leaves’
(Saloux and Candanedo, 2018). Each branching point represents a decision
making point where the required output is provided at the leaf node
(Suresan et al., 2021).

RandomForest (RF) is one of themost popular supervised learning algo-
rithms due to its high flexibility and ease of implementation (Tyralis and
Papacharalampous, 2017; Ray, 2019). RF is an ensemble algorithm that
builds a ‘forest’ consisting of many decision trees and has a high accuracy
due to the random selection of predictors which reduces variance and
lowers correlation among trees (Suchetana et al., 2017). A greater number
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of treeswithin the forest tends to provide amore robust algorithm, however
this also increases computational costs, and the relationship shows
diminishing returns at scale (Oshiro et al., 2012; Tyralis and
Papacharalampous, 2017). RF is also capable of handling datasets with
missing values which improves performance when applied to real-world
scenarios such as WBE datasets (Carranza and Laborte, 2015). Despite of-
fering many advantages, RF has several limitations. Building the forest
and training themodel can be a time consuming and computationally inten-
sive process. In addition, bias can be introduced inmeasures of variable im-
portance when predictors are correlated (Buskirk, 2018).

The objective of this study is to explore the challenges associated with
usingmachine learning algorithms for analysis ofWBEdatasets, specifically
surveillance of SARS-CoV-2 RNA fragments. This involved a review of the
performance and accuracy of machine learning algorithms for short fore-
casting periods (<7 days) based onWBE datasets, which led to the selection
of RF for subsequent analysis. Data were collected from WWTPs within
Scotland, Barcelona, Ohio, the Netherlands, and Switzerland to examine
forecasting performance against local factors. This work intends to high-
light the challenges associated with machine learning forecasting for fur-
ther applications using WBE datasets, which may assist health responses
to future epidemics. To the best of the authors' knowledge this work is a
novel application of machine learning forecasting to WBE data across a
larger scale with multiple examined sites.

2. Materials and methods

Dataset and site selection: WBE Datasets were accessed and
downloaded from the Wastewater-Sphere (W-SPHERE) website, which is
part of a larger wastewater surveillance project led by PATH and funded
BA

D

Fig. 1. Datasets collected from W-SPHERE for machine learning analysis. Monitored re
e40e-4660-af26-549cb00b3d03), (B) Ohio (https://sphere.waterpathogens.org/datas
waterpathogens.org/dataset/5e4225bc-5edb-49cc-bf1f-84724c3152ef & https://
(D) Scotland (https://sphere.waterpathogens.org/dataset/634a33cd-9444-4f4a-8234
456690eb-8424-416f-8010-247179d67847).
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by the Bill & Melinda Gates Foundation and the Global Innovation Fund
(Global Water Pathogens Project 2022, 2022).

These data contained timeseries information on samples taken from
WWTPs listed in Fig. 1, sampling frequency, and populations of serviced
catchments. Target concentrations measured nucleoprotein (N1 and N2)
genome regions and polymerase IP4 genomic fragments of SARS-CoV-2
(Chavarria-Miró et al., 2021). Five regions (Fig. 1) were selected to provide
datasets with varied population densities and sampling regimes, and di-
verse geographic distributions of WWTPs/sewerage catchment areas. This
variability assists an initial evaluation of factors affecting prediction
accuracy and informs parameters necessarywithin future studies. These un-
structured datasets were also identified as high-quality examples, facilitat-
ing improved analysis within this preliminary assessment.

Algorithm selection: Algorithms which had demonstrated value
within relevant past studies were considered for trialling with W-SPHERE
timeseries data. RF was identified as appropriate for this study as it is avail-
able on open-source training platforms, is relatively simple to train, and has
demonstrated value within prior studies.

Software selection: Waikato Environment for Knowledge Analysis
(WEKA) was selected as a platform for training/running algorithms and
providing timeseries forecasts as it is simple and open-source. WEKA pro-
vides integrated data preparation, classification, and timeseries forecasting
capabilities using pre-loaded algorithms and with a streamlined user inter-
face. Original algorithms can also be modified using this platform if re-
quired (Vanam et al., 2021).

