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Abstract

Sleep studies are imperative to recapitulate phenotypes associated with sleep loss and uncover 

mechanisms contributing to psychopathology. Most often, investigators manually classify the 

polysomnography into vigilance states, which is time-consuming, requires extensive training, and 

is prone to inter-scorer variability. While many works have successfully developed automated 

vigilance state classifiers based on multiple EEG channels, we aim to produce an automated 

and openaccess classifier that can reliably predict vigilance state based on a single cortical 

electroencephalogram (EEG) from rodents to minimize the disadvantages that accompany 

tethering small animals via wires to computer programs. Approximately 427 hours of continuously 

monitored EEG, electromyogram (EMG), and activity were labeled by a domain expert out of 571 

hours of total data. Here we evaluate the performance of various machine learning techniques on 

classifying 10-second epochs into one of three discrete classes: paradoxical, slow-wave, or wake. 

Our investigations include Decision Trees, Random Forests, Naive Bayes Classifiers, Logistic 

Regression Classifiers, and Artificial Neural Networks. These methodologies have achieved 

accuracies ranging from approximately 74% to approximately 96%. Most notably, the Random 

Forest and the ANN achieved remarkable accuracies of 95.78% and 93.31%, respectively. Here we 
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have shown the potential of various machine learning classifiers to automatically, accurately, and 

reliably classify vigilance states based on a single EEG reading and a single EMG reading.

Index Terms—

sleep-scoring; machine learning; artificial intelligence; neuroscience; electrophysiology

I. Introduction

Nearly 70 million Americans are afflicted by chronic sleep disorders or intermittent sleep 

disturbances that negatively impact health and substantially burden our health system.Sleep 

is essential for optimal health. Sleep is one of the most critical and ubiquitous biological 

processes, next to eating and drinking. It has been shown that there is no clear evidence 

of the existence of an animal species that does not sleep [1]. Sleep constitutes about 30% 

of the human lifespan. Assessment of sleep quality is multifactorial and is composed of 

adequate duration, good quality, appropriate timing and regularity, and the absence of sleep 

disturbances or disorders. Sleep duration is used as a metric to describe the standard of 

healthy sleep. The American Academy of Sleep Medicine (AASM) and Sleep Research 

Society (SRS) issued a consensus statement recommending “adults should sleep 7 or more 

hours per night on a regular basis to promote optimal health” [2]. However, sufficient sleep 

is severely undervalued as a necessary biological process for maintaining proper mental 

health. A recent survey from the Center for Disease Control and Prevention (CDC) found 

that only 65% of adults reported a healthy duration of sleep [3].

From a translational perspective, animal studies are imperative to recapitulate phenotypes 

associated with sleep loss (hyperarousal, cognitive impairment, slowed psychomotor 

vigilance, behavioral despair) and uncover mechanisms contributing to psychopathology, 

with the added benefit of homogeneity within rodent subjects [4], [5]. Sleep studies are 

readily conducted in small animals by implanting electrodes to obtain electroencephalogram 

(EEG) and electromyogram (EMG). Sleep is categorized into two major classes, non-rapid 

eye movement (NREM) and rapid eye movement (REM) sleep, and arousal is classified 

as wake. Most often, investigators manually classify the polysomnography into vigilance 

states, and this practice is time-consuming and also greatly limits the size of a study’s data 

set. To accurately classify vigilance states, investigators undergo extensive training, yet the 

subjective nature of classifying limits inter-scorer reliability.

Several automated vigilance state classifiers have been established, and nearly all of these 

algorithms rely on multi-channel EEG data and local field potential (LFP) signaling 

oscillations within the brain [6]–[12]. The advantages of multi-channel systems are 

outweighed by the disadvantage of tethering small animals to transmit signals via wired 

connections to computer programs. Tethered animals are combating confounds including 

limited mobility within recording cages and potential impacts on natural sleep states [13]–

[15]. For these reasons, it is advantageous to automate vigilance state classification with 

telemetric battery devices that are surgically implanted to open a single EEG and EMG from 

each small animal. Consistent with the principles of Information Theory, data collected from 
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a single EEG channel significantly increases the complexity of sleep-state identification 

for humans and automated approaches. Therefore, the goal of this research has been to 

produce an open access and automated classifier that can reliably predict vigilance state 

based on a single cortical EEG from rodents. To that end, we have evaluated several of 

the commonly used Machine Learning techniques for suitability and success in this task. 

