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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a liver pathology affecting around 25% of the
population worldwide. Excess oxidative stress, inflammation and aberrant cellular signaling can
lead to this hepatic dysfunction and eventual carcinoma. Molecular hydrogen has been recognized
for its selective antioxidant properties and ability to attenuate inflammation and regulate cellular
function. We administered hydrogen-rich water (HRW) to 30 subjects with NAFLD in a randomized,
double-blinded, placebo-controlled manner for eight weeks. Phenotypically, we observed beneficial
trends (p > 0.05) in decreased weight (≈1 kg) and body mass index in the HRW group. HRW was
well-tolerated, with no significant changes in liver enzymes and a trend of improved lipid profile
and reduced lactate dehydrogenase levels. HRW tended to non-significantly decrease levels of
nuclear factor kappa B, heat shock protein 70 and matrix metalloproteinase-9. Interestingly, there
was a mild, albeit non-significant, tendency of increased levels of 8-hydroxy-2’-deoxyguanosine and
malondialdehyde in the HRW group. This mild increase may be indicative of the hormetic effects of
molecular hydrogen that occurred prior to the significant clinical improvements reported in previous
longer-term studies. The favorable trends in this study in conjunction with previous animal and
clinical findings suggest that HRW may serve as an important adjuvant therapy for promoting and
maintaining optimal health and wellness. Longer term studies focused on prevention, maintenance,
or treatment of NAFLD and early stages of NASH are warranted.

Keywords: inflammation; matrix metalloproteinases; molecular hydrogen; NAFLD; oxidative
stress; ROS

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a metabolic dysfunction of the liver with
excess deposits of fat accumulation caused by factors other than alcohol. Approximately
25% of the world’s population have NAFLD, which makes it the most common hepatic
pathology worldwide [1]. Left untreated, NAFLD can progress to nonalcoholic steato-
hepatitis (NASH), a pathological inflammatory condition of the liver with concomitant
fibrosis, which can result in cirrhosis and hepatocarcinoma [2]. However, there is no simple
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cure for NAFLD, and its treatment generally relies on management and changes in di-
etary and lifestyle activities. Accordingly, preventing its occurrence or further progression
by reducing excess fat accumulation, oxidative stress and inflammation may be a useful
strategy [3].

Molecular hydrogen has emerged as a novel medical gas with antioxidant, anti-
inflammatory effects, as demonstrated in studies involving animals and humans [4] and
even in plants [5]. Hydrogen can be inhaled or simply dissolved in water to produce
hydrogen-rich water (HRW). Ingestion of HRW leads to a peak plasma and breath H2
concentration in 5–15 min and returns to baseline in approximately 60 min [6]. Ingestion
of HRW was shown to be comparable to sulfasalazine in a mouse model of colitis [7].
Furthermore, HRW prevented oxidative stress-induced liver fibrogenesis in mice [8] and
activated peroxisome proliferator-activated receptor (PPAR) alpha and PPAR gamma
expression in hepatocytes [9].

Clinical studies have demonstrated favorable effects of HRW in subjects with metabolic
syndrome [10,11]. Similarly, a 28-day pilot study demonstrated that HRW reduced hepatic
lipid accumulation in NAFLD subjects without significantly influencing lipid parame-
ters [12]. The aim of this study was to analyze the effects of eight-week administration of
HRW on body composition, lab chemistry profiles, oxidative stress and markers related to
inflammation in subjects with NAFLD.

2. Materials and Methods
2.1. Test Subjects and Study Design

In total, 30 subjects (13 male, 17 female, average age 52.9 ± 10.6 years) with diagnosed
NAFLD were included in the study and evaluated at baseline and at 8 weeks. The inclusion
criteria for this experiment were steatosis according to USG (ultrasonography), or increased
alanine transaminase (ALT), aspartate aminotransferase (AST), gamma-glutamyl trans-
ferase (GMT), overweight/obesity, and a questionnaire containing questions about lifestyle
risk factors (20 q), together with excluding other etiology of the liver disease. Patients with
currently treated cancer, actively treated rheumatological diseases by biological treatment,
active tuberculosis, acute respiratory disease, or acute gastroenteritis were excluded from
the study. The whole experimental group of patients with NAFLD was routinely treated
with the same drugs (antihypertensive drugs, antidiabetics, hypolipidemics) without any
change. None of the participants in the study had a partner or spouse who participated in
the study. Written informed consent was obtained from all participants and the trial was
conducted in accordance with the Declaration of Helsinki. The study was approved by
the Regional Ethical Review Board in Bratislava, Slovak Republic (NCT 05325398). The
baseline anthropometric data of the subjects are indicated in Table 1.

Table 1. Baseline characteristics of subjects.