Data pre-processing:W-SPHEREdatawere pre-processed before being
provided to WEKA. Original data contained within a single column were
separated into “csv” format readable by WEKA and split into different sets
according to its sampling site. Each site was given a unique label –
E

C

gions were (A) Catalonia (https://sphere.waterpathogens.org/dataset/bbd61ae1-
et/a29fcfe8-0c34-4e73-b08f-ede0520c1d4f), (C) the Netherlands (https://sphere.
sphere.waterpathogens.org/dataset/a3b51f71-ebea-408d-b100-06ac652f9d44),
-b7886e45d020), (E) Switzerland (https://sphere.waterpathogens.org/dataset/

https://sphere.waterpathogens.org/dataset/bbd61ae1-e40e-4660-af26-549cb00b3d03
https://sphere.waterpathogens.org/dataset/bbd61ae1-e40e-4660-af26-549cb00b3d03
https://sphere.waterpathogens.org/dataset/a29fcfe8-0c34-4e73-b08f-ede0520c1d4f
https://sphere.waterpathogens.org/dataset/5e4225bc-5edb-49cc-bf1f-84724c3152ef
https://sphere.waterpathogens.org/dataset/5e4225bc-5edb-49cc-bf1f-84724c3152ef
https://sphere.waterpathogens.org/dataset/a3b51f71-ebea-408d-b100-06ac652f9d44
https://sphere.waterpathogens.org/dataset/634a33cd-9444-4f4a-8234-b7886e45d020
https://sphere.waterpathogens.org/dataset/456690eb-8424-416f-8010-247179d67847
https://sphere.waterpathogens.org/dataset/456690eb-8424-416f-8010-247179d67847
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i.e., the first site examined in Scotland was labelled sc1. Some regions re-
corded volumetric wastewater flowrate (m3/s) data, which were included
to provide a parallel forecast to the same data in the absence of a volumetric
input. Some sample results were absent due to the lack of sample taken
on that day, which needed to be manually removed to prevent RF
misinterpreting these results as zeros. RF is robust to below detection
limit data points (Ray, 2019). Separated datasets were further split to
form the training sets (80 %) and testing sets (20 %) based on frequently
used splits in machine learning applications (Zhou et al., 2019; Brady
et al., 2018; Chimmula and Zhang, 2020). As use of machine learning for
WBE applications is not a mature practice commonly used split ratio from
other machine learning applications was used. Separated dataset files
within Excel were refined to remove all parameters not required by
WEKA before being converted to an Attribute-Relation File Format
(ARFF) appropriate for analysis. Furthermore, the performance of RF for
forecasts using data from a larger geographic scale was assessed by training
the algorithm with all COVID-19 WBE data held by W-SPHERE in a single
training instance.

Random Forest analysis: Pre-prepared data were provided to WEKA
with an estimated 100 random trees. Predictions were set to one step
ahead, which is equivalent to the sampling frequency for each site and
ranged from one day to one week depending on the region and specific
WWTP. ‘Automatically detected’ periodicity was selected, and the output-
ted forecast values were recorded. This process was repeated for each
datapoint in the 80 % training set, with all sampled values from earlier in
the timeseries subsequently inputted as additional training values.

Forecast accuracy evaluation: Forecast accuracies and model perfor-
mances were evaluated by calculating a Mean Absolute Percent Error
(MAPE) for each forecasted dataset. MAPE is a common evaluation metric
appropriate for trend evaluation as it gives all items the same weight and
outputs results as a single easily comparable percentage (Lewis, 1982).
MAPE was calculated according to Eq. (1):

MAPE ¼ 100%
n

∑
n

1

abs Forecast i � Actual Measurement ið Þ
Actual Measurement i

(1)

where n is the number of iterations. MAPE values can range from 0% to in-
finity (If the data contain zeros, the MAPE can be infinite as it will involve
division by zero) where smaller values indicate a higher accuracy. Evalua-
tion criteria outlined by Lewis (1982) was used in this study to assess
model performance (Table 1). This allows direct comparison between dif-
ferent sites and regions.

3. Results and discussion

Random Forest forecasting performance:High and low performance
examples (Fig. 2) illustrate the variability of RF's performance even within
the same region. Timeseries in the left column of Fig. 2 were the best fore-
casts created in each region, which is reflected through generally accurate
trend predictions (i.e. predicted increase or decrease in target concentra-
tion), predictions of peaks, and generally lowmagnitudes of differences be-
tween forecast and actual values. The opposite can generally be said for the
low performance examples in the right column.