Our investigations include Decision Trees, Naive Bayes Classifiers, Random Forests, and 

Artificial Neural Networks. An Artificial Neural Network (ANN) has been developed to 

examine and ascertain the sleep state of each animal.

II. Methodology

A. Sleep EEG/EMG Data Collection

Adult Wistar rats (n=8) were used in experiments in a facility fully accredited by the 

American Association for the Accreditation of Laboratory Animal Care. Animals were kept 

on a 12/12 h light-dark cycle. All protocols were approved by the Institutional Animal Care 

and Use Committee at the University of South Carolina and were in accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Rats were implanted with EEG/EMG telemetry devices (PhysioTel HD-S02, Data Science 

International, St. Paul, MN), as previously described [15]–[18]. Briefly, under isoflurane 

anesthesia, animals were placed in a stereotaxic frame. The transmitter device was 

intraperitoneally implanted through a dorsal incision of the abdominal region. After an 

incision at the midline of the head was made, EEG leads were secured to two surgical 

screws inserted into 0.5-mm burr holes at 2.0 mm anterior/1.5 mm lateral and 7.0 mm 

posterior/−1.5 mm lateral to bregma. Two EMG leads were inserted into the dorsal cervical 

neck muscle about 1.0 mm apart and sutured into place. The skin was sutured, and animals 

were recovered for a minimum of 7 days prior to experimentation. Sleep data were acquired 

in a quiet, designated room where rats remained undisturbed for the duration of recording 

using Ponemah 6.10 software (DSI). Digitized signal data were imported into NeuroScore 

3.0 (DSI) and powerband frequencies (0 to 20 Hz) in 0.5 Hz increments were exported to 

CSV formatted flat files.

B. Data Processing and Annotation

Approximately 571 hours of continuously monitored electroencephalogram (EEG), 

electromyogram (EMG), and activity were recorded across the eight laboratory rodents 

without noise reduction. The collection of data was then partitioned into 10-second epochs, 

or segments, and labeled by a domain expert. Approximately 427 hours of the recorded 

571 hours have been manually labeled by a domain expert. In this study, our focus has 

been based on the manually annotated 427 hours of the data. The remaining 144 hours 

of unlabelled data will be used in the future for more rigorous testing of our automated 

classification method. Based on the polysomnogram (PSG), an expert labels each 10-second 

epoch as one of three discrete classes: Paradoxical, Slow-wave, or Wake. Paradoxical 

sleep is also known as rapid-eye-movement (REM) sleep, because of the paradox of the 

high-frequency brain waves mimicking wakefulness despite being asleep. Slow-Wave sleep, 

characterized by low frequency, high amplitude brain waves, is also known as non-rapid 
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eye movement sleep (NREM), and it constitutes all sleep that is not REM sleep. Finally, 

the “wake” classification is given to a PSG that elicits characteristics of wakefulness. These 

sleep stages constitute all three classes and will be referred to as P, S, and W, which 

correspond to Paradoxical, Slow-wave, and Wake states, respectively.

42 discrete features were extracted from each 10-second epoch of continuous EEG, EMG, 

and activity signals. To obtain the first 40 features, the 10-second epoch is transformed from 

the time domain into the frequency domain using Discrete Fourier Transformation, then 

partitioned into 40 channels of equal width from 0 to 20 Hz. Thus, the first channel is the 

EEG from 0 to 0.5 Hz, the second channel is the EEG from 0.5 to 1 Hz, and so on. The 41st 

feature is that of the EMG, which is averaged over the 10-second epoch. The 42nd and final 

feature is the “Activity” feature, which is a derived parameter from Ponemah (indicating the 

level of an animal’s activity) which depends on the transmitter model, the speed with which 

the transmitter moves, outside radio interference, and variations from sensor to sensor.

C. Input Formalization

Many tactics in modern machine learning and artificial intelligence have been presented 

that aim to formalize the use of temporal data in the tasks of prediction and classification. 

