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Abstract: Acinetobacter baumannii is a multidrug-resistant and invasive pathogen associated with the
etiopathology of both an increasing number of nosocomial infections and is of relevance to poultry
production systems. Multidrug-resistant Acinetobacter baumannii has been reported in connection to
severe challenges to clinical treatment, mostly due to an increased rate of resistance to carbapenems.
Amid the possible strategies aiming to reduce the insurgence of antimicrobial resistance, phage
therapy has gained particular importance for the treatment of bacterial infections. This review
summarizes the different phage-therapy approaches currently in use for multiple-drug resistant
Acinetobacter baumannii, including single phage therapy, phage cocktails, phage–antibiotic combina-
tion therapy, phage-derived enzymes active on Acinetobacter baumannii and some novel technologies
based on phage interventions. Although phage therapy represents a potential treatment solution for
multidrug-resistant Acinetobacter baumannii, further research is needed to unravel some unanswered
questions, especially in regard to its in vivo applications, before possible routine clinical use.

Keywords: multidrug-resistant Acinetobacter baumannii; phage therapy

1. Introduction

The Gram-negative aerobic, non-motile, pleomorphic bacillus Acinetobacter bauman-
nii [1] is a multidrug-resistant opportunistic pathogen, currently identified as one of the
major causes of nosocomial infections in the healthcare system worldwide [2]. Moubareck
et al. defined A. baumannii as the main causative agent of pneumonia, sepsis, meningi-
tis and urinary tract and wound infections [3], with it being correlated to a nosocomial
mortality rate of up to 35% [4]. Antimicrobial resistance (AMR) has been identified as a
major worldwide health threat; in recent years, the irrational use of antibiotics, especially in
broad-spectrum approaches, has led to both an increased selection of microbial species able
to survive medical treatments and an increased genomic distribution of AMR genes [5,6].
Amongst the increasing number of multidrug-resistant bacteria reported, A. baumannii
has also been correlated to an increased resistance to multiple antibiotics [7]. Different
outcomes have been reported for A. baumannii infected patients, including the need for
cardiac surgery, with a prevalence of high-mortality pulmonary infections [8]. According to
Asif et al. (2018), A. baumannii AMR gene distribution significantly differs between patients
in different hospitals and departments [9]. Specifically, A. baumannii has been found to be
resistant to common antibiotics, such as cefoperazone/sulbactam, ampicillin/sulbactam
and piperacillin/tazobactam, while polymyxin B still showed strong antibacterial activity
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against multidrug resistant A. baumannii in vitro [10]. A. baumannii infection and drug
resistance rates are generally increasing, leading to a decrease in the effectiveness of general
antibiotic therapy worldwide. For example, carbapenems are critically important broad-
spectrum antibiotics, whose pivotal therapeutical role is endangered by the insurgence of
multi-resistance amongst multidrug resistant A. baumannii [6]. There is increasing evidence
that extensively drug-resistant (XDR) and pan-drug-resistant (PDR) A. baumannii strains
accumulate in, amongst others, countries such as Iran and Croatia [11–13].

Poultry production has an essential contribution in terms of food security and nutrition,
with a fast-growing market [14], mostly due to poultry meat and eggs being an affordable
protein source [15]. A significant number of regulations have led to a decrease in the use of
antimicrobial agents in food animal production [16]; however, A. baumannii is commonly
found in poultry and their produce. Indeed, its role as a zoonotic AMR agent has been
investigated [17], indicating the possible AMR transmission from poultry to humans [18].
Multidrug resistant A. baumannii has been listed as a key priority by the World Health
Organization (WHO) in the attempt to identify pathogens that pose an increased threat to
human health [19], hence the urgent need for alternative treatment strategies.

