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Abstract: Infections with carbapenem-resistant (CR) Gram-negative (GN) pathogens have increased
in many countries worldwide, leaving only few therapeutic options. Cefiderocol (CFDC) is approved
in Europe for the treatment of aerobic GN infections in adults with limited treatment options. This
study evaluated the in vitro activity of cefiderocol and comparators against multidrug-resistant
(MDR) bacteria including meropenem-resistant (MR) or pandrug-resistant (PR) GN clinical isolates
from France and Belgium. The minimum inhibitory concentrations (MICs) of CFDC were deter-
mined by broth microdilution, using iron-depleted cation-adjusted Mueller–Hinton broth, and were
compared to those of 10 last-line antibiotics. The MICs were interpreted according to EUCAST and
CLSI breakpoints, and in the absence of species-specific breakpoints, non-species-related pharmacoki-
netic/pharmacodynamic breakpoints were used. Among the 476 isolates tested, 322 were carbapen-
emase producers (CP), 58 non-CP-CRs, 52 intrinsically CR, 41 expanded-spectrum cephalosporin
resistant and 5 were multi-susceptible. Susceptibility to CFDC was high using EUCAST breakpoints
81%, 99% and 84%, and was even higher using CLSI breakpoints to 93%, 100% and 88% for Enterobac-
terales, Pseudomonas aeruginosa and Acinetobacter baumannii, respectively. Susceptibility to cefiderocol
using non-species-related breakpoints for Stenotrophomonas maltophilia, Achromobacter xylosoxydans
and Burkholderia cepacia, was 100%, 100% and 92.3%, respectively. The susceptibility rates were lower
with the NDM producers, with values of 48% and 30% using EUCAST breakpoints and 81% and 50%
using CLSI breakpoints for Enterobacterales and Acinetobacter spp, respectively. CFDC demonstrated
high in vitro susceptibility rates against a wide range of MDR GN pathogens, including MR and
PR isolates.

Keywords: CFDC; MIC; multidrug-resistant bacteria

1. Introduction

Among the antimicrobial agents that belong to the class of beta-lactams, carbapenems
display the broadest spectrum of antimicrobial activities and are considered last-resort
agents to treat infections caused by extended-spectrum β-lactamase (ESBL)-producing En-
terobacterales and multidrug-resistant (MDR) Gram-negative bacilli (GNB) [1–4]. However,
their activity is challenged by the emergence and dissemination of carbapenem-resistant
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Enterobacterales (CRE) and non-fermenters such as Pseudomonas aeruginosa and Acinetobac-
ter baumannii [5,6]. Antibiotic resistance among GNB poses a substantial global threat to
patients and healthcare systems, often leading to an increased duration of hospital stays,
higher medical costs and increased rates of mortality [1–4].

Carbapenem resistance may be the result of combined mechanisms of both outer-
membrane permeability defects (e.g., porin defects) and non-carbapenemase β-lactamases
(e.g., acquired or overexpressed chromosome-encoded cephalosporinase, and ESBLs) and
carbapenemase production [7]. In France, there has been a steady increase in the spread
of carbapenemase-producing Enterobacterales (CPE) in recent years [8,9]. The carbapene-
mases reported among CPE include KPC, NDM, VIM and OXA-48, and although KPC is
prevalent in other European countries, OXA-48 remains the most common carbapenemase
in France [8–10]. Furthermore, a 2018 report from the French National Reference Center
(F-NRC) for CPEs showed a notable increase in isolates producing MBLs such as NDM and
VIM, as well as the ongoing diversification of OXA-48-type carbapenemases, especially
OXA-181 and OXA-244 variants [9,11,12]. These findings, along with the first isolation of
IMP-producing Enterobacterales, highlight the evolving and challenging epidemiology of
carbapenemases among Enterobacterales in France, and at a larger level in Europe [9,10].

Although the prevalence of infections caused by non-fermenting GN pathogens such
as A. baumannii, P. aeruginosa and Stenotrophomonas maltophilia has remained relatively
low in France and Belgium, rates of carbapenem resistance among these pathogens are
considerably higher than those reported for Enterobacterales [11,13]. Among the 954 P.
aeruginosa isolates submitted to the F-NRC of antibiotic resistances in 2018, 16.2% produced
an ESBL (PER-1, SHV-2a, GES, VEB, OXA), 15.1% were carbapenemase producers (VIM,
IMP, DIM, GES) and 2.8% of isolates produced both [11]. Similarly, among the 379 isolates
of A. baumannii, 96.6% expressed at least one carbapenemase (primarily OXA-23, OXA-72
and NDM-1) together with an ESBL in 2.1% of the isolates [11]. The high levels of resis-
tance among non-fermenters, particularly to carbapenems, reduce the arsenal of effective
therapeutics, often making treatment more problematic [2,13,14].

Therapeutic options for carbapenem-resistant (CR) GNB infections in general are
limited and many CR pathogens exhibit MDR phenotypes, including all β-lactams (e.g.,
cephalosporins and penicillins), and other common drug classes such as aminoglycosides
and fluoroquinolones [13–15]. Furthermore, there has been a consistent rise in the annual
number of extensively drug-resistant (XDR) CPEs identified in France since 2012 [8,9,11].
These emerging pathogens are resistant even to last-resort antibiotics such as colistin,
or to newly released antibiotics, and are a source of great concern for the treatment of
patients [16,17].

Cefiderocol (CFDC) is a novel siderophore cephalosporin developed for the treatment
of infections caused by GNB, including those resistant to carbapenems [18]. CFDC is
approved in the USA for the treatment of complicated urinary tract infections (cUTIs), in-
cluding pyelonephritis, hospital-acquired pneumonia and ventilator-acquired pneumonia
caused by susceptible Gram-negative microorganisms, and has recently been approved in
Europe for the treatment of infections caused by aerobic GNB in adults with limited or no al-
ternative treatment options [18,19]. The structure of CFDC is based around a cephalosporin
backbone with the addition of a catechol moiety at the three-position side chain [20,21].
The cephalosporin core enables CFDC to act like other cephalosporins, binding primarily
to penicillin-binding proteins and killing bacterial cells by inhibiting peptidoglycan cell
wall biosynthesis, and the catechol moiety chelates ferric (Fe-III) iron, mimicking natural
siderophores, allowing CFDC to exploit the bacteria’s own active receptor-mediated iron
transport system to cross the outer membrane [20,21]. The resulting increase in the periplas-
mic concentration circumvents non-specific resistance due to porin loss or efflux and
enhances CFDC’s activity relative to carbapenems, other cephalosporins and β-lactam/β-
lactamase inhibitor combinations [22]. CFDC is active against CR-GNB, including those
with derepressed AmpC and/or ESBLs plus porin/efflux pump resistance mechanisms
as well as those harboring carbapenemases from different Ambler classes, including KPC,
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VIM, IMP, NDM and OXA carbapenemases [22–29]. Activity has also been demonstrated
against meropenem-resistant and MDR P. aeruginosa and A. baumannii [28–30].