Although the proper formulation of input can have a substantial impact on the trainability 

and the outcome of ML developments, in this investigation, we have implemented the most 

prevalent and natural approach. More specifically, the input to our ML activities consisted 

of a concatenation of five consecutive processed data (42 channels) that summarize a 10-

second epoch from the raw continuous data. We postulate that a single epoch (summary of 

10 seconds of data) is not the optimal temporal representation of time-series data for use 

in ML applications. Therefore, we choose to reformat the data such that each sample spans 

a longer period, theoretically providing each classifier with more temporal information and 

confidence. Five consecutive epochs encapsulate 50 seconds of the temporal signal, to which 

we will refer as the network input in the remainder of this report. Before this windowing, 

the data consisted of 154043 rows and 43 columns. Each row, which itself constitutes a 

10-second epoch, consists of the 42 features and 1 output label describing the three stages of 

vigilance.

This mechanism of input data creation results in the following class distribution:

Total : 154039

P : 10028 (6.50% of total)

S : 64539 (41.77% of total)

W : 79472 (51.73% of total).

This data set was created by a simple moving window, where the first windowed sample 

will consist of samples 0–4 in the original data. The second windowed sample consisted 

of samples 1–5 in the original data, and the final windowed sample consisted of samples 

(n-5)-(n-1) in the original data. Since each input spans five individual vigilance states, 

various methods of arriving at a single output (given from five outputs) can be envisioned. 

In this work, we choose to label each windowed sample with the most frequent class in the 
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window. If there is a tie, we label the sample with the label of the 10-second epoch in the 

center. The total number of samples after the simple moving windowing has 4 samples less 

than the original data, which is well known to be the case when windowing data. Thus, each 

row in the input data consists of 210 features (5 sets of 42 features), and 1 label.

D. Data Balancing

The class distribution in the raw windowed data is unequal. Ideally, there would be an 

equal representation of each class, where each class constitutes 33% of the data, in this 

instance. However, class P is severely underrepresented at 6.51% of the total data, or 10028 

samples. Classes S and W are over-represented at 41.90% and 51.59%, or 64539 samples 

and 79472 samples, respectively. In balancing the representation between classes, we aim 

to replicate copies of classes to the data while minimizing total samples. Minimizing total 

samples is important to improve training speed. By concatenating complete copies of any 

given class to itself, we aim to ensure that the model adequately generalizes to the entire 

class sample. Therefore, we concatenate 7 additional copies of the entire P class to the data, 

which produced the following and improved class distribution:

Total : 224235

P : 80224 (35.78% of total)

S : 64539 (28.78% of total)

W: 79472 (35.44% of total).

E. Training, Validation, and Testing Split and Shuffle

To finalize data preparation before training a classifier, the data must be shuffled and 

partitioned into training, validation, and testing sets. To perform the shuffling and 

partitioning, we use a function from the popular machine learning module in python scikit-

learn. This function randomly shuffles the data and partitions it into training and testing 

data. We split the data into 80% training and 20% testing data. The only machine learning 

classifier which uses a validation set is the Artificial Neural Network. For the Artificial 

Neural Network, we further split the training data into 80% training, 20% validation, which 

constitutes 64% and 16% of the entire data. This process was performed only once to keep 

the training, testing, and validation (when needed) sets constant across each ML technique. 

A consistent training/testing set will help to establish a more consistent comparison of 

performances across multiple techniques while also reducing the data preparation time.

F. Evaluation of Machine Learning Classifiers

We propose to evaluate various machine learning techniques to classify vigilance states. 

Following are brief descriptions of Decision Trees, Random Forests, Naive Bayes 

Classifiers, Logistic Regression Classifiers, and Artificial Neural Networks. We aim to find 

the simplest model that achieves the highest accuracy.

G. Decision Tree

A Decision Tree Classifier is a supervised machine learning algorithm that performs 

classification tasks. The algorithm behind a Decision Tree makes a sequence of decisions 
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based on input features, one decision at each node along a path from the root to a leaf of 

the tree. The leaf node that the algorithm ends on for any given input determines the output 

class. Decision trees are self-interpretable, meaning the tree itself describes the underlying 

rules for classification. The advantages of the Decision Tree Classifier include its simplicity, 

interpretability, ability to model nonlinear data, ability to model high dimensional data, 

ability to work with large datasets to produce accurate results, and ability to handle outliers 

during training.

H. Random Forest

A Random Forest Classifier is a supervised predictive machine learning algorithm 

commonly used for classification tasks. A Random Forest consists of an ensemble of 

decision trees, each of which provides a “vote”, or a classification, predicting class based on 

a majority of votes from the decision trees. Random forests generally outperform decision 

trees in terms of accuracy; however, the random forest is a blackbox, a model unable to 

describe its underlying rules for classification, sacrificing the interpretability of the decision 

tree.

