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Abstract: Esophageal adenocarcinoma (EAC), the predominant type of esophageal cancer in the
United States, develops through Barrett’s esophagus (BE)-dysplasia-carcinoma cascade. Gastroe-
sophageal reflux disease, where acidic bile salts refluxate into the esophagus, is the main risk factor
for the development of BE and its progression to EAC. The NFE2-related factor 2 (NRF2) is the
master cellular antioxidant regulator. We detected high NRF2 protein levels in the EAC cell lines and
primary tissues. Knockdown of NRF2 significantly enhanced acidic bile salt-induced oxidative stress,
DNA damage, and inhibited EAC cell growth. Brusatol, an NRF2 inhibitor, significantly inhibited
NRF2 transcriptional activity and downregulated the NRF2 target genes. We discovered that in
addition to inducing apoptosis, Brusatol alone or in combination with cisplatin (CDDP) induced
significant lipid peroxidation and ferroptosis, as evidenced by reduced xCT and GPX4 expression,
two known ferroptosis markers. The combination of Brusatol and CDDP significantly inhibited EAC
tumor xenograft growth in vivo and confirmed the in vitro data showing ferroptosis as an important
mechanism in the tumors treated with Brusatol or Brusatol and CDDP combination. Our data support
the role of NRF2 in protecting against stress-induced apoptosis and ferroptosis in EACs. Targeting
NRF2 in combination with platinum therapy can be an effective strategy for eliminating cancer cells
in EAC.

Keywords: esophageal adenocarcinoma; NRF2; Brusatol; lipid peroxidation; ferroptosis

1. Introduction

Esophageal cancer remains the 7th most common and the 6th most lethal malignancy
worldwide [1]. While the esophageal squamous carcinoma incidence is declining, the
incidence of esophageal adenocarcinoma (EAC) has been rising rapidly during the past
decades in the United States and Western countries, becoming the predominant type of
esophageal cancer [2–4]. Barrett’s esophagus (BE), where the normal esophageal squa-
mous epithelium is replaced by intestinal metaplastic columnar epithelium in the lower
esophagus due to chronic gastroesophageal reflux disease (GERD), is one of the major risk
factors [5,6]. BE can progress to EAC through the BE-dysplasia-carcinoma cascade [7,8].
Although new modalities for cancer treatments such as targeted therapy and immune
therapy have been developed over the past decade, the prognosis of EAC patients remains
poor, with an average 5-year survival rate below 20% [1,9,10]. There is an urgent need to
develop novel therapeutic strategies for EAC to improve the clinical outcome.

In response to a GERD episode, which contains bile salts and an acidic gastric juice
mixture (acidic bile salts), there is a significant increase in oxidative stress and subsequent
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DNA damage in esophageal epithelia [11–13]. Normal cells possess intact anti-oxidative
systems that protect cells from oxidative stress and subsequent DNA damage and cell
death [14]. However, during esophageal tumorigenesis, there is an impairment or dys-
function of several anti-oxidative enzymes such as glutathione S-transferases (GSTs) and
glutathione peroxidases (GPXs) through epigenetic DNA hypermethylation [15], leading
to high levels of oxidative stress with subsequent DNA damage [16,17]. Cancer cells are
known to have higher oxidative stress levels than normal cells due to the activation of
oncogenes, increased metabolic activities, and impaired mitochondrial functions [14]. Can-
cer cells must develop counteractive mechanisms to survive the lethal effects of oxidative
stress. The NFE2-related factor 2 (NRF2) is the master regulator of cellular antioxidant
properties that maintain cellular viability and homeostasis under stress conditions [14].
NRF2 is constitutively overexpressed in human cancers and is associated with almost
all tumor hallmarks [18,19]. Therefore, targeting NRF2 has become an attractive area of
research where several activators and inhibitors have been reported and tested in vitro and
in vivo [20]. Brusatol is a degraded diterpenoid isolated from the Brucea javanica plant [21],
which has been used in traditional Chinese medicine to treat various ailments. Brusatol
has shown anti-NRF2 activity [22] by inhibiting its transcription network and suppressing
cancer cell growth in vitro and in vivo [23]. In the present study, we investigated the role
of NRF2 in Barrett’s related esophageal adenocarcinoma and determined the potential
therapeutic efficacy of targeting NRF2 using Brusatol as a single agent and in combination
with cisplatin.

2. Materials and Methods
2.1. Cell Lines

HEEC, a human normal esophageal squamous epithelial cell line, was purchased
from ScienCell Research Laboratories (Carlsbad, CA, USA). BAR10T (kindly provided by
Dr. Rhonda Souza), CPA, and CPB (purchased from American Type Culture Collection,
ATCC, Manassas, VA, USA) are immortalized cell lines originating from Barrett’s esophagus
without dysplasia (BAR10T, CPA) and with dysplasia (CPB). Five esophageal adenocar-
cinoma cell lines were used, FLO-1, ESO26, ESO51, OE19, and OE33 (purchased from
MilliporeSigma, Burlington, MA, USA). HEEC cells were cultured in EpiCM-2 medium
(ScienCell) with 5% FBS. BAR10T, CPA, and CPB were grown in Human Epithelial Cell
Medium with the growth factor supplement (Cell Biologics, Chicago, IL, USA). FLO1
cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% FBS and antibiotics. ESO26, ESO51, OE19, and OE33 cells were cultured with RPMI
1640 medium supplemented with 10% FBS, antibiotics, and L-glutamine. All cell lines
were grown at 37 ◦C in 5% carbon dioxide with mycoplasma checked every month using a
Mycoplasma Detection Kit (SouthernBiotech, Birmingham, AL, USA). Cell line authentica-
tion is conducted routinely every six months through Labcorp’s Cell Line Authentication
Services (Burlington, NC, USA).