Here, we report the antimicrobial activity of CFDC and comparators (aztreonam, amikacin, ce-
fepime, ceftazidime, ceftazidime–avibactam, ceftolozane–tazobactam, ciprofloxacin, meropenem,
colistin and tigecycline) against a panel of 476 mostly MDR GNB collected from hospitals in
France and Belgium between 2012 and 2019, thus before any clinical use of CFDC (Table 1).
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Table 1. Panel of tested isolates.
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E. coli 10 3 3 4 21 4 1 1 1 2 6 1 2 59

Klebsiella 8 10 7 12 1 21 7 12 2 1 3 1 1 2 88

Enterobacter 2 2 1 1 5 1 4 1 3 1 18 3 1 1 1 45

Serratia 1 2 3 3 1 1 11

Citrobacter 2 1 1 2 1 2 2 1 12

Morganella 1 1

Providencia 2 2

Salmonella enterica 1 1

Proteus 1 1

Hafnia alvei 2 2

P. aeruginosa 4 52 9 2 1 1 1 4 8 3 3 1 2 12 5 2 1 1 1 113

P. putida 2 1 3

P. stutzeri 1 1 1 3

P. fluorescens 1 1

A. xylosoxydans 1 11 12

A. baumannii 9 2 3 1 8 19 9 9 8 2 3 2 1 3 1 2 82

B. cepacia 13 13

S. maltophilia 25 25

E. miricola 1 1

E.meningoseptica 1 1

Total 34 76 27 3 1 1 2 1 1 1 28 18 4 3 1 50 1 3 19 9 9 8 2 13 2 1 1 3 13 23 4 3 1 2 12 2 4 9 9 2 6 3 1 5 4 51 476

1 ESC: Expanded-spectrum cephalosporin resistant; 2 IR = Intrinsic carbapenem-resistance
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2. Results
2.1. Activity of Cefiderocol

The in vitro activity of CFDC and comparators was assessed in 476 Gram-negative
isolates collected from two National Reference Centers (NRC) for AMR located in France
and Belgium (Table 1). The 222 (46.6%) Enterobacterales isolates were from the French NRC
for CREs and the remaining 254 (53.4%) bacteria came equally from the two NRCs. These
isolates were MDR and of reduced susceptibility/resistant to carbapenems.

Susceptibility to CFDC was high for all the tested MDR GNB (Table 2). Susceptibility
to CFDC using EUCAST breakpoints (<2 mg/L) was 81%, 99% and 84%, which rose with
the investigational CLSI breakpoints (<4 mg/L) to 93%, 100% and 88% for Enterobacterales,
P. aeruginosa and A. baumannii, respectively (Table 2) [31,32]. Susceptibility to CFDC using
EUCAST non-species-related breakpoints for S. maltophilia, A. xylosoxydans and B. cepacia
were 100%, 100% and 92.3%, respectively. The susceptibility rates were lower with NDM
producers, with values of 48% and 30% using EUCAST breakpoints [31] and 81% and 50%
using CLSI breakpoints [32,33] for Enterobacterales and A. baumannii, respectively.

Table 2. MIC distributions of cefiderocol by resistance mechanism and species group.

Mechanism
Total #

of
Isolates

# of Isolates per MIC (mg/L)

% Susceptible
Isolates at

Breakpoints of
(mg/L)

≤0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64 >64 ≤2 1 ≤4 2

Enterobacterales 222 6 5 13 18 31 67 39 27 5 5 1 2 3 81 93
Non CPE 67 2 1 2 10 10 17 15 8 0 0 1 1 0 85 97

KPC 24 0 0 1 0 5 11 5 1 1 0 0 0 0 92 96
other class A

GES, IMI, SME,
fri . . .

9 0 0 2 1 2 2 0 1 1 0 0 0 0 78 89

MBLs 54 1 1 3 3 3 15 11 11 1 3 1 0 1 69 89
NDM 21 0 0 0 0 2 4 4 7 1 2 0 0 1 48 81
VIM 17 0 0 0 1 0 6 6 2 0 1 1 0 0 76 88
IMP 13 1 1 3 2 0 4 0 2 0 0 0 0 0 85 100

other MBLs
(LMB, GIM,

TMB)
3 0 0 0 0 1 1 1 0 0 0 0 0 0 100 100

OXA-48 51 3 2 5 4 11 16 5 3 2 0 0 0 0 90 96
Multi-Carbas 17 0 1 0 0 0 6 3 3 0 1 0 1 2 59 76
P. aeruginosa 120 2 10 22 29 30 17 9 1 0 0 0 0 0 99 100

Non-CP, ESBLs 31 0 1 7 8 7 4 3 1 0 0 0 0 0 97 100
MBLS 77 2 8 13 19 18 12 5 0 0 0 0 0 0 100 100
VIM 56 1 7 12 14 11 8 3 0 0 0 0 0 0 100 100
IMP 11 0 0 1 4 5 1 0 0 0 0 0 0 0 100 100

NDM, GIM, DIM,
SPM, AIM 10 1 1 0 1 2 3 2 0 0 0 0 0 0 100 100

OXA-198, GES,
KPC 12 0 1 2 2 5 1 1 0 0 0 0 0 0 100 100

A. baumannii 82 1 7 11 6 15 16 13 3 3 1 0 0 6 84 88
ESBL, Non CP 26 0 0 4 1 6 5 7 0 0 1 0 0 2 88 88
OXA-23, 40, 58,

143 40 1 7 7 5 5 10 2 1 1 0 0 0 1 93 95

NDM-like 10 0 0 0 0 0 0 3 2 2 0 0 0 3 30 50
VIM, IMP 6 0 0 0 0 4 1 1 0 0 0 0 0 0 100 100

S. maltophilia 25 22 2 1 0 0 0 0 0 0 0 0 0 0 100 100
B. cepacia 13 10 0 1 0 1 0 0 0 1 0 0 0 0 92.3 92.3

A. xylosoxidans 12 0 0 1 4 4 2 1 0 0 0 0 0 0 100 100
Elizabethkingia sp 2 0 0 1 0 0 1 0 0 0 0 0 0 0 100 100

1 EUCAST susceptibility breakpoints 202; 2 CLSI susceptibility breakpoints 2022.

The MIC50 and MIC90 values for CFDC and comparators are reported by pathogen in
Tables 3 and 4.
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Table 3. In vitro activity of cefiderocol and comparators against Enterobacterales, P. aeruginosa and A.
baumannii with reduced susceptibility to carbapenems received at the French and Belgium NRC for
antibiotic resistance in GN according to EUCAST guidelines.