Bacteriophages (phages) are viruses that specifically target bacteria with a basic struc-
ture comprising an outer protein capsid enclosing the nucleic acid [20]. Similar to other
viruses, a typical phage lytic infection cycle is characterized by adhesion to the bacterial
cell via recognizing host outer receptors, the injection of a phage genome into the cytosol,
viral replication, followed by bacterial lysis and the liberation of a new phage [21], which
could potentially infect new susceptible bacterial cells. Phage therapy, based on such lytic
dynamics, could function as a self-amplifying “drug”, targeting sensitive bacterial cells
and therefore providing an alternative to antibiotic therapy [22]. Strictly speaking, lytic
phages are usually preferred for phage therapy, whereas the use of temperate phages
has been avoided due to their ability to mediate gene transfer between bacteria through
specialized transduction, which may increase bacterial virulence [23] or horizontal AMR
gene transfer [24]. Beyond being a promising alterative to classic antibiotics, with the aim
of decreasing the insurgence of AMR, phages could be also used towards biofilms, with
them having a lower systemic toxicity and improved self-reproduction abilities compared
to classic antibiotics [25,26]. Phage therapy has been relatively poorly studied in the past,
in contrast to the majority of the studies, which have focused their attention on classic
antibiotics, targeting tolerance, immune response, pharmacokinetics, pharmacodynamics
and animal models of infection [27]. Recently, a significant number of studies on phage
therapy have been published, underlining the important role of this possible therapeuti-
cal alternative [4,27–30]. In 2017, phage therapy was reported as possible treatment for
A. baumannii infection for the first time [31]. The advantages and limitations associated
with phage therapy, as currently understood, are summarized in Table 1.

Table 1. Advantages and limitations of phage therapy in comparison to antibiotics.

Advantage Limitations

Narrow antimicrobial spectrum [32]
There is no definite optimal dosage and/or administration plan.

Adaptive anti-phage immunity may develop through
multiple dosing [33]

Abundant in water, soil and other ecological environment [34] Technical challenges accompany the preparation of phagocytic
mixture in advance [35]

Fewer side-effects [36] Can promote horizontal gene transfer through transduction,
which may lead to the spread of drug resistance [37]

Low environmental impact [32] Lack of reproducibility amongst results from different in vivo
and in vitro studies [38]

Low impact on broader microbial communities [39] The immune response of the body may affect phage activity [40]

Low phage characterization and isolation cost [41] Stability and shelf life [42]

Effective against bacterial biofilms [43] Convoluted rational design
(pharmacodynamics/pharmacokinetics) [44]
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Research on bacteriophages as an antibiotic alternative has become increasingly pop-
ular due to the rise of AMR and the increasing number of multi-drug-resistant bacteria.
Numerous in vivo and in vitro studies using single or mixed phage types (phage cocktails)
have been conducted over the years. The following section describes in detail the most
common phage therapies tested so far, especially considering their applications against
A. baumannii in both human medicine and applied to poultry production, including sin-
gle phage therapy [45], phage-cocktails [46], phage-antibiotic combination therapy [47],
phage-derived enzymes [48] and novel approaches to phage therapy, such as its use in
combination with photosensitizers [49] (Figure 1).
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2. Phage Therapy on Human Infection
2.1. Single Phage Therapy