2.2. Tissues Samples

Tissue microarrays (TMA) were obtained from the Tissue Pathology Core at Vanderbilt
University Medical Center, Nashville, TN. These TMAs included de-identified archival
tissues of normal esophagus (n = 82), Barrett’s esophagus (n = 49), high grade dysplasia
(n = 14), and EACs (n = 146).

2.3. Reagents

Bile salts (BS) used included glycocholic acid (GCA), taurocholic acid (TCA), gly-
codeoxycholic acid (GDCA), glycochenodeoxycholic acid (GCDCA) and deoxycholic acid
(DCA), which were purchased from MilliporeSigma. A cocktail of the five bile salts was pre-
pared with an equimolar concentration of a mixture of each bile salt. We treated cells with
100 µM of BS cocktail (contains 20 µM of each BS) in acidic culture media (pH 4.0, acidic
bile salts, ABS) for 10–20 min to mimic a GERD episode. The ABS cocktail reflected the bile
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acid mixture in the distal esophagus in patients with GERD [24]. The following antibodies
were used in the study: NRF2 antibody (ABCAM, ab62352, Cambridge, MA, USA, used for
WB), NRF2 antibody (Milliporesigma, ABE413, Burlington, MA, USA, used for IHC), HO1
antibody (Proteintech, 10701-1-AP, Rosemont, IL, USA, used for WB and IHC), β-actin anti-
body (Sigma-Aldrich, A5441, St. Louis, MO, USA, used for WB), caspase 3 (Cell Signaling,
9662, Danvers, MA, USA, used for WB) and cleaved caspase 3 (Cell Signaling, 9661, for WB
and IHC), PARP (Cell Signaling, 9532, used for WB), cleaved-PARP (Cell Signaling, 5625,
for WB), xCT/SLC7A11 (Cell Signaling, 12691, used for WB), xCT/SLC7A11 (Proteintech,
26864-1-AP, used for IHC), and Ki-67 antibody (Invitrogen, 14-5698-82, Waltham, MA,
USA, used for IHC). NRF2 siRNAs were purchased from Dharmacon (M-003755-02-0005,
Lafayette, CO, USA) and ThermoFisher Scientific (s9491, Waltham, MA, USA). Brusatol
and cisplatin (CDDP) were purchased from MilliporeSigma.

2.4. Real-Time qRT-PCR

Total RNA was purified using the RNeasy Mini Kit (Qiagen, Valencia, CA, USA).
Single-stranded complementary DNA was subsequently synthesized using the iScript
cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). The quantitative real-time reverse
transcription (qRT-PCR) was carried out on an iCycler (Bio-Rad). Reactions were performed
in triplicate; the threshold numbers were determined by iCycler software version 3.0 and
were averaged. We used human HPRT1 gene as the internal reference gene for each sample
and fold expression was calculated as previously reported [15], normalized to HPRT1. The
DNA sequences of the primers used in the study are provided in Supplementary Table S1.

2.5. Colony Formation Assay

FLO-1 and OE33 cells were transfected with control siRNA or NRF2 specific siRNA
using the LipoJet In Vitro Transfection Kit (SignaGen Laboratories, Frederick, MD, USA)
according to the manufacturer’s protocols. Forty-eight hours after infection, cells were
seeded in the density of 1000 cells/well in the 6-well plates and cultured at 37 ◦C for another
two weeks. For the clonogenic survival assay, tumor cells were seeded in 6-well plates at
the density of 1000 cells per well. The next day, the cells were treated with Brusatol (30 nM),
CDDP (3 µM), or a combination of Brusatol (30 nM) and CDDP (3 µM) for 24 h, followed by
the removal of the media and replacement of full media for two weeks. Each experiment
was set in triplicate. Cells were stained with 0.5% crystal violet solution. The images
of the plates were analyzed using ImageJ software (version 1.53k, National Institutes of
Health, Bethesda, MD, USA) and statistically analyzed using Prism 9 software (version
9.3.1, GraphPad Software, San Diego, CA, USA).

2.6. Luciferase Reporter Assay

The ARE luciferase reporter assay was used to determine the NRF2 transcriptional
activity, as previously reported [25]. Briefly, the cells were co-transfected with PGL
4.37 [luc2P/ARE/Hygro] reporter (Promega, Madison, WI, USA), together with renilla lu-
ciferase plasmid as the internal control using the PolyJet DNA transfection agent (SignaGen
Laboratories). After 24 h transfection, the cells were treated with Brusatol at a concentration
from 10 nM to 500 nM for 6 h. The cell lysates were prepared using 1X luciferase passive
lysis buffer. Luciferase activity was measured using a dual-luciferase reporter assay system
(Promega, Madison, WI, USA) following the manufacturer’s instructions in a FLUOstar
OPTIMA microplate reader (BMG LABTECH, Cary, NC, USA). Luciferase activity was
calculated by normalizing it to the corresponding renilla value and represented as relative
luciferase activity.