Species Resistance Mechanism
(# of Isolates)

Antimicrobial
Agent

MIC (mg/L) S/I/R

Range MIC50 MIC90 S (%) I (%) 1 R (%)

Enterobacterales

Total (222)

Cefiderocol ≤0.03–>64 1 4 81 / 19
Ceftolozane–
tazobactam ≤0.03–>64 64 >64 19 / 81

Cefepime ≤0.5–>16 >16 >16 14 10 76
Ceftazidime 0.12–>64 >64 >64 9 8 83
Ceftazidime–

avibactam 0.06–>64 4 >64 63 / 37

Aztreonam ≤0.5–>32 >32 >32 14 4 82
Meropenem 0.06–>64 8 >64 36 20 44

Amikacin ≤4–>64 ≤4 >64 70 / 30
Ciprofloxacin ≤0.25–>4 >4 >4 30 5 65

Colistin ≤0.5–>8 ≤0.5 >8 84 / 16
Tigecycline ≤0.25–>4 ≤0.25 2 73 / 27

Non-CPE (67)

Cefiderocol 0.12–64 1 4 85 / 15
Ceftolozane–
tazobactam 0.12–>64 16 >64 30 / 70

Cefepime ≤0.5–>16 16 >16 16 16 68
Ceftazidime 0.25–>64 >64 >64 7 9 84
Ceftazidime–

avibactam 0.06–>64 2 12 90 / 10

Aztreonam ≤0.5–>32 >32 >32 10 4 85
Meropenem 0.06–>64 0.5 32 73 6 21

Amikacin ≤4–>64 ≤4 32 81 9 19
Ciprofloxacin ≤0.25–>4 1 >4 34 6 60

Colistin ≤0.5–>8 ≤0.5 >8 79 / 21
Tigecycline ≤0.25–>4 0.5 2 69 / 31

Class A,
KPC producers (24)

Cefiderocol 0.12–8 1 4 92 / 8
Ceftolozane–
tazobactam 0.25–>64 32 >64 29 / 71

Cefepime 2–>16 16 >16 26 9 65
Ceftazidime 0.25–>64 64 >64 21 3 76
Ceftazidime–

avibactam 0.12–>64 2 8 94 / 6

Aztreonam 2–>32 >32 >32 6 9 85
Meropenem 0.25–>64 32 >64 15 20 65

Amikacin ≤4–>64 4 32 76 / 24
Ciprofloxacin ≤0.25–>4 1 >4 41 6 53

Colistin ≤0.5–>8 1 >8 62 / 38
Tigecycline ≤0.25–>4 0.5 1 76 / 24

Class A, other
carbapenemase (IMI, NMC-A, SME,

GES, FRI-1)
producers (10)

Cefiderocol 0.12–8 0.5 4 78 / 22
Ceftolozane–
tazobactam 0.25–32 0.5 32 78 / 22

Cefepime ≤0.5–>16 ≤0.5 16 78 11 11
Ceftazidime 0.25–>64 0.5 >64 78 0 22
Ceftazidime–

avibactam 0.25–4 0.5 8 100 / 0

Aztreonam 1–>32 4 >32 11 33 56
Meropenem 8–>64 64 >64 0 11 89

Amikacin ≤4–8 ≤4 8 100 / 0
Ciprofloxacin ≤0.25–>4 ≤0.25 >4 89 0 11

Colistin 1–>8 >8 >8 11 / 89
Tigecycline ≤0.25–2 ≤0.25 2 67 / 33

Class B, MBLs total (54)

Cefiderocol 0.03–>64 2 8 69 / 31
Ceftolozane–
tazobactam 64–>64 >64 >64 0 / 100

Cefepime 2–>16 >16 >16 0 2 98
Ceftazidime 64–>64 >64 >64 0 0 100
Ceftazidime–

avibactam 32–>64 >64 >64 0 / 100

Aztreonam ≤0.5–>32 >32 >32 20 0 80
Meropenem 0.5–>64 32 >64 7 24 69

Amikacin ≤4–>64 16 >64 46 / 54
Ciprofloxacin 0.25–>4 >4 >4 22 6 72

Colistin ≤0.5–>8 ≤0.5 1 91 / 9
Tigecycline ≤0.25–>4 ≤0.25 2 70 / 30
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Table 3. Cont.

Species Resistance Mechanism
(# of Isolates)

Antimicrobial
Agent

MIC (mg/L) S/I/R

Range MIC50 MIC90 S (%) I (%) 1 R (%)

Class B, NDM producers (21)

Cefiderocol 0.5–>64 2 16 48 / 52
Ceftolozane–
tazobactam >64 >64 >64 0 / 100

Cefepime 16–>16 >16 >16 0 / 100
Ceftazidime >64 >64 >64 0 0 100
Ceftazidime–

avibactam >64 >64 >64 0 / 100

Aztreonam ≤0.5–>32 >32 >32 14 0 86
Meropenem 16–>64 32 >64 0 0 100

Amikacin ≤4–>64 16 >64 33 0 67
Ciprofloxacin 2–>4 >4 >4 0 0 100

Colistin ≤0.5–>8 ≤0.5 1 48 / 52
Tigecycline ≤0.25–4 ≤0.25 2 52 / 48

Class B, VIM producers (17)

Cefiderocol 0.25–>64 2 16 76 / 24
Ceftolozane–
tazobactam >64 >64 >64 0 / 100

Cefepime 16–>16 >16 >16 0 0 100
Ceftazidime >64 >64 >64 0 0 100
Ceftazidime–

avibactam 32–>64 >64 >64 0 / 100

Aztreonam ≤0.5–>32 >32 >32 18 0 82
Meropenem 1–>64 32 >64 6 29 65

Amikacin ≤4–>32 16 32 24 / 76
Ciprofloxacin 0.25–>4 >4 >4 24 0 76

Colistin ≤0.5–>8 ≤0.5 1 94 / 6
Tigecycline ≤0.25–>4 0.5 1 76 / 24

Class B, IMP producers (13)

Cefiderocol 0.03–4 0.25 4 85 / 15
Ceftolozane–
tazobactam 64–>64 >64 >64 0 / 100

Cefepime 2–>16 8 >16 0 0 100
Ceftazidime 64–>64 >64 >64 0 0 100
Ceftazidime–

avibactam 32–>64 >64 >64 0 / 100

Aztreonam ≤0.5–>32 16 >32 38 0 62
Meropenem 1–64 4 32 15 62 23

Amikacin ≤4–16 ≤4 16 85 / 15
Ciprofloxacin ≤0.25–>4 ≤0.25 >4 46 23 31

Colistin ≤0.5–>8 ≤0.5 1 92 / 8
Tigecycline ≤0.25–>4 ≤0.25 1 92 / 8

Other class B producers (GIM, LMB,
TMB) (3)