Therapies based on a single virus type, also known as monophage therapies, have been
extensively applied as A. baumannii treatments. Jeonet et al. (2012) found that the phage YMC
13/03/R2096 ABABBP or the molarϕ-R2096 exhibited high lytic activity against A. baumannii
growth in a dose-dependent manner [50]. In another study, intranasally administered
phage SH-AB15519, originally isolated from hospital wastewater, was found to be effective
in treating pneumonia led by carbapenem-resistant A. baumannii infection in mice [51].
Interestingly, phage SH-AB15519 has been demonstrated to be lacking genes connected to
further virulence or AMR [22], possibly as a symptom of its low integration rate, which
might endorse the use of this phage as a possible antibiotic alternative. PD-6A3 is a novel
A. baumannii phage which also inhibits Escherichia coli and Methicillin-resistant bacteria [52].
Furthermore, Phage Abp9 effectively treated the biofilm produced by A. baumannii strain
ABZY9 in vitro and contributed to positive treatment outputs in a murine model of A.
baumannii infection [32]. Phage ϕ KM18P was used in XDR A. baumannii bacteraemia
models in BALB/C and C57BL/6 mice, where it improved the survival rate of animals and
reduced the number of bacteria in the blood, concurring with decreased levels of TNF-α and
interleukin-6 [53]. The bacteriophage vB_AbaP_AGC01, isolated from a fish pond sample
collected in Stargard (Poland), has been shown to have high specificity to A. baumannii
and to generate high-yield viral offspring (317 ± 20 plaque-forming units per cell) [54].
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The phage vB_AbaP_AGC01, either alone or in combination with antibiotics (gentamicin,
ciprofloxacin and meropenem), significantly reduced A. baumannii cell counts in a human
heat-inactivated plasma model [54]. In parallel, the phage vB_AbaM_PhT2 prevented
A. baumannii-induced cell damage in human brain and bladder cell lines by significantly
reducing bacterial cytotoxicity and the dose of colistin needed [55]. Therefore, these
findings suggest that phages in general, and perhaps phage vB_AbaM_PhT2 in particular,
could be applied as antibacterial agents in a hospital environment. The bacteriophage
STP4-A, screened by Li et al., has a strong inhibitory effect on both single and multiple
salmonella strains and is a safe antibacterial agent with a wide host range which can
be used in the poultry industry. Tawakol et al. [56] showed that phage therapy (via
intratracheal inoculation) not only reduced the severity of APEC infection when studied as
a single pathogen infection, but also prevented mortality from the co-infection of APEC
and infectious bronchitis virus (IBV). In addition, phage treatment significantly reduced
the number of pathogenic exfoliated E. coli and IBV in the mixed infection group but not in
the case of the IBV-only challenge.

2.2. Cocktail Therapy

Phage cocktails typically consist of multiple phages combined, with each of them
having unique host specificity due to selective affinity towards a specific bacterial receptor,
conferring a broad therapeutic lysis spectrum [57]. On the other hand, the development of
phage resistance, especially to lytic viruses, should be carefully monitored, and cocktails
appear to be a valid approach to limit such occurrences. It has been shown, for example, that
a designed cocktail of the phages vB_AbaS_D0, isolated from hospital-sewage samples in
Dalian (China), and vB_AbaP_D2 decreased the mutation frequency of A. baumannii whilst
also decreasing the percentage of phage-resistance in a murine bacteraemia model [58]. Wu
et al. reported the the administration of a phage cocktail (ϕAb121 and ϕAb124) to four
patients in a COVID-19 intensive care unit in China was able to treat carbapenem-resistant
A. baumannii infection, otherwise showing the insurgence of phage-resistant A. baumannii
strains when only one phage was administered [59]. The application of a cocktail of
bacteriophages has also been demonstrated to be an effective substitute to antibiotic growth
promoter replacement in broiler diets [60], which would further assist in the reduction of the
development of anti-microbial resistance arising from poultry production. The combination
of phages (ϕkm18p, ϕTZ1 and ϕ314) as a cocktail was able to decrease the concentration
of A. baumannii in another study, in contrast to single-phage administration, which was
correlated to recidivist bacterial growth [61]. In parallel, another study demonstrated
an improved outcome when using q phage cocktail compared to single phage in lysing
A. baumannii bacteria without leading to further resistance [62].