2.7. Detection of Intracellular ROS Levels

Flow cytometry was used to determine the intracellular ROS levels using a CM-
H2DCFDA dye (ThermoFisher), as previously described [16]. Briefly, cells were transfected
with the control and NRF2 siRNA using the LipoJet regent. After 48 h of transfection,
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1.5 × 105 cells were seeded into 12-well plates. The next day, cells were treated with 100 µM
ABS for 10 min, followed by washing with PBS and incubated with 5 µM CM-H2DCFDA
for 30 min. Then, the cells were trypsinized and resuspended with 500 µL phenol red-free
media. Cells were then subjected to flow cytometry analysis using a CytoFLEX Flow
Cytometer (BECKMAN COULTER, Indianapolis, IN, USA).

2.8. CellTiter-Glo Cell Viability Assay

The CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Madison, WI, USA)
was used to evaluate the cell viability after single or combination treatments, following
the manufacturer’s instructions. In brief, cells were seeded in a 96-well plate at the den-
sity of 1500 cells/well. On the second day, cells were treated with Brusatol or cisplatin
alone or with a combination of both at serial dilutions for three days. After three days,
CellTiter-Glo® Luminescent reagent was added on cells for 30 min incubation with shaking.
The luminescence changes were measured using the FluolarStar microplate reader (BMG
Labtech, Ortenberg, Germany). The dose–response curve and IC50 values were generated
using GraphPad Prism 9 software.

2.9. Immunofluorescence Staining

Immunofluorescence staining assay was used to determine the DNA double strand
break using antibody against γ-H2AX (p-H2AX, S139) and oxidative DNA damage using
antibody against 8-oxoguanine as previous described [12,16]. Briefly, 1.2 × 104 cells were
seeded in an eight-well slide chamber. The next day, the cells were treated with ABS
(100 µM) for 20 min, then recovered in complete media for 3 h after the removal of ABS.
Cells were fixed with 4% paraformaldehyde for 45 min, followed by permeabilization
for 10 min on ice. After blocking using the goat antiserum for 20 min, the cells were
incubated with primary antibody against phosphor histone H2AX (Ser 139, Cell signaling)
and 8-oxoguanine (1:100) (MAB3560, Sigma-Aldrich, St. Louis, MO, USA) overnight. The
next day, the cells were incubated with Alexa Fluor 488 goat anti-rabbit and Alexa Fluor
568 goat anti-mouse (1:1000) secondary antibodies for 45 min. The slides were mounted
with Vectashield mounting medium with DAPI (Vector Laboratories, Newark, CA, USA)
and sealed with a coverslip. The images were captured by using the BZ-X710 KEYENCE
All-in-one fluorescence microscope (Keyence Corporation of America, Itasca, IL, USA) and
analyzed using ImageJ software (NIH).

2.10. Western Blot Assay

The Western blot assay was used to determine the protein levels of interest follow-
ing the standard protocol. For the apoptosis assay, cells were treated with Brusatol or
CDDP alone or their combination for 72 h. Cells were then harvested and lysed with the
RIPA buffer (Santa Cruz Biotechnology, Dallas, TX, USA), sonicated, and centrifuged at
13,000 rpm for 10 min at 4 ◦C. The supernatant was collected, and the concentration of
protein samples was determined using a Pierce BCA Protein Assay Kit (ThermoFisher).
Protein samples were denatured in a 4X LDS sample buffer by heating at 90 ◦C for 10 min.
The same amount of proteins were electrophoresed and transferred into the nitrocellulose
membrane. The membrane was blocked with 5% milk for 1 h at room temperature and
incubated with the primary antibodies overnight. The membrane was then washed thrice
with the 1X TBST buffer and incubated with their corresponding secondary antibodies with
HRP for 2 h. After washing thrice, the membranes were developed using the ECL kits and
imaged using a Bio-rad ChemiDocTM XRS+ imager system (Bio-rad). The bands’ intensities
were measured using the gel analysis tool of ImageJ software (NIH) and normalized to the
intensity of the loading control, beta-actin.

2.11. Detection of Synergy Effect of Brusatol and Cisplatin (CDDP)

To explore whether there is a synergistic effect in inducing tumor cell death for
Brusatol and CDDP, we analyzed the data using the SynergyFinder Plus online analy-
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sis tool (https://synergyfinder.org/#!/, accessed on 10 May 2022), following the instruc-
tions for experimental settings and analyses [26]. There are currently four major synergy
models: highest single agent (HSA) [27], Loewe additivity (LOEWE) [28], Bliss indepen-
dence (BLISS), and zero interaction potency (ZIP) [29]. The details of the methods and
formulations of the models used in the analysis were reported earlier [26,30].

2.12. Detection of Lipid Peroxidation

The Click-iT™ Lipid Peroxidation Imaging Kit—Alexa Fluor™ 488 (ThermoFisher)
was used to detect lipid peroxidation after the Brusatol and CDDP treatments. LAA
(linoleamide alkyne) can incorporate into cellular membranes when incubating with
cells. Upon lipid peroxidation, LAA is oxidized and produces 9- and 13-hydroperoxy-
octadecadienoic acid (HPODE). These hydroperoxides decompose to multiple α and
β-unsaturated aldehydes, which readily modify proteins at nucleophilic side chains. These
alkyne-containing modified proteins can be subsequently detected using Click-iT™ chem-
istry for fixed cells. In brief, cells were seeded into an 8-well culture slide camber and
cultured at 37 ◦C overnight. The next day, cells were added with Click-it LAA at a final
concentration of 50 µM followed by treatment with Brusatol, CDDP, or both for 6 h in
the presence of LAA. After treatments, cells were fixed in 1 mL of 3.7% formaldehyde in
PBS for 15 min at room temperature. After washing of fixation, cells were added 1 mL of
0.5% Triton® X-100 in PBS for 10 min at room temperature, followed by blocking in 1% BSA
in PBS solution for 30 min. After blocking, cells were incubated with 0.5 mL of Click-iT®