Cefiderocol 0.5–2 1 2 100 / 0
Ceftolozane–
tazobactam 64–>64 >64 >64 0 / 100

Cefepime 2–8 8 8 33 0 67
Ceftazidime >64 >64 >64 0 0 100
Ceftazidime–

avibactam 32–>64 >64 >64 0 / 100

Aztreonam 0.5–32 >32 >32 0 0 100
Meropenem 0.5–32 32 >64 33 0 67

Amikacin 4 4 4 100 / 0
Ciprofloxacin ≤0.25–>4 ≤0.25 >4 67 0 33

Colistin ≤0.5–>8 ≤0.5 1 100 / 0
Tigecycline ≤0.25–>1 ≤0.25 1 67 / 33

Class D, OXA-48 producers (50) +
OXA-372 (1)

Cefiderocol ≤0.03–8 1 2 90 / 10
Ceftolozane–
tazobactam ≤0.03–>64 8 >64 37 / 73

Cefepime 1–>16 16 >16 25 14 61
Ceftazidime 0.12–>64 >64 >64 15 20 65
Ceftazidime–

avibactam 0.12–>64 1 8 94 / 6

Aztreonam 1–>32 >32 >32 24 4 73
Meropenem 0.06–>64 4 32 45 33 22

Amikacin ≤4–>64 4 8 90 / 10
Ciprofloxacin ≤0.25–>4 >4 >4 35 4 61

Colistin ≤0.5–>8 1 2 94 / 6
Tigecycline ≤0.25–>4 ≤0.25 2 75 / 25

Multiple Carbapenemase
producers (17)

Cefiderocol 0.06–>64 2 >64 76 / 24
Ceftolozane–
tazobactam >64 >64 >64 0 / 100

Cefepime 4–>64 >64 >64 0 6 94
Ceftazidime 32–>64 >64 >64 0 100
Ceftazidime–

avibactam 16–>64 >64 >64 0 / 100

Aztreonam 2–>16 >16 >16 0 100
Meropenem ≤4–>32 >32 >32 18 82

Amikacin ≤0.5–1 ≤0.5 1 29 / 71
Ciprofloxacin ≤4–>64 >64 >64 0 100

Colistin 4–>8 >4 >4 94 / 6
Tigecycline ≤0.25–4 ≤0.25 4 76 / 24
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Table 3. Cont.

Species Resistance Mechanism
(# of Isolates)

Antimicrobial
Agent

MIC (mg/L) S/I/R

Range MIC50 MIC90 S (%) I (%) 1 R (%)
Acinetobacter spp.

Total (n = 82)

Cefiderocol 0.03–>64 1 8 84 / 16
Ceftolozane–
tazobactam 1–>64 64 >64 13 / 87

Cefepime 2–>16 >16 >16 0 7 93
Ceftazidime 8–>64 >64 >64 0 2 98
Ceftazidime–

avibactam 8–>64 >64 >64 5 / 95

Aztreonam2 8–>32 >32 >32 0 5 95
Meropenem 2–>64 >64 >64 2 11 87

Amikacin 4–>64 64 >64 28 / 72
Ciprofloxacin 0.5–>4 >4 >4 0 9 91

Colistin 0.5–8 1 4 88 / 12
Tigecycline 0.25–>4 1 2 48 / 52

Non-CP (n = 26)

Cefiderocol 0.12–>64 1 4 88 / 12
Ceftolozane–
tazobactam 2–>64 >64 >64 15 / 85

Cefepime 2–>16 >16 >16 0 12 88
Ceftazidime 8–>64 >64 >64 0 4 96
Ceftazidime–

avibactam 8–>64 >64 >64 4 / 96

Aztreonam2 >32 >32 >32 0 0 100
Meropenem 2–>64 32 >64 8 27 65

Amikacin ≤4–>64 64 >64 23 / 77
Ciprofloxacin ≤0.25–>4 >4 >4 0 15 85

Colistin ≤0.5–4 1 2 96 / 4
Tigecycline ≤0.25–>4 1 2 46 / 54

Class D, OXA carbapenemase
(n = 40)

Cefiderocol 0.03–>64 0.25 2 93 / 7
Ceftolozane–
tazobactam 2–>64 >64 >64 12 / 88

Cefepime 8–>16 >16 >16 0 5 95
Ceftazidime 8–>64 >64 >64 0 3 97
Ceftazidime–

avibactam 8–>64 64 >64 8 / 92

Aztreonam2 8–>32 >32 >32 0 5 95
Meropenem 8–>64 >64 >64 0 5 95

Amikacin 4–>64 64 >64 25 / 75
Ciprofloxacin 4–>4 >4 >4 0 0 100

Colistin <0.5–4 1 4 85 / 15
Tigecycline 0.25–>4 1 2 42 / 57

Class B, NDM (n = 10)

Cefiderocol 2–>64 4 >64 30 / 70
Ceftolozane–
tazobactam >64 >64 >64 0 / 100

Cefepime >16 >16 >16 0 0 100
Ceftazidime >64 >64 >64 0 100
Ceftazidime–

avibactam >64 >64 >64 0 / 100

Aztreonam2 >32 >32 >32 0 0 100
Meropenem >64 32 >64 0 0 100

Amikacin 4–>64 4 >64 50 / 50
Ciprofloxacin >4 >4 >4 0 0 100

Colistin 0.5–4 1 2 90 / 10
Tigecycline 0.25–2 0.5 2 60 / 40

Class B, other MBLS (n = 6)

Cefiderocol 0.5–1 0.5 1 100 / 0
Ceftolozane–
tazobactam 1–>64 >64 >64 34 / 66

Cefepime 8–>16 16 >16 0 16 84
Ceftazidime 32–>64 >64 >64 0 100
Ceftazidime–

avibactam 32–>64 >64 >64 0 / 100

Aztreonam2 16–>32 32 >32 0 34 66
Meropenem 16–>64 64 >64 0 0 100

Amikacin ≤4–>64 64 >64 34 / 66
Ciprofloxacin 0.25–>4 0.25 >4 0 50 50

Colistin 1–4 2 4 66 / 34
Tigecycline 0.25–1 0.25 1 16 / 84
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Table 3. Cont.

Species Resistance Mechanism
(# of Isolates)

Antimicrobial
Agent

MIC (mg/L) S/I/R

Range MIC50 MIC90 S (%) I (%) 1 R (%)
Pseudomonas spp.