Similarly, the emergence of anti-phage mutants can be suppressed by ensuring a high
titre throughout cocktail treatment. Beyond phage-resistance, another factor to consider is
that treatment with high-populated phage cocktails may lead to complex pharmacological
and immune responses, which may hinder the implementation of clinical trials [44], hence
the recommendation of the use of a less complex cocktail consisting of up to 2–10 phages
as the first choice [63]. As observed in other fields, the misuse of antibiotics associated
with livestock, including in poultry production, has led to the selection and spread of
multi-drug resistant organisms (MDROs), including A. baumannii [64]. The zoonosis risk
associated with these MDROs is not only clinically relevant to the development of a specific
symptomatology, but it could also contribute to the spread of AMR to humans thanks to
mechanisms such as, e.g., horizontal gene transfer. Although the use of phage therapy to
control A. baumannii infection in poultry has not been reported, many studies have been
carried out on other pathogens in farm animals. Indeed, Campylobacter jejuni abundance
in broilers was decreased by oral treatment with a Campylobacter-specific- phage cocktail,
without further affecting microbiota species [65], providing a working example for the
further future application of similar strategies to modulate A. baumannii overgrowth in
poultry and other livestock.
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2.3. Phage–Antibiotic Synergy

Phage–antibiotic synergy (PAS) refers to the usage of antibiotics at sublethal doses in
combination with phage administration, with the aim of increasing the release of phage-
progeny from bacterial cells [66]. PAS strategies have a number of advantages, such as
enhanced bacterial inhibition, the reduced development of phages and the penetration of
biofilms [67]. However, care should be taken when considering a combined therapy due
to their unavoidable increased risk towards AMR insurgence. Low antibiotic doses used
in such combinations could indeed facilitate the selection of resistant species. Moreover,
the impact of these antibiotics on the rest of the microbiota symbionts, beyond the primary
target, ought to be taken into consideration [68].

Importantly, the final PAS effect is affected by not only the qualitative distribution of
antibiotics in the mix, but also by their relative concentrations. Ma et al. [69]. optimized the
multiplicity of infection (MOI, i.e., optimal phage/target ratio) of phages in combination
with eight different antibiotics applied to the control of A. baumannii, demonstrating that a
reduction in the rifampicin concentration led to a decreased PAS effect, which was otherwise
increased by a decrease in both meropenem and minocycline concentrations. On the other
hand, the effectiveness of PAS, as a combined approach, has been shown in several studies.
Indeed, Grygorcewicz et al. observed approximately a 4-log reduction of A. baumannii
when using vB_AbaP_AGC01 phage in combination to ciprofloxacin and meropenem, in a
heat-inactivated plasma blood model [54]. Tan et al. reported pathogen clearance and clini-
cal improvement in patients previously diagnosed with carbapenem-resistant A. baumannii
pneumonia after treatment with monophage preparation in combination with tigecycline
and polymyxin E [70]. The phage VB_ABam-Kar-1 characterized by Jansen et al. [71]
showed lytic activity against clinical isolates of multidrug resistant A. baumannii. The latter
was shown when the multiplicity of infection of kar-1 was 10−7 and the therapeutic dose
of colistin and meropenem significantly increased the inhibition of bacteria. The synergy
of phage–antibiotic therapies was measured by Grygorcewicz et al. [72], demonstrating
different types of interactions between phages and antibiotics (i.e., synergistic, additive,
indifferent or antagonist interactions) depending on the antibiotic used. For example, bac-
teriophage AGC-01 had a synergistic interaction with ciprofloxacin and norfloxacin, whilst
vB_AbaP_AGC01 phage had an additive interaction with norfloxacin and meropenem,
both on A. baumannii. Interestingly, when using E. coli as a test organism, it was found that
phages could lower the minimum inhibitory concentration for drug-resistant strains and
that the emergence of resistant cells was suppressed by the synergism between phages and
antibiotics [73].