40 sites (Table S1) were analysed from Scotland data (summarised in
Table 2), among which 16/40 (40 %) had a MAPE below 100 % and
2/40 (5 %) had a MAPE of 20–50 % so could be considered a reasonable
Table 1
A scale for the judgment of forecast accuracy.

MAPE Judgment of forecast accuracy

<10 % Highly accurate
10 % to 20 % Good forecast
21 % to 50 % Reasonable forecast
51 % or more Inaccurate forecast

4

forecast. Sampling intervals across examined Scottish sites ranged from
three to thirteen days with an average of four. These relatively low and ir-
regular sampling frequencies increased the pattern recognition challenge
faced by RF, reducing forecast accuracy. Scotland's sites had the lowest
average population per catchment, which was coupled with reasonable
algorithm performance relative to other sites.

Of all examined regions, RF provided the most inaccurate forecast on
Catalonian WBE data. All forecasts in Catalonia were inaccurate (Table 1)
with a MAPE >100 % (summarised in Table 2). This finding used N1 and
N2 target concentrations and was including or excluding flow data across
16 total forecasts (Table S2), which indicates the presence of factors
disrupting RF's performance. A potential cause is low (weekly) sampling
frequency, which required RF to make a prediction further into the future.
Relative to daily sampling, variable factors governing viral spread are liable
to compound over a week and will be difficult for RF to model accurately,
highlighting machine learning forecasting challenges of WBE data includ-
ing potential for data censoring. A low sampling frequency also limits the
total dataset available for algorithm training since fewer total samples
will have been taken since the beginning of WBEmonitoring in that region.
This site also had a considerably higher monitored population per catch-
ment than other regions, indicating that the populationmay have some im-
pact on algorithm performance as discussed within ‘Factors affecting
prediction accuracy’. Interestingly, inclusion of flowrate data resulted in
slightly poorer RF performance on average (Table S2).

Of the 42 sites (Table S3) investigated in Ohio, 6/40 (14%) had aMAPE
below 100% and none were below 50%, which indicates that RF provided
inaccurate forecast withOhio's WBE data (summarised in Table 2). Relative
to Catalonia's results, RF performed better onOhio's sites despite having the
same sampling frequency. This is likely due to the greater average samples
available per site and may also be influenced by the lower population per
catchment in Ohio relative to Barcelona. As with Scotland, Ohio's data
had no flow information which prevented comparison of RF performance
with and without flow data.

Data from 11 sites (Table S4) in the Netherlands were used to train RF,
providing forecasts both with and without flow data. RF provided slightly
better forecast accuracy without access to flow data, with 6/11 (55 %) of
forecasts made without flow data yielding a MAPE below 50 % compared
to 5/11 (45 %) with flow data. Relative to other analysed regions, the
Netherlands had a high sampling frequency with large training sets avail-
able (Table 2). This likely provided RF sufficient data to form reasonable
forecasts, which is demonstrated through the low average MAPE values
and high proportion below 50 %.

As with the Netherlands, Switzerland's data also contain flowrate infor-
mation. RF provided good or reasonable forecast accuracy with most of the
7 Swiss sites (Table S5), with 3/7 (43 %) forecasts with and without flow
achieving a MAPE below 50 % and a further 2/7 only slightly over 50 %.
RF performed very poorly on two sites (sw5 and sw7), which raised the av-
erage MAPE considerably (Table 2). It is likely that the poor performance
using data from these sites was due to frequent low/zero values for target
concentrations,which impactedprediction performance. These results indi-
cate that RF forecasting is most appropriate for regions with significant
community transmission. Other than these outlier forecasts, Switzerland's
data provided a good basis for reasonable RF modeling. This is likely due
to these datasets having the highest sampling frequency and largest training
sets by a considerable margin.