Total (n = 120)

Cefiderocol 0.03–4 0.25 1 99 / 1
Ceftolozane–
tazobactam 0.5–>64 >64 >64 17 / 83

Cefepime 2–>16 >16 >16 0 15 85
Ceftazidime 2–>64 64 >64 0 5 95
Ceftazidime–

avibactam 2–>64 32 >64 22 / 78

Aztreonam 2–>32 32 >32 0 11 89
Meropenem 1–>64 64 >64 3 13 84

Amikacin 4–>64 32 >64 34 / 66
Ciprofloxacin 0.25–>4 >4 >4 0 14 86

Colistin 0.5–>8 1 2 97 / 3
Tigecycline3 1–>4 >4 >4 0 / 100

Non-CP-CR (n = 31)

Cefiderocol 0.06–4 0.25 2 97 / 3
Ceftolozane–
tazobactam 0.5–>64 4 >64 52 / 48

Cefepime 2–>16 >16 >16 0 23 77
Ceftazidime 2–>64 >64 >64 0 6 94
Ceftazidime–

avibactam 2–>64 16 >64 48 / 52

Aztreonam 8–>32 >32 >32 0 0 100
Meropenem 1–>64 16 >64 6 29 65

Amikacin ≤4–>64 16 >64 58 / 42
Ciprofloxacin ≤0.25–>4 >4 >4 0 16 84

Colistin ≤0.5–>8 1 2 97 / 3
Tigecycline3 2–>4 >4 >4 0 / 100

OXA-198, GES, KPC (n = 12)

Cefiderocol 0.06–2 0.5 1 100 / 0
Ceftolozane–
tazobactam 4–>64 16 >64 25 / 75

Cefepime 2–>16 >16 >16 0 17 83
Ceftazidime 4–>64 >64 >64 0 17 83
Ceftazidime–

avibactam 2–>64 8 >64 67 / 33

Aztreonam 8–>32 >32 >32 0 0 100
Meropenem 16–>64 >64 >64 0 0 100

Amikacin ≤4–>64 64 >64 42 / 58
Ciprofloxacin ≤0.25–>4 >4 >4 0 8 92

Colistin ≤0.5–2 1 2 100 / 0
Tigecycline3 2–>4 >4 >4 0 / 100

Class B, MBL (n = 77)

Cefiderocol 0.03–4 0.25 1 100 / 0
Ceftolozane–
tazobactam 0.5–>64 >64 >64 3 / 97

Cefepime 2–>16 >16 >16 0 12 88
Ceftazidime 2–>64 64 >64 0 3 97
Ceftazidime–

avibactam 2–>64 64 >64 5 / 95

Aztreonam 2–>32 16 >32 0 17 83
Meropenem 1–>64 64 >64 1 8 91

Amikacin ≤4–>64 32 >64 23 / 77
Ciprofloxacin ≤0.25–>4 >4 >4 0 14 86

Colistin ≤0.5–>8 1 2 97 / 3
Tigecycline3 1–>4 >4 >4 0 / 100

VIM (n = 56)

Cefiderocol ≤0.06–2 0.25 1 100 / 0
Ceftolozane–
tazobactam 2–>64 >64 >64 2 / 98

Cefepime 8–>16 >16 >16 0 13 88
Ceftazidime 4–>64 64 >64 0 2 98
Ceftazidime–

avibactam 4–>64 64 >64 5 / 95

Aztreonam 2–>32 8 >32 0 20 80
Meropenem 4–>64 64 >64 0 7 93

Amikacin 8–>64 64 >64 16 / 84
Ciprofloxacin ≤0.25–>4 >4 >4 0 16 84

Colistin ≤0.5–4 1 2 98 / 2
Tigecycline3 1–>4 >4 >4 0 / 100
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Table 3. Cont.

Species Resistance Mechanism
(# of Isolates)

Antimicrobial
Agent

MIC (mg/L) S/I/R

Range MIC50 MIC90 S (%) I (%) 1 R (%)

IMP (n = 11)

Cefiderocol 0.12–1 0.25 2 100 / 0
Ceftolozane–
tazobactam 64–>64 4 >64 0 / 100

Cefepime >16 >16 >16 0 0 100
Ceftazidime >64 >64 >64 0 0 100
Ceftazidime–

avibactam >64 16 >64 0 / 100

Aztreonam 2–>32 >32 >32 0 18 82
Meropenem 8–>64 16 >64 0 9 91

Amikacin ≤4–>64 16 >64 36 / 64
Ciprofloxacin ≤0.25–>4 >4 >4 0 9 91

Colistin ≤0.5–>4 1 2 91 / 9
Tigecycline3 1–>4 4 >4 0 / 100

Other MBLs
(NDM, GIM, DIM, SPM, AIM)

(n = 10)

Cefiderocol ≤0.06–2 0.5 2 100 / 0
Ceftolozane–
tazobactam 0.5–>64 >64 >64 10 / 90

Cefepime 2–>16 >16 >16 0 20 80
Ceftazidime 4–>64 >64 >64 0 10 90
Ceftazidime–

avibactam 2–>64 >64 >64 10 / 90

Aztreonam 8–>32 >32 >32 0 0 100
Meropenem 2–>64 16 >64 10 10 80

Amikacin ≤4–>64 16 >64 50 / 50
Ciprofloxacin ≤0.25–>4 >4 >4 0 10 90

Colistin ≤0.5–2 1 2 100 / 0
Tigecycline3 2–>4 >4 >4 0 / 100

1 “I” refers to susceptible with high exposure according to EUCAST guidelines. 2 A. baumannii are intrinsically
resistant to aztreonam. 3 P. aeruginosa are intrinsically resistant to tigecycline.

Table 4. In vitro activity of cefiderocol and comparators against Gram-negative pathogens isolated
from hospitals in France and Belgium according to EUCAST breakpoints.

Species # of Isolates Antimicrobial Agent
MIC (mg/L) S/I/R

Range MIC50 MIC90 S (%) I (%) R (%)
S. maltophilia (n = 25) Cefiderocol ≤0.03–0.12 ≤0.03 0.06 100 / 0

Ceftolozane–tazobactam ≤0.03–>64 32 >64 24 / 76
Ceftazidime 0.5–>64 64 >64 0 16 84

Ceftazidime–avibactam 0.12–>64 64 >64 20 / 80
Meropenem 2–>64 >64 >64 4 0 96

SXT ≤0.25–>16 0.5 >16 0 72 0
Amikacin ≤4–>64 >64 >64 16 / 84

Levofloxacin ≤1–8 ≤1 8 0 60 40
Colistin ≤0.5–>8 4 >8 32 / 32

Minocycline ≤2 ≤2 ≤2 100 0 0
Tigecycline ≤0.25–2 ≤0.25 1 76 / 24

B. cepacia (n = 13) Cefiderocol ≤0.03–8 ≤0.03 0.5 92.3 / 7.7
Ceftolozane–tazobactam 1–>64 4 >64 61.5 / 38.5

Cefepime 8–>16 >16 >16 0 15.4 84.6
Ceftazidime 4–>64 8 >64 0 61.5 38.5

Ceftazidime–avibactam 4–64 4 32 69.2 / 30.8
Aztreonam >32 >32 >32 0 0 100
Meropenem 16–64 32 64 0 0 100