reaction cocktail for 30 min at room temperature. Then, the cells were washed thrice and
the slides were mounted with Vectashield mounting medium with DAPI. The images were
captured by using a BZ-X710 KEYENCE All-in-one fluorescence microscope (Itasca, IL,
USA). To confirm the results, we applied a flow cytometry assay using BODIPY™ 581/591
C11 dye (a lipid peroxidation sensor from ThermoFisher). Oxidation of the polyunsatu-
rated butadienyl portion of the dye results in a shift in the fluorescence emission peak from
∼590 nm to ∼510 nm, which can be detected using flow cytometry. Cells were treated in a
6-well plate with Brusatol, CDDP, or both for 6 h. Cells were harvested and immediately
subjected to flow cytometry analysis using the FITC and PE channels. The ratio of the
signaling intensity of FITC/PE was shown.

2.13. In Vivo Treatments of Tumor Xenografts

Animal works were performed following the animal protocol (#UM 20-110) approved
by the IACUC of the University of Miami. Animal care was in accordance with institutional
guidelines. A total of 2 × 106 OE33 cells were injected into SOD/SCID immune deficient
mice (Jackson Laboratory, Bar Harbor, ME USA) on the flank subcutaneously [17]. Mice
weight and tumor masses were monitored twice a week. Tumor volume was calculated
using the formula: 1

2 length × width2. Drug delivery was not started until tumors reached
approximately 200 mm3 (about 12 days after injection). Mice were randomly divided into
four groups: control, PBS; Brusatol, 1 mg/kg, 3 times/week, IP; CDDP, 1 mg/kg, once a
week, IP; Brusatol + CDDP, Brusatol, 1 mg/kg, 3 times/week, IP and CDDP, 1 mg/kg, once
a week. Brusatol and CDDP were not given on the same day to minimize toxicity. After
30 days of treatments, the mice were euthanized and tumors were dissected and divided
into two parts: one was snap frozen in liquid N2, the other was fixed in formalin solution
for paraffin embedding and subsequent HE and IHC staining.

2.14. Immunohistochemistry

Immunohistochemistry staining was carried out using a Millipore Immunoperoxidase
Secondary Detection System (MilliporeSigma). In brief, slides from the human tissue
microarray or paraffin blocks of xenografting tumors were deparaffined in xylene. Antigen
retrieval was performed by boiling the slides in pH 9 TE buffer for 12 min. Slides were
incubated with 3% H2O2 for 10 min and blocking solution for 30 min. Slides were then
incubated with primary antibodies overnight, followed by anti-mouse or anti-rabbit sec-

https://synergyfinder.org/#!/
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ond antibodies and the ABC complex provided in the kit following the manufacturer’s
instructions. For double immunohistochemistry staining of Ki-67 and cleaved caspase 3,
the ImmPRESS Duet Double Staining Polymer Kit (Vector Laboratory, Burlingame, CA,
USA) was used following the manufacturer’s instructions. The slides were evaluated
under microscopy. The quantification of the staining intensity of xenografted tumor tissues
was performed using ImageJ software from 10–20 randomly selected high magnification
fields. For the tissue microarray, we evaluated the NRF2 expression levels as index scores
0–3 based on the staining intensity and frequency, as previously described [31].

2.15. Statistical Analysis

Biochemical experiments were performed in triplicate in at least two independent
cell lines and conditions. Quantified results were expressed as the mean ± SD. All the
statistical analyses were performed using Prism 9, version 9.3.1 (GraphPad). A p < 0.05 was
considered statistically significant.

3. Results
3.1. NRF2 Is Constitutively Overexpressed in Esophageal Adenocarcinomas

NRF2 is overexpressed in several human malignancies [18,32,33]. To determine
whether NRF2 is overexpressed in EAC, we performed Western blotting analysis of cell
lines from esophageal cells. As shown in Figure 1A, the NRF2 protein levels were higher
in Barrett’s dysplastic cell line, CPB, and all EAC cell lines than in the normal esophageal
squamous cells (HEEC) and non-dysplastic Barrett’s esophagus cells (BAR10T and CPA).
Immunohistochemistry confirmed that the NRF2 protein levels were significantly higher
in HGD (high grade dysplasia) and EAC tissues than that in the normal esophagus (NE)
and Barrett’s esophagus (BE) tissues, where the majority (>60%) of the primary HGD/EAC
tissue samples scored 2–3 (Figure 1B–D).