Factors affecting prediction accuracy: This study's results, together
with insights gathered from the available literature, were investigated to
discuss factors affecting prediction accuracy. This discussion focusses on pa-
rameters that were included within W-SPHERE's datasets to illustrate the
challenge associated with creating accurate forecasts using real-world
data. Data collected within this study suggest that the inclusion of flow
data negatively impacts forecast accuracy. This result aligns with findings
from previous studies with RF, which associated inclusion of unimportant
variables with poorer model performance (Kuhn and Johnson, 2013;
Tyralis and Papacharalampous, 2017). This demonstrates the importance
of appropriate parameter selection.
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Fig. 2.Random Forest forecasting one period ahead. Left column - examples with lowMAPE, high performance. Right column - examples with highMAPE, low performance.
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Forecast results indicate that sampling frequency is a key parameter for
improving RF's performance as discussed previously (Ahmed et al., 2020;
Hill et al., 2020). The results of this study indicate that sampling more
than once aweek is necessary to yield reasonable forecasts, with greater fre-
quency yielding greater accuracy. Viral incubation periods for COVID-19
5

may be partially responsible for this observation, which is estimated as
1–14 days but typically between 3 and 7 days (Hill et al., 2020). Weekly
samples do not represent an average of viral concentration across the previ-
ous week and therefore lower sampling frequencies may miss peak viral
loads in wastewater streams in addition to daily fluctuations. The impact



Table 2
Averaged results from all sites for all sampling regions covering global data from five countries located in two continents varying life-style pandemic responses patterns.

Region Number of
sites

Sampling frequency
(samples per week)

Samples per
site

Population Percentage of data with a reasonable
forecast (with flow data)

Percentage of data with a reasonable
forecast (without flow data)

Scotland 40 1.75 82 81,900 N/A 5 %
Catalonia 4 1.00 59 829,000 0 % 0 %
Ohio 42 1.00 80 101,000 N/A 0 %
The Netherlands 11 2.64 141 127,000 45 % 55 %
Switzerland 7 7.00 310 207,000 43 % 43 %

N/A = not applicable since flow data were not provided.

L. Vaughan et al. Science of the Total Environment 858 (2023) 159748
of sampling frequency on forecast accuracy is likely governed by incubation
periods, with shorter incubation periods necessitating increased sampling
frequency. As increased sampling frequency adds costs and complexity, de-
termining minimum required sampling frequencies based upon factors in-
cluding average incubation period presents a future research direction.

Forecasting results also indicate that the standardisation of sampling
procedures in sites with variable sampling intervals would improve pre-
dicted result reliability while also improving the reproducibility and com-
parability of the study. Furthermore, signal decay/persistence in sewage,
in-sewer hydraulics, collection method, transient populations, analytical
sensitivity and analytical turnaround times impact the data and conse-
quently the forecasting (Ahmed et al., 2020; Hill et al., 2020; Wade et al.,
2022).

A greater number of samples per site were observed to generally im-
prove model performance and deliver more consistent results (Fig. 3).
This observation aligns with established machine learning algorithm
training techniques which utilise larger training sets to improved pattern
recognition capabilities (Ajiboye et al., 2015). Fig. 3 suggests that increas-
ing the training set size reduces the frequency of high MAPE forecasts,
however due to the limited number of sites with a large training set this
evidence is not conclusive. It is also important to note that while a large
sample training set appears to improve accuracy, accurate results were
still attainable with smaller training sets. This highlights a further unknown
for future forecasting efforts as ideally forecasts would be constructed with
the smallest training set possible, allowing accurate forecasting early into
an epidemic or with reduced costs.

Population within each served catchment was not supplied as an input
variable to RF, however forecast performances were considered within
the context of respective populations to assess for noticeable impacts on
performance. On an averaged regional scale, RF forecasting accuracy
tended to decrease as monitored population size increased (Table 2). On a
localised scale however this trend was not present, such as in the
Netherlands where the largest catchment (ne1, population = 670,000)
had the greatest accuracy (MAPE = 7.32 %) while the smallest catchment
(ne10, population = 4880) had the weakest performance with RF
(MAPE = 239 %). A linear regression analysis of all populations versus
MAPEs of respective forecasts revealed no notable correlations (Fig. 4).
Fig. 3.MAPE versus total number of samples ac
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Despite the lack of clear correlation, population is likely to have consid-
erable indirect impacts on forecast performance. Many higher-performing
forecasts were from catchments with low populations, which may be
caused by reduced complexity in these regions. Often larger population
centres have disproportionately higher mobility and experience increased
travel from regions to urban areas, which contributes to viral spread
(Wade et al., 2022). This adds additional parameters governing viral spread
and therefore complicates pattern recognition efforts for RF.