I. Naive Bayes

A Naive Bayes Classifier is a supervised probabilistic machine learning algorithm 

commonly used for classification tasks. It relies on Bayes’ Theorem, which is a theorem 

of conditional probabilities. Naive Bayes assumes strong independence between the input 

features. We use the Gaussian Naive Bayes Classifier based on the assumption that each 

input feature is normally distributed. The Naive Bayes Classifier is simple (and, therefore, 

computationally fast), scalable (requiring parameters linear in the number of features), and 

works well with high-dimensional data.

J. Logistic Regression

A Logistic Regression Classifier is a supervised predictive machine learning algorithm 

used for classification tasks. It is a type of generalized Linear Regression algorithm with 

a complex cost function. The cost function used here is the Sigmoid function, which 

continuously maps real-valued numbers between 0 and 1. We partition these continuously-

mapped values from the cost function by various threshold values to determine output class. 

We include Logistic Regression in this work based on its speed, non-assumption of feature 

independence, and ubiquity in multi-class classification.

K. Artificial Neural Network

An artificial neural network is a supervised predictive machine learning technique that is 

successful in classification tasks in various applications [19]–[21]. A feed-forward neural 

network is a subset of neural networks in general where there are no cycles formed between 

neurons. We choose to use a specific type of feed-forward neural network, the multi-layer 

perceptron (MLP). An MLP consists of at least one hidden layer of neurons, as opposed to 

a single-layer perceptron, which does not have a hidden layer of neurons separate from the 

input and output layers. We propose to use a shallow neural network, as opposed to a deep 
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neural network, which is a subset of the multi-layer perceptron. For a neural network to be 

shallow, it means that the network has exactly one hidden layer with any number of neurons.

1) Architecture: For this investigation, we propose a fully connected artificial neural 

network with one hidden layer. The network has a single input layer where the number of 

neurons equals the number of input features and a single output layer where the number of 

neurons equals the number of classes. Thus, we use a neural network architecture similar 

to Figure.1 with 210 input neurons, 256 hidden layer neurons, and three output neurons. 

Non-linear activation functions allow neural networks to learn complex patterns. We use the 

rectified linear unit activation function after the hidden layer to introduce this non-linearity 

into the model. We use the softmax activation function after the output layer. Softmax is 

commonly used in multi-class classification problems, more general than sigmoid, and maps 

output into the range between 0 and 1, making it a good function for determining class. We 

use the backpropagation learning technique and the adam optimizer [22].

L. Evaluation of Model Performance

We evaluate the performance of each of the classifiers by comparing the predictions of each 

model to the manual scoring of domain experts. Testing accuracy is a ratio of the number 

of correctly classified samples by the model to the total number of samples. The primary 

measure of performance used in this investigation will be testing accuracy.

However, testing accuracy does not always fully describe the performance of a machine 

learning model. Oftentimes it is important to maximize the true positive classifications or to 

minimize the false positive classifications. In order to measure these situations, we have the 

proportions called precision and recall. Precision is the proportion of model classifications 

that correspond to the sample’s true class. Recall is the proportion of samples that are 

actually classified by the model correctly. In addition to these metrics, we also provide F1 
Score. The F1 Score is the harmonic mean of precision and recall. Finally, AUC, or Area 

Under the receiver operating characteristic Curve, represents the probability that the model 

ranks a random positive example higher than a random negative example. We choose to 

display testing classifications for each machine learning model in the form of a Confusion 

Matrix. In each confusion matrix, class 0 corresponds to class P, class 1 corresponds to class 

S, and class 2 corresponds to class W. Accuracy, precision, recall, F1 score, and AUC can all 

be derived from a confusion matrix.

III. Results

We evaluate the performance of the aforementioned methodologies primarily through testing 

accuracy. The testing accuracies for each methodology are described in Table. I. F1 Score 

and AUC Score are provided for each machine learning technique; however, it will suffice to 

focus solely on accuracy.

Notably, the highest performing classifier is the Random Forest model with a testing 

accuracy of 95.78%. The confusion matrix for the testing classification of this model 

is shown in Fig. 2. Other metrics such as precision and recall may be derived from 

the confusion matrix. The model performs excellently on class 0, which corresponds to 
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paradoxical sleep. The most frequently misclassified prediction-label pair occurred between 

slow-wave sleep and wakefulness. There were 1017 instances of predicting wakefulness 

where the true label was slow-wave and 606 samples where the model predicted slow-wave 

sleep where the true label was wake.