Amikacin 64–>64 >64 >64 0 / 100
Ciprofloxacin 0.5–>4 1 >4 0 7.7 92.3

Colistin 1 >8 >8 >8 0 / 100
Tigecycline 1–>4 4 >4 0 / 100

A.
xylosoxidans (n = 12) Cefiderocol 0.25–2 0.5 1 100 / 0

Ceftolozane–tazobactam 16–>64 >64 >64 0 / 100
Cefepime >16 >16 >16 0 0 100

Ceftazidime 16–>64 >64 >64 0 0 100
Ceftazidime–avibactam 8–64 64 >64 16.6 / 83.3

Aztreonam >32 >32 >32 0 0 100
Meropenem 0.5–32 32 32 16.7 16.7 66.7

Amikacin 64–>64 >64 >64 0 / 100
Ciprofloxacin 2–>8 2 >4 0 0 100

Colistin 0.5–>8 4 >8 33.3 / 66.7
Tigecycline 0.25–4 1 2 25 0 75
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Table 4. Cont.

Species # of Isolates Antimicrobial Agent
MIC (mg/L) S/I/R

Range MIC50 MIC90 S (%) I (%) R (%)
Elizabethkingia

sp. (n = 2) Cefiderocol 0.12–1

Ceftolozane–tazobactam 16–32
Cefepime 8–32

Ceftazidime 16–>64
Ceftazidime–avibactam >64

Aztreonam >32
Meropenem 32

Amikacin 4>64
Ciprofloxacin 0.25–0.5

Colistin 16
Tigecycline 0.5–4

1 B. cepacia isolates are naturally resistant to colistin.

Among all Enterobacterales, the susceptibility rates to CFDC (81%) were comparable
to those for colistin (84%) and tigecycline (73%); on the other hand, a higher proportion
of Enterobacterales isolates were susceptible to CFDC than to ceftazidime/avibactam
(63%) and ceftolozane/tazobactam (19%). Among the non-fermenting GNB, 84% of the A.
baumannii isolates were susceptible to CFDC, which was higher than all other comparators
apart from colistin (88%), and 99% of P. aeruginosa isolates were susceptible to CFDC,
which was higher than all other comparators also including colistin (97%).

2.2. Cefiderocol Activity among Enterobacterales Isolates

The MIC50 of CFDC was at 1 mg/L, while those of other drugs were >64 mg/L for
ceftazidime, 64 mg/L for ceftolozane–tazobactam, >32 mg/L for aztreonam, >16 mg/L for
cefepime, 8 mg/L for meropenem and amikacin, >4 mg/L for ciprofloxacin, 4 mg/L for
ceftazidime–avibactam, ≤0.25 mg/L for tigecycline and ≤0.5 mg/L for colistin.

The MIC90 for the Enterobacterales of CFDC was 4 mg/L (Table 3), while those
of the comparator antibiotics were >64 mg/L for ceftolozane–tazobactam, meropenem,
ceftazidime, ceftazidime–avibactam and amikacin; >32 mg/L for aztreonam; >16 mg/L for
cefepime; >8 mg/L for colistin; >4 mg/L for ciprofloxacin; and 2 mg/L for tigecycline.

Among the 80 meropenem-susceptible isolates (MIC ≤ 2 mg/L), 10 (12.5%) were
resistant to CFDC and 8 (10%) were resistant to ceftazidime–avibactam. Among the
44 meropenem intermediate isolates (considered susceptible with increased dosing regimen
(MIC of 4 and 8 mg/L)), 6 (13.6%) were resistant to CFDC and 17 (38.6%) were resistant to
ceftazidime–avibactam. Finally, with the 98 meropenem-resistant isolates (MIC > 8 mg/L),
27 (27.5%) were resistant to CFDC while 58 (59.2%) were resistant to ceftazidime–avibactam.
Among the latter, 37 (64%) were still susceptible to CFDC. Among the 27 CFDC-resistant
isolates, 18 were NDM producers.

Non-CP-producing Enterobacterales isolates with a reduced susceptibility to car-
bapenems had a susceptibility rate of 85% to CFDC, which was globally comparable to
the susceptibility rates observed for ceftazidime–avibactam (90%), amikacin (81%) and
colistin (79%).

A total of 92% of the KPC producers were susceptible to CFDC, with an MIC50/90 of
1/4 mg/L, results that are similar to those of ceftazidime/avibactam (94% susceptibility,
and an MIC50/90 of 2/8). The only other competitive comparators were amikacin (76%),
tigecycline (76%) (0.5/1) and colistin (62%) (0.5/>8). For all the other antibiotics, the
MIC50/90 values were superior or equal to the upper limit of the concentration range used
in the MIC testing.

OXA-48-like producing Enterobacterales were susceptible to a larger number of an-
tibiotics compared with the KPC producers (Table 3). A total of 90% of the OXA-48-like
producers were susceptible to CFDC, with low MIC50/90 values of 1 and 2 mg/L, respec-
tively. Its direct competitors were ceftazidime–avibactam (96%; 1/8), meropenem (78% S+I;
4/32), amikacin (90%; ≤4/8), colistin (94%; ≤0.5/1) and tigecycline (75%; ≤0.5/2).
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In total, 69% of the Enterobacterial isolates producing NDM, VIM or IMP carbapen-
emases (Table 3) were susceptible to CFDC with an MIC50/90 of 2/8 mg/L. The only
comparator antibiotics with high susceptibility rates were colistin (91%; ≤0.5/1) and tige-
cycline (75%; ≤0.25/2).

2.3. Cefiderocol Activity against Meropenem-Resistant Non-Fermenters

Carbapenemase-producing P. aeruginosa were susceptible only to CFDC (0.25/1) and
to colistin (1/2) (Table 3). The same resistance trend was observed for carbapenemase-
producing A. baumannii strains (CFDC (1/8) and colistin (1/4)), except that the latter were
also susceptible to tigecycline (1/2) (Table 3). The only unexpected result was the overall
low activity of ceftolozane–tazobactam against those non-CP P. aeruginosa isolates (48.4% of
susceptibility).

Among the 120 P. aeruginosa isolates tested, only one isolate exhibited an MIC value
of CFDC of 4 mg/L, which is considered resistant by EUCAST, but still susceptible by
CLSI. Noteworthy, in P. aeruginosa, CFDC was active against all MBL producers, while all
comparators were below 20% except for colistin (97%). Thirteen A. baumannii (15.9%) had
MICs > 2 mg/L, among which seven were NDM producers, three were ESBL producers
(two PER and one VEB) and three were OXA-23 producers.