An additional observation is that RF often performed poorly when con-
structing forecasts with datasets containing many low/zero values, e.g. low
performance examples. This indicates that forecasting with RF is useful
only for regions with higher viral prevalence in the community and may
also account for high MAPEs associated with very low population catch-
ments such as ne10 and others in Fig. 4. It is likely that such catchments
had periods of very low/zero COVID-19 prevalence in their communities,
which disrupted RF's pattern recognition capabilities. The value of WBE is
not limited to high prevalence periods where the relationship between dis-
ease and measurement is stronger and emergence of new outbreak can be
detected at low concentrations over time. However, there is little publicly
available that goes into depth on how to address low prevalence periods
(Hill et al., 2020).

RF was unsuccessful in creating forecasts after being trained with the
entireW-SPHERE dataset. The primary reason for this result is that different
sites had different sampling frequencies, but another potential reason is
that trainingwith a global dataset prevented RF from learning the local fac-
tors that governed spread within specific sites examined within this study.

While the results from this study indicate that machine learning may
provide value for future outbreak forecasting, improvements should be
made within further studies.

■ RF's forecasting performance may be improved through structural
changes appropriate for low-dimensional datasets, such as those proposed
by Wang et al. (2018).Deeper understanding of fundamental knowledge
of the system and processes is required for further improvement.

■ Algorithms such as others discussed within this paper should be
trialled for efficacy.

■ Implementation of WBE for the purpose of forecasting should be
done with high sampling frequency to provide adequate training sets and
ross all sites, excluding ‘with flow’ forecasts.



Fig. 4.MAPE versus catchment population across all sites, excluding ‘with flow’ forecasts.
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allow the algorithm to identify more patterns, which will thereby improve
accuracy.

■ Forecasting accuracymay be improved through inclusion of data re-
garding populationmobility, samplingmethods, chemical composition and
physicochemical properties of the wastewater samples, and environmental
parameters whichmay be responsible for a portion of forecast uncertainties
(Koureas et al., 2021).

■ As identified forflow rate data, additional datamay also have oppo-
site effects on accuracy and cause poorer forecast performance, necessitat-
ing further work to identify key parameters beyond those considered in
this study.

■ Development of sufficiently accurate forecasts should prompt ex-
tension of forecast ranges, i.e. forecast to two sampling periods instead of
one.

■ A further challenge that was not considered in this study is the
impacts of changing restrictions and other public health responses on the
parameters governing viral spread. It is hypothesised that a change in re-
strictions will negatively impact RF performance as this changes rates of in-
fection. Further factors that were not included within this preliminary
assessment include vaccination effects and the impacts of variants.

■ Implementation of forecasting for the qualitative identification
of rising and falling target concentration may provide value for health
departments by indicating whether an outbreak is expected to acceler-
ate or shrink. This would provide valuable time for the preparation of
health resources or indicate if current public health measures are
effective.

■ Further exploration of the ‘Trailing W-SPHERE data on a larger
geographic scale’ approach could use global datasets for ‘baseline training’,
which is then tweaked according to local parameters and specific site data.

■ It is important to note that ML algorithms may be limited in value,
being suitable in a specific context (training dataset) but can fail when
applied to novel data. A single algorithm is not necessarily themost suitable
to be applied across all datasets or for all use cases. Future studies exploring
ML would need to test several algorithms and do comparator analyses.

4. Conclusion

This study explored challenges associated with implementing Random
Forest for forecasting COVID-19 fragments in wastewater across multiple
sites in five regions. MAPE was calculated to evaluate forecast accuracy
and guide discussion on the factors affecting RF performance. RF perfor-
mance was generally poor using WBE datasets from Catalonia, Scotland,
and Ohio largely due to low sampling frequency across these sites. Of
7

these sites, Scotland performed best and also had the highest sampling
frequency. RF's performance was much stronger with WBE data from the
Netherlands and Switzerland, likely due to generally higher sampling
frequencies and total training dataset sizes. As identified in this study the
factors governing forecast accuracy are complicated and interrelated, pre-
senting challenges for the development of reliable and accurate forecasting
usingWBEdata. Sufficient development of this tool may provide significant
value for public health departments to monitor future, emerging, or ongo-
ing outbreaks and provide information necessary to implement on-time
health response measures.
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