2.4. Phage-Encoded Enzymes for the Treatment of A. baumannii
2.4.1. Endolysins

Endolysins are phage-produced hydrolases that lyse bacterial cell walls, allowing the
further release of progeny phages at the end of the replication cycle [74]. These enzymes are
very effective towards peptidoglycan layers, leading to a sudden drop in osmotic pressure
and therefore lysis [75]. According to their action on the main bonds in the peptidoglycan
layer, endolysins are divided into five categories: (I) N-acetyl-β-D-intracellular amidase,
(II) N-acetyl-β-D-glucosaminidase, (III) transglycosidase; (IV) N-acetyl-leucoyl-l-alanine
amidase and (V) L-alaninoyl-D-glutamate endopeptidase [76]. The main advantage of
endolysin therapy over traditional broad-spectrum antibiotics is endolysins’ high specificity
towards bacterial species or subspecies without interacting with the surrounding microbial
cells [77]. Additionally, further advantages associated with endolysins are connected to
reduced resistance, to their synergistic activity with different antibacterial agents and to
their ability to play an effective role on biofilm and the mucosal surface [78].

TS2631, an endolysin from the Thermus scotoductus bacteriophage vB_Tsc2631, can
also lysate A. baumannii and P. aeruginosa [79]. Wu et al. overexpressed and purified
endolysin (Ply6A3) from vB_AbaP_PD-6A3, demonstrating its effectiveness towards 179
out of the 552 clinical multidrug-resistant A. baumannii strains tested (32.4%). In vitro,
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Ply6A3 not only inhibited A. baumannii but also other strains such as E. coli and MSRA,
indicating Ply6A3 activity targeting the MSRA cell wall. During the observation period, no
obvious side effects were observed after the intraperitoneal injection of Ply6A3 in mice [54].
In another trial, the activity profiles of recombinant endotoxins firstly identified and iso-
lated from members of the Myoviridae phage family (LysAm24, LysAp22, LysECD7 and
LysSi3) [80] were estimated to be effective towards one hundred Gram-negative pathogens,
including the clinical isolates MDR Klebsiella pneumoniae, Salmonella, P. aeruginosa, E. coli,
A. baumannii and Enterobacter spp. Of the bacteria investigated, A. baumannii was the most
sensitive to endolysin. The data showed that these enzymes did not promote the develop-
ment of short-term drug resistance. Furthermore, LysSi3 and LysECD7 did not decrease
Bifidobacterium and Lactobacillus abundance in humans [81]. In addition, LysAB54 from
A. baumannii bacteriophage p54 showed high antibacterial activity against a variety of
Gram-negative pathogens [31]. Free peptidoglycan within the gastrointestinal tract is an-
other endolysin target. In monogastric farm animals, and poultry in particular, peptidoglycan
in bacterial cell debris may undermine gastrointestinal functionality. The supplementation
of microbial muramidase with endolysin activity has been shown to benefit growth perfor-
mance and gastrointestinal functionality in broilers [82–84]. With poultry being a reservoir
for MDROs, the use of endolysin-based feed additives might assist in the reduction of the
AMR level ending in the food chain.

2.4.2. Depolymerases

During biofilm formation, bacterial cells are usually surrounded by extracellular
polymers (EPSs), which can also act as barriers for phage penetration [85]. A. baumannii EPSs
increases the resistance of the bacterium to antimicrobial agents due to diffusion limitation
and can lead to severe persistent infections that are particularly difficult to treat, with
them also providing resistance to phages [86]. Depolymerases are phage-derived enzymes
that facilitates the early stages of phage infection by degrading extracellular bacterial
protein [87]. The depolymerase responsible for degrading EPSs or O-polysaccharides
can be found either as a virion component or it can be secreted in a soluble form during
bacterial cell lysis [88]. This unique ability of depolymerases to specifically recognize and
degrade EPSs and related biofilm components provides an attractive and promising tool
for pathogen control [89]. On the other hand, biofilms are also known to develop within
drinking lines in, e.g., poultry production systems (Maes et al., 2019), pointing towards the
use of depolymerases as a management practice, with it also assisting AMR management.
An example is provided by the tail spike protein derived from ϕAB6 with depolymerase
activity, which can significantly inhibit the formation of and degrade existing biofilms at a
concentration ≥0.78 ng [90]. Moreover, such proteins have also been found to be effective
in reducing A. baumannii adhesion on the surface of medical devices [90].