3.2. NRF2 Protects against Reflux-Induced Oxidative Stress and DNA Damage in EAC

EAC cells are constantly exposed to acidic bile salts (ABS) under GERD conditions.
ABS exposure induces significant ROS and oxidative stress. Accumulation of ROS is an
early event that occurs within minutes, followed by subsequent changes in oxidative
DNA damage and double stranded DNA damage. The accumulation of DNA damage in
esophageal cells results in cell death [11,16]. Based on the biological sequence of events and
our experimental optimization, we utilized early time points to measure ROS, whereas later
timepoints were chosen to detect changes in DNA damage and cell death. To determine
whether the observed high expression of NRF2 protects EAC cells from ABS-induced
oxidative stress and DNA damage under conditions of GERD, we knocked down NRF2
protein using NRF2 specific siRNAs (Figure 2A). For additional confirmation, we also
measured the expression of two NRF2 transcription targets, HO1 and GR (Figure 2B). As
expected, the knockdown of NRF2 enhanced ABS-induced oxidative stress (Figure 2C).
NRF2 knockdown sensitized EAC cells to the ABS-induced double strand breaks, as
evidenced by increased γH2AX, a known double strand break marker (Figure 2D,E and
Figure S1C) and oxidative DNA damage that was represented by increased 8-oxoguanine
(8-oxoG) [34] (Figure 2F,G and Figure S1D). Similarly, NRF2 knockdown enhanced cisplatin
(CDDP)-induced oxidative stress (Figure S2C,D) and sensitized EAC cells to CDDP-induced
double strand breaks, as shown by increased γH2AX (Figure S2E,F).
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overexpression in EAC. Representative images of 100× (upper panels) and 400× (lower panels) are 
shown. (C,D) A summary of NRF2 IHC staining scores in NE, BE, HGD, and EAC from the tissue 
microarrays, showing high levels of NRF2 in HGD and EAC tissues (the chi-square test, p < 0.0001). 
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Figure 1. NRF2 protein expression is upregulated in high grade dysplasia and esophageal adeno-
carcinoma. (A) Western blotting analysis of NRF2 protein expression in cell lines originated from
the normal esophageal squamous epithelium (HEEC), Barrett’s esophagus (BAR10T and CPA), dys-
plastic Barrett’s (CPB) and esophageal adenocarcinoma (FLO1, ESO26, ESO51, OE33, and OE19).
(B) Immunohistochemistry analysis of the NRF2 protein expression in primary human tissues of
normal esophagus (NE), Barrett’s esophagus (BE), and esophageal adenocarcinoma (EAC), showing
overexpression in EAC. Representative images of 100× (upper panels) and 400× (lower panels) are
shown. (C,D) A summary of NRF2 IHC staining scores in NE, BE, HGD, and EAC from the tissue
microarrays, showing high levels of NRF2 in HGD and EAC tissues (the chi-square test, p < 0.0001).

3.3. NRF2 Knockdown Inhibits EAC Cell Growth In Vitro

To determine the role of NRF2 on EAC cell survival and growth, we performed a colony
formation assay following NRF2 knockdown in EAC cells. As shown in Figure 3, NRF2
knockdown significantly decreased the gene expression of its target genes (Figure 3A,B,D,E)
and suppressed the tumor cell growth in both FLO1 (Figure 3C) and OE33 cells (Figure 3F).
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Figure 2. Knockdown of NRF2 expression in EAC cells promoted tumors to ABS-induced double
strand break and oxidative DNA damage. (A) Western blotting shows the NRF2 level after the knock-
down of NRF2 using an NRF2 siRNA in FLO1 cells. (B) Real-time RT-PCR shows the downregulation
of NRF2 and its downstream target genes, HO1 and GR. (C) Knockdown of NRF2 sensitized cells to
ABS-induced oxidative stress, indicated as significantly increased intracellular ROS level. (D,E) Im-
munofluorescence staining of γ-H2AX (p-H2AX, S139), a double strand break marker, indicating
that knockdown of NRF2 promoted ABS-induced double strand break. (F,G) Immunofluorescence
staining of 8-oxoguanine (8-oxoG), an oxidative DNA damage marker, indicating that knockdown of
NRF2 significantly promoted the ABS-induced oxidative DNA damage level. * p < 0.05; ** p < 0.01;
*** p < 0.001.

3.4. Brusatol Inhibits NRF2 Activity and Induces EAC Cells’ Death

Brusatol is a diterpenoid isolated from the Brucea javanica plant [21], which has
been shown to inhibit NRF2 activity. We confirmed the inhibitory effect of Brusatol
(at 50–100 nM) on NRF2 transcriptional activity using the ARE luciferase reporter assay
(Figure 4A). We validated the effect of Brusatol, showing a downregulated expression of
the NRF2 downstream target genes, HO1 and GR (Figure 4B,C). The ATPglo assay demon-
strated Brusatol’s IC50 at 50–100 nM in the EAC cell lines (Figure 4D,E), whereas normal
esophageal fibroblast cells (hEF) and non-dysplastic Barrett’s cells (CP-A) were relatively
resistant to Brusatol (Figure 4F,G). Of note, other NRF2 inhibitors such as ML385 [35] and
AEM1 [36] were less effective than Brusatol in our models and failed to reduce the activity
of NRF2 and the expression HO1 at lower doses (data not shown).
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Figure 3. Knockdown of NRF2 inhibited EAC cell growth in vitro. (A,D) Western blotting indicates
protein levels of NRF2 and HO1 (an NRF2 target gene) after NRF2 knockdown using an NRF2 siRNA
in FLO1 (A) and OE33 (D) cells. (B,E) Real-time qPCR shows the downregulation of NRF2 target
genes (HO1, GR, and NQO1) in FLO1 (B) and OE33 (E) cells after NRF2 knockdown. (C,F) The colony
formation assay demonstrated significantly fewer and smaller colonies after NRF2 knockdown in
FLO1 cells (C) and OE33 cells (F). * p < 0.05; ** p < 0.01; *** p < 0.001.