2.4. Cefiderocol Activity against Intrinsically Meropenem-Resistant Non-Fermenters

Among the intrinsically meropenem-resistant non-fermenters (S. maltophilia, A. xylosox-
idans, Elizabethkingia spp.) or frequently meropenem-resistant non-fermenters (B. cepacia),
51 of the 52 isolates (98%) were susceptible to CFDC (Table 4).

Overall, a higher proportion of meropenem-resistant non-fermenters were susceptible
to CFDC than to any of the other comparator antimicrobials tested (Table 4). Minocyclin
for S. maltophilia (100% both), ceftazidime–avibactam for B. cepacia (92.3% vs. 69.2%) and
colistin for A. xylosoxidans (100% vs. 33.3%) were the best comparators.

3. Discussion

In the French SIDERO-WT study, CFDC displayed excellent in vitro activity, but since
only very few meropenem-resistant Enterobacterales were included, it was not possible
to assess CFDC activity versus other antimicrobials as comparators for these isolates [29].
In the present evaluation of 476 GNB isolates, of which 472 were MDR, from France
and Belgium (of which 66% were meropenem R (MIC > 8 mg/L)), CFDC demonstrated
substantial in vitro activity. These isolates were from hospitals in France and Belgium and
were mainly isolated in 2018 and 2019, thus before any clinical use of CFDC. Notably, CFDC
demonstrated substantial activity against all isolates of P. aeruginosa, most A. baumannii
and intrinsically meropenem-resistant GN non-fermenters such as S. maltophilia and A.
xylosoxidans, where all other comparators demonstrated much lower susceptibility rates.
Overall, more isolates were susceptible to CFDC than to a key subset of other currently
available antimicrobial agents including the β-lactam/β-lactamase inhibitor combinations
ceftazidime–avibactam and ceftolozane–tazobactam, and colistin, which is often considered
a last resort molecule for MDR GNB infections.

Carbapenem resistance among GNB in France is steadily rising and poses a substantial
threat to patients and healthcare systems, often leading to greater rates of mortality, mor-
bidity and increased burden on hospitals [8,9,11]. In France and Belgium, OXA-48 remains
the most common carbapenemase reported nationally among CPEs [8,9,11]. The OXA-48
variants, OXA-181 and the difficult-to-detect OXA-244 are increasingly isolated among
CPEs, including ESBL producers. There is now increasing concern over the emergence of
OXA-48-mediated resistance to new antibiotic regimens such as ceftazidime–avibactam [34].
Therefore, there is a continued need for new antibiotics and antibiotic regimens with activity
against OXA-48-like producers, among others. Despite the dominance of OXA-48 in France
and Belgium, over recent years there has been a notable shift in resistance mechanisms, with
an increase in MBL producers such as NDM and VIM [8,9,11] and the first isolation of IMP-
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producing Enterobacterales. This shift to MBL-mediated resistance is of concern as new
β-lactam/β-lactamase inhibitor combination therapies, including ceftazidime–avibactam,
ceftolozane–tazobactam and meropenem–vaborbactam, are known to lack efficacy against
MBLs. As such, these agents cannot be proposed for empirical treatment against infections
that are suspected to involve MBL-producing GNB [35,36]. Previous reports from the
SIDERO-WT study have shown potent in vitro activity of CFDC against carbapenemase-
producing isolates including MBL producers [27,29]. In these studies, only a few MBL
producers were included. Here, in our study, 54 MBLs, among which were 21 NDM pro-
ducers, were studied. Only 50% of the NDM-producing Enterobacterales were susceptible,
which was yet much higher than the comparators, except for colistin and tigecycline. In
general, MICs for cefiderocol with Enterobacterales-producing MBLs are close to the break-
points with 28% (n = 15) with an MIC = 1 mg/L, 20% (n = 11) with an MIC = 2 mg/L, and
20% (n = 11) with an MIC = 4 mg/L. A possible explanation for these higher MICs as com-
pared to other carbapenemases [37] is likely due to the fact that MBLs and especially NDM
have stronger hydrolytic activity against expanded-spectrum cephalosporins, including
CFDC, as suggested by the addition the MBL inhibitor, dipicolinic acid, that reduced the
MICs of CFDC against previously non-susceptible Enterobacterales isolates [38]. Based on
resistance reports, the increased copy number of NDM may increase CFDC MIC values
in the absence of CirA mutations, which is the iron transporter involved in CFDC uptake.
However, when NDM overexpression is associated with mutations of the cirA gene, a loss
of fitness was observed in these isolates. Of note, the combination of mutations in the iron
transport genes and the expression of the NDM enzyme was found in CREs in China, way
before CFDC was used in clinical practice [39]; thus, it has been suggested that resistance
to CFDC may be the consequence of previous antibiotic treatments, to cancer therapies or
to so far unknown mechanisms of selection [40–42].

Furthermore, in instances where resistance is not due to carbapenemase production,
CFDC has demonstrated in vitro activity against isolates with AmpC, ESBLs, porin muta-
tions and efflux pump upregulation.

Although the prevalence of infections caused by non-fermenting GNB currently re-
mains relatively low in France, there is growing concern regarding the high propensity
of these isolates to develop resistance, and the resulting depletion of available effective
treatment options [13,43]. In this study, the CFDC activity exceeded that of all the tested
comparators except colistin against meropenem-resistant isolates of S. maltophilia, P. aerugi-
nosa and A. baumannii.

These findings are in line with previous reports in other countries, which demon-
strated the potent in vitro activity of CFDC against MDR Enterobacterales, MDR A. bau-
mannii, MDR P. aeruginosa and S. maltophilia [37,44]. Additionally, novel agents such
as ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam have
recently been approved against antibiotic-resistant GNB as they are effective against
Enterobacterales-producing KPC but have limited or no efficacy against CR A. bauman-
nii [35,43].