2.5. Novel Technologies Applied to Phage Therapy

Recently, a number of technological developments based on phage therapy have
been described, in addition to the traditional therapeutic schemes mentioned so far. One
application is based on the work of Ran et al. (2021), who developed a unique photodynamic
antimicrobial agent (APNB) based on a cationic photosensitizer and a bacteriophage for
precise bacterial eradication, also showing high efficacy against biofilm [91]. NB is a
benzoxazine compound, which is a well-known DNA-binding dye with relatively low
systemic toxicity and in some cases is also known for delaying tumoral growth. In this
context, NB can direct selective phototoxicity in combination to phage therapy, increasing
the effectiveness of the latter, which when used alone could not achieve optimal therapeutic
results [92]. The combination of the dye to the phage as an antimicrobial agent allows
for the real-time monitoring and evaluation of the treatment dynamics, based on the
NB fluorescence. Further structural modification with, e.g., sulphur atoms provide an
excellent reactive oxygen species generation ability, which could be used in combination
with APNB specificity towards binding pathogenic microorganisms. Both in vitro and
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in vivo experiments demonstrated that APNB can effectively treat A. baumannii infection.
However, it ought to be mentioned that A. baumannii recovered faster after APNB treatment
compared to ampicillin and polymyxin B in mice, despite APNB having promise with
regard to its application against MDRP and biofilm [49].

In terms of new technologies based on phage therapy, aerosol spray applied to both
poultry and bedding material in production facilities may help prevent the horizontal trans-
mission of pathogens. Indeed, phage-based products can be used as biological disinfectants
in hatcheries, farms, transport containers, poultry processing plants and food contact sur-
faces. Although not trialed against A. baumannii, bacteriophage-based surface disinfectants,
such as BacWash TM (OmniLytics Inc., Salt Lake City, UT, USA), which targets Salmonella,
can be used as cleaning agents. Similarly, Ecolicide PX™, which targets E. coli O157:H7,
has been developed to purify the skin of live animals prior to slaughter [93]. El-Gohary
et al. [94] demonstrated that treating pads by spraying a bacteriophage preparation against
E. coli could limit its spread in broilers. Similar phage therapy applications are rarely
reported against A. baumannii; however, based on these successful examples in poultry
production, it is particularly important to study and include A. baumannii as a therapeutical
target, both as a zoonotic agent and to limit the correlated spread of AMR.

3. Conclusions

Almost all newly developed antibiotics are variants of antibiotic classes discovered in
the 1980s; however, the current reviewed and approved antibiotics inadequately address
the challenges posed by the emergence and spread of AMR. Therefore, it is imperative
to explore innovative approaches for the treatment of bacterial infections. Phage therapy
represent an extremely promising, highly specific antimicrobial alternative. The phage
mechanism of action relies on targeting and killing or inactivating sensitive bacteria specifi-
cally, and a variety of treatment options are under study at the moment, as described in
this review, with implications not only for humans but also for poultry production. The
latter is of specific importance, as it represents a reservoir for AMR and zoonotic bacteria.
The efficacy and safety of phage therapy has been shown in the context of the treatment of
multidrug-resistant A. baumannii through both in vitro and in vivo applications.

The current state of research on phage therapy is not comprehensive. Further clinical
trials prior to successful routine applications in humans are important. In addition, several
aspects of phage therapy require further elucidation, such as the stability of their formula-
tion and industrial scaling, coupled with intrinsic caveats related to the possible insurgence
of bacteriophage resistance, phage coevolution with bacteria and the broader effect on gut
microbiota. Furthermore, other areas within this field may also need to be strengthened,
such as for example the limited knowledge of the diversity of Acinetobacter phages. The
latter is linked to the necessity of characterizing and classifying more phages active towards
Acinetobacter. Another area needing further elucidation is the current scarcity of detailed
knowledge in regard to the specific genes related to the pharmacodynamics of phages in
the context of A. baumannii treatment, which will be certainly supported by the submission
of whole-genome databases through the future years. There are reports for other bacterial
species that suggest that phages carry antibiotic resistance genes or virulence determinants.
A lack knowledge of the gene content of the phages employed as therapeutic agents may
affect their performance and the associated outcome.