3.5. Brusatol Synergizes with Cisplatin in Inducing EAC Cells’ Death

CDDP is a common chemotherapeutic agent in the treatment of EAC patients [37].
However, the presence of advert toxicity and subsequent development of chemoresistance
is a big problem. Therefore, to see whether Brusatol has a synergistic effect with CDDP,
we treated EAC cells with Brusatol, CDDP alone, or a combination of both. As shown in
Figure 5, the combination treatment of Brusatol and CDDP generated significantly more
tumor cell death than CDDP or Brusatol alone (Figure 5A–D and Figure S3). In addition,
the IC50 values for CDDP and Brusatol were significantly reduced when the combination
treatment was applied (Figure 5C,D). Of note, the combination treatment worked well
in the EAC cells with intrinsic (SKGT4 and OE19 cells) and secondary (FLO1 CDDP-R
cells) resistance to CDDP (Figure S4). We also carried out synergy analyses using an online
synergyfinder tool (http://synergyfinder.org/, accessed on 10 May 2022 ) [26]. We detected
a significant synergistic effect of the combination of CDDP and Brusatol in both the FLO1
and OE33 cell lines (Figure 5E,F).

3.6. Brusatol and Its Combination with CDDP Induce Ferroptosis in EAC Cells

Apoptosis is a major mechanism by which most chemotherapeutic agents work to
induce cancer cell death. Our findings demonstrated the induction of apoptosis in response
to treatments, as expected (Figure 6A,B). Interestingly, we observed more cancer cell death
with combination treatment (Figure 5), which was not reflected by the changes in the levels
of cleaved PARP and cleaved caspase 3, the two known apoptosis markers (Figure 6A,B).
These data suggested that in addition to apoptosis, another type of cancer cell death was
induced by the combination treatment. NRF2 is the master antioxidant transcription factor
regulating key physiological and metabolic activities including lipid peroxidation [14,38].
Brusatol, as an NRF2 inhibitor, is expected to result in high oxidative stress levels. We

http://synergyfinder.org/
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hypothesized that this effect would lead to lipid peroxidation with subsequent ferroptosis,
contributing to the observed high levels of EAC cell death. To confirm this, we applied
several assays to detect lipid peroxidation after Brusatol and CDDP treatments. As shown
in Figure 6C, the linoleamide alkyne (LAA) lipid peroxidation assay (The Click-iT™ Lipid
Peroxidation Imaging Kit) demonstrated that LAA lipid peroxidation was observed in cells
treated with Brusatol, with the highest signaling in cells receiving a combination treatment;
a mild lipid peroxidation was also observed in the CDDP-treated cells. Similar results were
observed in other EAC cell lines (Figure S5). We validated the results by flow cytometry
analysis using the BODIPY™ 581/591 C11 reagent (a lipid peroxidation sensor) (Figure 6D).
Western blotting analysis further confirmed the induction of ferroptosis in Brusatol treated
cells (alone or in combination with CDDP), as indicated by significantly decreased levels
of xCT and GPX4, two known ferroptosis markers (Figures 6E and S6). To validate the
results, we applied a ferroptosis inhibitor, ferrostatin 1. The administration of ferrostatin 1,
together with Brusatol and CDDP, protected cells from cell death (Figure S7).

Antioxidants 2022, 11, x FOR PEER REVIEW 10 of 18 
 

 
Figure 4. Brusatol inhibited NRF2 activity and killed EAC cells at low concentrations. (A) The ARE 
(antioxidant response element) luciferase reporter assay indicates the inhibition of NRF2 ARE ac-
tivity at a 50–100 nM concentration of Brusatol. (B) Real-time RT-PCR shows the downregulation of 
NRF2 downstream target genes, HO1 and GR after Brusatol treatment. (C) Western blot displays 
the downregulation of the HO1 protein level after Brusatol treatment in the EAC cells. (D–G) The 
CellTiter Glo cell viability assay indicates that EAC cells were sensitive to Brusatol treatment with 
an IC50 below 100 nM (D,E), whereas the Barrett’s esophagus cells (F) and normal esophageal fi-
broblast cells (G) were more resistant to Brusatol treatment. The blue dot lines in D-G indicate the 
crosspoints between the 50% survival line and the dose-response curve. 

3.5. Brusatol Synergizes with Cisplatin in Inducing EAC Cells’ Death 
CDDP is a common chemotherapeutic agent in the treatment of EAC patients [37]. 

However, the presence of advert toxicity and subsequent development of chemo-
resistance is a big problem. Therefore, to see whether Brusatol has a synergistic effect with 
CDDP, we treated EAC cells with Brusatol, CDDP alone, or a combination of both. As 
shown in Figure 5, the combination treatment of Brusatol and CDDP generated signifi-
cantly more tumor cell death than CDDP or Brusatol alone (Figures 5A–D and S3). In ad-
dition, the IC50 values for CDDP and Brusatol were significantly reduced when the com-
bination treatment was applied (Figure 5C,D). Of note, the combination treatment worked 
well in the EAC cells with intrinsic (SKGT4 and OE19 cells) and secondary (FLO1 CDDP-
R cells) resistance to CDDP (Figure S4). We also carried out synergy analyses using an 
online synergyfinder tool (http://synergyfinder.org/, accessed on 10 May 2022 ) [26]. We 
detected a significant synergistic effect of the combination of CDDP and Brusatol in both 
the FLO1 and OE33 cell lines (Figure 5E,F). 