Overall, there are very few antimicrobial agents available to clinicians to treat patients
infected with CR GNB, and the agents that are available are often associated with con-
siderable toxicities and increasing resistance. Colistin is effective against a wide range of
CR-GNB, and in this study, colistin was the only agent with comparable activity to CFDC
against non-fermenters collected from patients with nosocomial pneumonia or bloodstream
infections (BSI). However, the usage of colistin is associated with a potential risk of nephro-
and neurotoxicity [45] and several species of Enterobacterales have demonstrated intrinsic
colistin resistance. Additionally, in this study, fewer meropenem-resistant S. maltophilia
isolates were susceptible to colistin than to CFDC. The in vivo results confirmed the excel-
lent behavior of CFDC for the treatment of MDR GNB in bloodstream infections [46–51].
CFDC has also shown to be a promising new treatment option for patients with bone and
joint infections due to CR A. baumannii and appears to be well tolerated for prolonged
durations [49,50].
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4. Materials and Methods
4.1. Bacteria

The tested isolates (Table 1) were from the French and Belgium National Reference Cen-
ters for antibiotic resistances among GNB and comprised (i) 222 isolates of Enterobacterales,
selected to represent diverse carbapenemase producers and isolates with carbapenem
resistance via combinations of porin loss with AmpC or ESBL activity; (ii) 120 isolates of
P. aeruginosa, selected to represent producers of MBLs and GES carbapenemases, along
with isolates that produced ESBLs and were carbapenem-resistant via porine OprD loss;
(iii) 82 MDR isolates of A. baumannii expressing various carbapenemases, including NDM
and/or various OXA carbapenemases; and (iv) 52 GNB naturally resistant to carbapenems:
25 S. maltophilia, 13 B. cepacia, 12 A. xylosoxidans and 2 Elizabethkingia sp.

These isolates were selected by both NRCs to represent the French and Belgium
epidemiology of carbapenem-resistant GNB and challenging isolates expressing rare car-
bapenemases. As CFDC had not previously been tested, these isolates were chosen based
on their carbapenem/expanded spectrum susceptibility profiles and their enzymatic con-
tent. Almost all the isolates tested were submitted for an investigation of MDR/XDR
resistance phenotypes by hospital laboratories in France and Belgium between 2012 and
2019, thus before any clinical use of CFDC. Carbapenemases and ESBL enzymes were
identified by PCR of their encoding genes or by whole-genome sequencing (WGS). Car-
bapenem resistance due to porin loss combined with ESBL or AmpC activity was inferred
from previous susceptibility results and the absence of carbapenemase, as confirmed by
PCR or WGS. Species identification was by matrix-assisted laser desorption ionization-time
of flight (MALDI-TOF) mass spectroscopy.

4.2. Antimicrobial Susceptibility Testing

The MICs were determined using frozen 96-well broth microdilution panels with
a pre-loaded antibiotic growth medium supplied by International Health Management
Associates, Inc. (IHMA; Schaumburg, IL, USA). CFDC was tested in iron-depleted cation-
adjusted Mueller–Hinton broth (ID-CAMHB), as recently approved by the CLSI ([32];
http://clsi.org/standards/micro/microbiology-files/, accessed on 1 September 2022),
whereas the comparators were tested in cation-adjusted Mueller–Hinton broth (CAMHB).
The strains were grown overnight on a non-selective agar media. Two to three colonies were
resuspended in 3 mL sterile 0.85% NaCl in order to obtain a 0.5 McFarland suspension. One
milliliter of this suspension was further diluted in 29 mL of sterile water, of which 10 µL
were then added to each well, and the plates were subsequently incubated for 16–20 h at
35 ◦C, as recommended by the manufacturer and EUCAST guidelines [31]. Quality control
testing was performed on each day of testing using E. coli ATCC 25922, K. pneumoniae ATCC
700603 and P. aeruginosa ATCC 27853 to ensure the stability of the panels and the validity
of the test methods. The comparator antibiotics were for Enterobacterales, Pseudomonas
spp., Acinetobacter spp., B. cepacia, A. xylosoxydans and Elizabethkingia spp. meropenem, cef-
tazidime, ceftazidime–avibactam (4µg/mL), cefepime, ceftolozane–tazobactam (4µg/mL),
aztreonam, colistin, amikacin, ciprofloxacin and tigecycline, all sourced by IHMA. For S.
maltophilia, cotrimoxazole, levofloxacin and minocycline were tested instead of cefepime,
aztreonam and ciprofloxacin.

The MIC results of CFDC were interpreted using EUCAST breakpoint [31] values of
S ≤ 2 mg/L and R > 2 mg/L for Enterobacterales, P. aeruginosa, Acinetobacter spp and S.
maltophilia, and for the other tested bacteria, non-species-related PK/PD values (≤2 mg/L )
were used; the Investigational CLSI MIC breakpoints for the same bacteria were used with
values of S ≤ 4 mg/L and R ≥ 16 mg/L, which correspond to those when CFDC was in
trial. The MICs of the comparator antibiotics were interpreted using EUCAST guidelines
where available, the exceptions being ceftazidime and cefepime for Acinetobacter spp., for
which only the CLSI breakpoints are available [32,33].

http://clsi.org/standards/micro/microbiology-files/
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4.3. Ethics

Ethics approval was not required as all the bacterial isolates were from the French
or Belgium NRC for antibiotic resistances and thus were anonymized and unrelated to
the patients.

5. Conclusions

The increasing incidence and diversification of carbapenem resistance among GNB
is of growing concern in France and in Belgium, as a shift toward more difficult-to-
treat pathogens is putting pressure on the already limited available treatment options.
CFDC demonstrates substantial and broad in vitro activity against a wide range of MDR
pathogens, and even XDR GNB. The findings from this study are in line with those from pre-
vious reports and suggest that CFDC may offer an invaluable treatment option in the fight
against antimicrobial-resistant GNB, particularly for carbapenem-resistant non-fermenters
and MBL producers, especially Acinetobacter baumannii, for which there are currently few
approved effective therapies. Colistin was the only other agent with similar activity as
CFDC against meropenem-resistant GNB. It should be emphasized that CFDC displays
much more favorable pharmacokinetic parameters (tissue diffusion and use in renal im-
pairment) than colistin and tigecycline, which will be an important factor for choosing an
adequate therapy for infections due to multidrug infections.

In addition to aztreonam, CFDC is the other beta-lactam with activity against MBL-
producing CREs. Our results, along with other in vitro and surveillance studies, showed
that CFDC MIC values are higher against NDM-producing isolates than VIM-producing
isolates. Nevertheless, clinical studies demonstrated that NDM-producing CRE infections
with CFDC MICs of 4 µg/mL, which corresponds to the CLSI susceptibility breakpoint,
could be successfully treated [48]. The recent IDSA guidance and ESCMID guidelines pro-
vide recommendations on when and how to use the new antimicrobial agents, especially to
prevent irrational use and the emergence of resistance [52,53]. Neither of them recommends
a second agent to be used with the new antibiotics for the treatment of CRE infections.
Even though resistance for each of the new agents has been described, great susceptibility
rates are described globally, with some regional variations. Overall susceptibility rates are
reduced for ceftazidime–avibactam, meropenem–vaborbactam and imipenem–relebactam
in regions where MBLs are prevalent, and CFDC MICs are higher where NDM-producing
CREs are more prevalent. This underlines the need for rapid diagnostic tests for resistance
mechanisms that will improve the surveillance and diagnosis of CRE and, hence, the
selection of the most appropriate antibiotic agent [54,55].
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