The second-highest performing classifier is the Artificial Neural Network with a testing 

accuracy of 93.31%. Across the entire testing partition, the model achieves over 93% 

categorical accuracy, which is comparable or higher than many other methodologies in the 

literature [8], [23], [24]. The confusion matrix for the testing classification of this model 

is shown in Fig. 6. The prediction-label pair that was most frequently misclassified by 

the ANN occurred when the model predicted slow-wave and the true label was wake. 

Interestingly, this is the same confusion pair that occurred most frequently in the Random 

Forest model. Theoretically, there is a dimension that would reliably distinguish between 

slow-wave and wake. Future research will investigate this relationship and attempt to 

distinguish more reliably and accurately between these two classes. The ANN achieved 

a high F1 Score and AUC Score of 93.9% and .9867, respectively. After training for only 

50 epochs, the model achieves a testing categorical accuracy of 94.01%, testing precision of 

94.54%, testing recall of 93.43%, and a testing AUC of 99%. The value of these metrics over 

the period of training are shown in Fig. 7, Fig. 8, Fig. 9, and Fig. 10. Not only did this model 

achieve a high degree of categorical accuracy, precision, and recall, but it did this with very 

little training and computation. All training instances consisted of only 50 epochs, each of 

which took approximately 220.66 seconds when run on a 2.4 GHz 7th Generation Intel(R) 

Core(T M) i7–7700HQ Quad-Core Processor with 16GB (2×8GB) DDR4 at 2400Mhz.

The Decision Tree model performed well with an accuracy of 92.77%; however, we do not 

discuss this model any further because it is a special case of the Random Forest. Logistic 

Regression and Naive Bayes had testing accuracies of 77.33% and 74.37%, respectively. 

These low accuracies suggest that this vigilance state classification problem is not trivial 

and that the accuracies reached by the Random Forest and the Artifical Neural Network are 

remarkable achievements.

IV. Conclusion

Many works which rely on multiple EEG channels have successfully produced automated 

vigilance state classifiers; however, the hardware required to obtain such signals produces 

undesirable disadvantages. Here we evaluate various machine learning techniques in 

vigilance state classification based on a single EEG channel. Random Forests and Artificial 

Neural Networks produced remarkable accuracies of approximately 96% and 93%. In 

evaluation of these classification techniques against human scoring as ground truth, we note 

that humans may make misclassifications. In fact, due to the rigidly patterned nature of the 

data and the power of these statistical models, it would be appropriate to reevaluate human 

scores based on model classifications. Future research will have a domain expert label 

polysomnograms from the additional 147 hours of unscored data aided by the model from 

this work. Additionally, future research will have a domain expert reevaluate classification 

pairs that confused the models in this work. Here we achieved two accurate and reliable 
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models that can be used immediately in an automated vigilance state classifier and may be 

reinforced in future work.
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Fig. 1. 
Fully-connected artificial neural network with shape (210,256,3), meaning the input layer 

has 210 neurons, the single hidden layer has 256 neurons, and the output layer has 3 

neurons.
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Fig. 2. 
Confusion matrix for the Random Forest model with overall accuracy of 95.78%.
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Fig. 3. 
Confusion matrix for the Decision Tree model with overall accuracy of 92.77%.
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Fig. 4. 
Confusion matrix for the Logistic Regression model with overall accuracy of 77.33%.
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Fig. 5. 
Confusion matrix for the Naive Bayes model with overall accuracy of 74.37%.
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Fig. 6. 
Confusion matrix for the Artificial Neural Network classifier with overall accuracy of 

93.31%.
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Fig. 7. 
Loss curve for training and validation data over 50 epochs.
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Fig. 8. 
Accuracy curve for training and validation data over 50 epochs.
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Fig. 9. 
Precision curve for training and validation data over 50 epochs.
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Fig. 10. 
Recall curve for training and validation data over 50 epochs.
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Table I

Performance of various machine learning models in sleep stage classification.

Classifier Accuracy FI Score AUC Score

Random Forest 95.78% 96% .9954

ANN 93.31% 93.9% .9867

Decision Tree Classifier 92.77% 93% .9427

Logistic Regression 77.33% 77% .9242

Naive Bayes 74.37% 74% .9011
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