Figure 4. Brusatol inhibited NRF2 activity and killed EAC cells at low concentrations. (A) The
ARE (antioxidant response element) luciferase reporter assay indicates the inhibition of NRF2 ARE
activity at a 50–100 nM concentration of Brusatol. (B) Real-time RT-PCR shows the downregulation
of NRF2 downstream target genes, HO1 and GR after Brusatol treatment. (C) Western blot displays
the downregulation of the HO1 protein level after Brusatol treatment in the EAC cells. (D–G) The
CellTiter Glo cell viability assay indicates that EAC cells were sensitive to Brusatol treatment with an
IC50 below 100 nM (D,E), whereas the Barrett’s esophagus cells (F) and normal esophageal fibroblast
cells (G) were more resistant to Brusatol treatment. The blue dot lines in D-G indicate the crosspoints
between the 50% survival line and the dose-response curve.
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Figure 5. Brusatol synergized with cisplatin (CDDP) in killing EAC cells. (A) Bright images of cells
treated with Brusatol, CDDP, or both for 3 days. (B) Clonogenic survival assay shows that combination
treatment of Brusatol and CDDP killed a significantly more tumor cells. (C,D) The CellTiter Glo
cell viability assay using Brusatol, CDDP, and both in FLO1 (C) and OE33 (D) cells. The IC50 of
CDDP and Brusatol were plotted using Prism software. Data show that the combination treatment
led to a significant 50% drop in CDDP IC50. (E,F) Synergy analysis using online synergyfinder tool
(http://synergyfinder.org/, accessed on 10 May 2022) in FLO1 (E) and OE33 cells (F), demonstrating
that a significant synergy effect occurred when applying Brusatol and CDDP. * p < 0.05; ** p < 0.01; ns,
not significance.
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Figure 6. Brusatol treatment induced significant ferroptosis in addition to apoptosis. (A,B) West-
ern blotting analyses of apoptotic markers, cleaved PARP, and cleaved caspase 3 in FLO1 (A) and
OE33 (B) cells. Data show that although Brusatol and CDDP combination induced much more cell
death, the two apoptotic markers were lower than that in cells treated with CDDP alone, suggesting
that other types of cell death occurred, in addition to apoptosis. (C) The LAA lipid peroxidation assay
displays the level of lipid peroxidation (green signaling). (D) A summary graph of the flow cytometry
results using BODIPY® 581/591 C11 (a lipid peroxidation sensor), confirming the significant peroxi-
dation levels induced by Brusatol alone and Brusatol in combination with CDDP. (E) Western blotting
analyses of two known ferroptosis markers, xCT and GPX4, validated the ferroptosis induced by
Brusatol or Brusatol in combination with CDDP. The numbers above each band in (A,B,E) indicate
the relative band intensity as normalized to the intensity of the loading control, Actin. * p < 0.05;
** p < 0.01; *** p < 0.001.

3.7. Brusatol and CDDP Combination Are Synergistic In Vivo

To test the effect of Brusatol on tumor growth in vivo, we established an EAC tumor
xenografting model. OE33 cells were xenografted into SCID/NOD immune deficient mice
subcutaneously. Brusatol, CDDP, or a combination of both, was administered through
intraperitoneal (IP) injection when tumor volumes reached approximately 200 mm3, as
described in the Methods section. As shown in Figure 7A,B, the administration of Brusatol
or CDDP as a single agent slowed down tumor growth compared to the control group.
Treatment with a combination of Brusatol and CDDP resulted in significantly greater inhi-
bition of tumor growth than single agents. Immunohistochemistry staining of xenografted
tumors demonstrated reduced expression levels of NRF2 and HO1 in tumors treated with
Brusatol alone and Brusatol in combination with CDDP (Figure S8A,B,E,F). Immunohis-
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tochemistry analyses of tumor cell proliferation (Ki-67) and apoptosis (cleaved caspase 3,
CC3) showed a reduction in proliferating cells (Figure 7C,E) along with higher cleaved
caspase 3 rates in all of the treatment groups (Figure 7C,F). In agreement with the in vitro
results, we observed a higher number of apoptotic cells in the CDDP-treated tumors than
in tumors treated with the combination (Figure 7F). In contrast, immunohistochemistry
analyses of ferroptosis markers GPX4 and xCT demonstrated significantly lower levels of
GPX4 (Figure 7B,G) and xCT (Figure S8C,G) in tumors treated with Brusatol alone and in
combination, consistent with the in vitro data.
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Figure 7. Brusatol synergized with CDDP in killing tumor cells in vivo. (A) Representative images
of xenogrfting tumors after 30 days of treatments of Brusatol, CDDP, or Brusatol + CDDP. (B) The
tumor growth curve shows that Brusatol and CDDP alone significantly slowed tumor growth, but the
Brusatol and CDDP combination generated the most suppressive effect. (C) Dual immunohistochem-
istry staining of the cell proliferation marker (Ki-67, brown) and apoptosis marker (cleaved caspase 3,
magenta) in the xenografted tumor tissues. The quantitative data using ImageJ software are shown
in (E) (Ki-67) and (F) (cleaved caspase 3). (D) Immunohistochemistry staining of ferroptosis marker,
GPX4, in xenografted tumor tissues shows the significant downregulation of GPX4. The quantitative
data using ImageJ software are shown in (G). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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4. Discussion