Prior to the routine application of phage therapy in medical practice, it is pivotal to
select phages with limited negative effects on human tissues and interactions with the
host-microbiota in order to limit both acute and chronic side effects. Moreover, there are
currently caveats associated with phage delivery routes (i.e., oral, intravenous, intraperi-
toneal, subcutaneous, intramuscular, intranasal, intratracheal or topical), indicating the
need to optimize the delivery method before the application of phage therapy in human
medicine [95]. In parallel, the risk of phage-AMR needs to be evaluated and forecasted via
applying opportune monitoring and modelling tools.
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B. Environmental Phage-Based Cocktail and Antibiotic Combination Effects on Acinetobacter baumannii Biofilm in a Human
Urine Model. Microb. Drug Resist. 2021, 27, 25–35. [CrossRef] [PubMed]

5. World Health Organization. Antimicrobial Resistance: 2014 Global Report on Surveillance; World Health Organization: Geneva,
Switzerland, 2014.

6. Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, Present, and Future. Antimicrob. Agents
Chemother. 2011, 55, 4943–4960. [CrossRef] [PubMed]

7. Lee, C.R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii:
Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017, 7, 55.
[CrossRef] [PubMed]

8. Ibrahim, S.; Al-Saryi, N.; Al-Kadmy, I.M.S.; Aziz, S.N. Multidrug-resistant Acinetobacter baumannii as an emerging concern in
hospitals. Mol. Biol. Rep. 2021, 48, 6987–6998. [CrossRef] [PubMed]

9. Asif, M.; Alvi, I.A.; Rehman, S.U. Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance,
treatment options, and alternative modalities. Infect. Drug Resist. 2018, 11, 1249–1260. [CrossRef] [PubMed]

10. Nang, S.C.; Azad, M.A.K.; Velkov, T.; Zhou, Q.; Li, J. Rescuing the Last-Line Polymyxins: Achievements and Challenges.
Pharmacol. Rev. 2021, 73, 679–728. [CrossRef] [PubMed]

11. As, S.G.; Priyadharsini, J.V. CLSI based antibiogram profile and the detection of MDR and XDR strains of Acinetobacter baumannii
isolated from urine samples. Med. J. Islamic Repub. Iran 2019, 33, 3.

12. Assimakopoulos, S.F.; Karamouzos, V.; Lefkaditi, A.; Sklavou, C.; Kolonitsiou, F.; Christofidou, M.; Fligou, F.; Gogos, C.; Marangos,
M. Triple combination therapy with high-dose ampicillin/sulbactam, high-dose tigecycline and colistin in the treatment of
ventilator-associated pneumonia caused by pan-drug resistant Acinetobacter baumannii: A case series study. Le Infez. Med. 2019,
27, 11–16.

13. Goic-Barisic, I.; Seruga Music, M.; Kovacic, A.; Tonkic, M.; Hrenovic, J. Pan Drug-Resistant Environmental Isolate of Acinetobacter
baumannii from Croatia. Microb. Drug Resist. 2017, 23, 494–496. [CrossRef] [PubMed]

14. Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73,
245–256. [CrossRef]

15. Chapot, L.; Whatford, L.; Compston, P.; Tak, M.; Cuevas, S.; Garza, M.; Bennani, H.; Bin Aslam, H.; Hennessey, M.; Limon, G.;
et al. A Global Media Analysis of the Impact of the COVID-19 Pandemic on Chicken Meat Food Systems: Key Vulnerabilities and
Opportunities for Building Resilience. Sustainability 2021, 13, 9435. [CrossRef]

16. More, S.J. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir. Veter. J. 2020, 73, 1–12.
[CrossRef] [PubMed]

17. Nocera, F.; Attili, A.-R.; De Martino, L. Acinetobacter baumannii: Its Clinical Significance in Human and Veterinary Medicine.
Pathogens 2021, 10, 127. [CrossRef]

18. Kumar, S.; Anwer, R.; Yadav, M.; Sehrawat, N.; Kumar, V.; Sharma, A.K. Isolation and Characterization of Acinetobacter
baumannii from Chicken Meat Samples in North India. Asian, J. Biol. Life Sci. 2021, 10, 462–468. [CrossRef]

19. Release, N. WHO publishes list of bacteria for which new antibiotics are urgently needed. Neurosciences 2017, 38, 444–445.
20. Sharma, S.; Chatterjee, S.; Datta, S.; Prasad, R.; Dubey, D.; Prasad, R.K.; Vairale, M.G. Bacteriophages and its applications: An

overview. Folia Microbiol. 2016, 62, 17–55. [CrossRef]

http://doi.org/10.4161/viru.19700
http://www.ncbi.nlm.nih.gov/pubmed/22546906
http://doi.org/10.3389/fcimb.2021.625430
http://www.ncbi.nlm.nih.gov/pubmed/33718272
http://doi.org/10.3390/antibiotics9030119
http://www.ncbi.nlm.nih.gov/pubmed/32178356
http://doi.org/10.1089/mdr.2020.0083
http://www.ncbi.nlm.nih.gov/pubmed/32543337
http://doi.org/10.1128/AAC.00296-11
http://www.ncbi.nlm.nih.gov/pubmed/21859938
http://doi.org/10.3389/fcimb.2017.00055
http://www.ncbi.nlm.nih.gov/pubmed/28348979
http://doi.org/10.1007/s11033-021-06690-6
http://www.ncbi.nlm.nih.gov/pubmed/34460060
http://doi.org/10.2147/IDR.S166750
http://www.ncbi.nlm.nih.gov/pubmed/30174448
http://doi.org/10.1124/pharmrev.120.000020
http://www.ncbi.nlm.nih.gov/pubmed/33627412
http://doi.org/10.1089/mdr.2016.0229
http://www.ncbi.nlm.nih.gov/pubmed/27792476
http://doi.org/10.1017/S0043933917000071
http://doi.org/10.3390/su13169435
http://doi.org/10.1186/s13620-019-0154-4
http://www.ncbi.nlm.nih.gov/pubmed/32002180
http://doi.org/10.3390/pathogens10020127
http://doi.org/10.5530/ajbls.2021.10.61
http://doi.org/10.1007/s12223-016-0471-x


Antibiotics 2022, 11, 1406 9 of 11

21. Mäntynen, S.; Laanto, E.; Oksanen, H.M.; Poranen, M.M.; Díaz-Muñoz, S.L. Black box of phage–bacterium interactions: Exploring
alternative phage infection strategies. Open Biol. 2021, 11, 210188. [CrossRef]

22. Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria.
Cell Host Microbe 2019, 25, 219–232. [CrossRef] [PubMed]

23. Monteiro, R.; Pires, D.P.; Costa, A.R.; Azeredo, J. Phage Therapy: Going Temperate? Trends Microbiol. 2019, 27, 368–378. [CrossRef]
[PubMed]

24. Sun, D.; Jeannot, K.; Xiao, Y.; Knapp, C.W. Editorial: Horizontal Gene Transfer Mediated Bacterial Antibiotic Resistance. Front.
Microbiol. 2019, 10, 1933. [CrossRef] [PubMed]

25. Principi, N.; Silvestri, E.; Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front.
Pharmacol. 2019, 10, 513. [CrossRef] [PubMed]
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