The incidence of esophageal adenocarcinoma (EAC) has been rising rapidly during the
past few decades in the United States and Western countries, becoming the predominant
type of esophageal cancer [39,40]. EACs develop through gastroesophageal reflux disease
(GERD)-Barrett’s esophagus (BE)-dysplasia-carcinoma cascades [40–42]. It is known that
acidic bile salt (ABS) exposure during this process generates significant oxidative stress and
DNA damage levels in vitro and in vivo [11,25,43–45]. Tumor cells must develop protective
mechanisms to survive in this harsh microenvironment. The NFE2-related factor 2 (NRF2) is
the master regulator of cellular antioxidant properties that play crucial roles in maintaining
cellular homeostasis [46–48]. Transient induction of NRF2 expression is an important step
for protection against acidic bile acid-induced oxidative stress and DNA damage in normal
and BE cells [25]. Here, we showed that NRF2 is constitutively overexpressed in HGD/EAC
cells, providing a survival advantage. High levels of NRF2 allow neoplastic cells to evade
the lethal effects of high ROS levels imposed by chronic inflammation or chemotherapy.
NRF2 plays dual functions in tumorigenesis [49–51]. On one hand, NRF2 protects normal
cells from stress-induced DNA damage, which may contribute to tumorigenesis if not
repaired properly and promptly. On the other hand, tumorigenic cells are addicted to high
levels of NRF2 for their survival and progression, known as the dark side of NRF2 [20].

Abnormal expression of NRF2 is involved in almost all the hallmarks associated with
cancer progression, metastasis, and drug resistance [18,19,50,52,53]. Because cancer cells
are addicted to high levels of NRF2 [32,33], the premise of NRF2 targeting has become
an attractive idea [54]. Brusatol, a derivative from the Brucea javanica plant [21], can
reduce NRF2 protein and activity levels through enhanced ubiquitination and degrada-
tion of NRF2 [22]. Brusatol has shown promising results in in vitro and in vivo cancer
models [23,55]. In this study, we tested Brusatol alone and in combination with cisplatin
(CDDP), a common drug for the treatment of EAC. While Brusatol alone was effective
in vitro and in vivo, its combination with CDDP was synergistic and highly efficacious
in eliminating cancer cells. Our data indicated that Brusatol or CDDP as single agents
inhibited tumor growth. The combination of Brusatol and CDDP was synergetic at half the
doses reported in the literature [22,23,55]. Our data suggest that this combination approach
can be a therapeutic strategy for EAC patients, achieving tumor suppression with possibly
lower toxicity. Mechanistically, treatments with Brusatol, CDDP alone, or a combination of
both induced apoptosis, as expected. We found that the combination induced more cancer
cell death through the induction of ferroptosis. The occurrence of ferroptosis was largely de-
pendent on NRF2 inhibition by Brusatol. Ferroptosis, a form of cell death, is recognized as
an important molecular mechanism that can effectively kill cancer cells [56,57]. Glutathione
peroxidase 4 (GPX4) is a key inhibitor of ferroptosis, and its downregulation in response
to therapy coincides with the occurrence of ferroptosis [58,59]. The reduced levels of xCT
and GPX4 following treatment with Brusatol support the occurrence of ferroptotic cancer
cell death [60,61], which was mitigated following treatment with a ferroptosis inhibitor,
ferrostatin 1. As NRF2 plays an important role in mitigating lipid peroxidation [14,38],
we hypothesized that ferroptosis was associated with an increase in lipid peroxidation
following NRF2 inhibition. Indeed, our results demonstrated a significant increase in lipid
peroxidation and ferroptosis by Brusatol. On the other hand, while CDDP induced high
levels of apoptosis, it had minimal effects on lipid peroxidation and ferroptosis.

Although Brusatol has been reported as an NRF2 inhibitor and was used for several
in vitro and in vivo studies [22,23,62], recent reports suggest off-target effects [63]. At
higher concentrations, Brusatol can inhibit global protein synthesis [63] and incur off-target
effects and excessive toxicity. In our experiments, we utilized relatively low doses and
demonstrated the inhibition of ARE reporter and reduced expression of HO-1, a classical
target of NRF2. Nevertheless, there is an urgent need to develop more specific NRF2
inhibitors for future investigations.



Antioxidants 2022, 11, 1859 15 of 17

5. Conclusions

In summary, our data indicate that the overexpression of NRF2 in EAC promotes
tumor survival. Targeting NRF2 synergizes with cisplatin through inducing significant
lipid peroxidation and ferroptosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11101859/s1, Figure S1. Knockdown of NRF2 enhanced
ABS-induced DNA damage in OE33 cells. Figure S2. Knockdown of NRF2 enhanced CDDP-induced
oxidative stress and DNA damage. Figure S3. Combination treatment of Brusatol and CDDP
generated more cell death than CDDP and Brusatol alone. Figure S4. Combination treatment of
Brusatol and CDDP generated significantly more tumor cell death than CDDP and Brusatol alone
in the CDDP resistant cells. Figure S5. The LAA lipid peroxidation assay in the FLO1 and SKGT4
cells. Figure S6. Brusatol or a combination of Brusatol and CDDP induced ferroptosis in the FLO1
and OE19 cells. Figure S7. Ferrostatin 1 protected cells from cell death. Figure S8. The IHC staining
of NRF2, HO1, xCT in xenografting tumor tissues. Table S1. Primers for real-time PCR.
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