Baseline Characteristics Placebo Hydrogen p-Value

Age (years) 53.23 ± 9.13 52.65 ± 11.9 >0.1
Height (cm) 170.46 ± 10.41 168.94 ± 11.08 >0.1
Weight (kg) 95.77 ± 14.21 101.35 ± 15.14 >0.1

Body mass index (BMI) 32.8 ± 3.37 35.52 ± 4.03 >0.1
Systolic blood pressure 125.38 ± 11.98 128.47 ± 9.37 >0.1
Diastolic blood pressure 77.69 ± 8.32 77.94 ± 6.86 >0.1
Heart rate (beats/min) 73.31 ± 8.22 69.65 ± 8.96 >0.1

All selected patients were randomly divided into two groups in a double-blinded
fashion where patients either consumed HRW (hydrogen group; n = 17) or non-HRW
(placebo group; n = 13) (Figure 1). The randomization was performed by a computerized
random number generator. The sequence was generated by the process of minimization by
M.S. Patients in the HRW group received hydrogen-producing tablets with the ability to
enrich regular water with molecular hydrogen by the aqueous reaction between elemental
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magnesium and organic acids (Drink HRW and Natural Wellness Now Health Products
Inc., Vancouver, BC, Canada), as described previously [13]. Patients in the placebo group
received tablets that were similar in appearance and ingredients (i.e., magnesium carbonate,
citric acid, sodium bicarbonate, Inulin, Kollidon 30, sodium stearyl fumarate), where CO2
(g) was produced instead of H2 (g) (Drink HRW and Natural Wellness Now Health Products
Inc., Vancouver, BC, Canada). All groups were instructed to dissolve one tablet in 330 mL of
water, wait for dissolving and drink the produced HRW (>4 mg/L H2) immediately, three
times per day for two months. Blood plasma was collected in a sodium citrate solution in
the morning hours (before 8 a.m.) after the previous night fasting at the start and the end
of the experiment. Collected plasma was separated by centrifugation (3000× g for 10 min
at 4 ◦C) and immediately stored at −80 ◦C until analysis.
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Figure 1. CONSORT flow diagram.

2.2. Clinical Biochemical/Hematological Parameters

All biochemical/hematological parameters (albumin, alkaline phosphatase, alanine
transferase, aspartate aminotransferase, C-reactive protein, total cholesterol, high density
lipoprotein, triglycerides) were measured by SYNLAB, Bratislava. Chemistry Analyzer
AU5812 (Beckman Coulter, Brea, CA, USA) was used for assessment biochemical param-
eters with IFCC method for ALT, AST. ALP, colorimetric method, BCG for assessment
albumin. For lipid parameters (cholesterol, HDL- cholesterol, LDL-cholesterol, triglyc-
erides), enzymatic CHOD-PAP and colorimetric test were used. For determination CRP
immunoturbidimetric method was used.

2.3. Markers of Oxidative Stress
2.3.1. Malondialdehyde Measurement

Malondialdehyde (MDA) analysis was performed using TBARS Assay Kit (item
no. 700870, Cayman chemicals, Ann Arbor, MI, USA) according to the manufacturer’s
instructions. Briefly, 100 µL of blood plasma was mixed with the Color Reagent solution
composed of acetic acid, sodium hydroxide and thiobarbituric acid. This mixture was boiled
for 1 h and then immediately placed on ice for 10 min. After centrifugation (1600× g for
10 min at 4 ◦C) the color intensity of the reaction product (MDA) was measured at 530 nm
(Synergy H1 microplate reader, Biotek, Santa Clara, CA, USA). The malondialdehyde was
used as a standard.

2.3.2. 8-hydroxydeoxyguanosine Measurement

8-hydroxydeoxyguanosine (8-OHdG) was measured by the enzyme-linked immunosor-
bent assay (ELISA) method using an 8-OHdG ELISA kit (Elabscience, Houston, TX, USA;
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E-EL-0028) according to the manufacturer´s instructions. Briefly, 50 µL of blood plasma
was mixed with 50 µL of Biotinylated Detection Ab working solution specific to 8-OHdG
and incubated for 45 min at 37 ◦C. The solution was removed from the wells and washed
three times. The same procedure was followed with 100 µL of horseradish peroxidase
(HRP) conjugate working solution and 90 µL of substrate reaction solution (incubation time
was 30 and 15 min, respectively, at 37 ◦C). The reaction was terminated by adding 50 µL of
stop solution. The plate was measured at 450 nm (Synergy H1 microplate reader, Biotek,
Santa Clara, CA, USA).

2.4. Lactate Dehydrogenase Assay

The activity of lactate dehydrogenase (LDH) analysis was performed with a lactate
dehydrogenase activity assay kit (Sigma-Aldrich, Saint Louis, MO, USA) according to the
manufacturer´s recommendation. 2 µL of blood plasma was mixed with 48 µL of LDH
assay buffer and with master reaction mix (composed of 48 µL LDH assay buffer and 2 µL
LDH substrate mix). Standard NADH was used. This mix of solutions and samples was
measured every 2–3 min at 450 nm (Synergy H1 microplate reader, Biotek, Santa Clara, CA,
USA) at 37 ◦C until the value of the most active sample was greater than the value of the
highest standard.

2.5. Western Blot

Protein analysis was carried out according to our previous study (Kura et al., 2019).
Blood plasma samples treated with Laemmli buffer were applied on 12.5% sodium do-
decyl sulfate-polyacrylamide gels (SDS–PAGE), separated by electrophoresis (120 V) and
transferred to nitrocellulose membranes. Transferred proteins were visualized using Pon-
ceau S solution (Sigma, St. Louis, MO, USA). Membrane blots were washed with TBS
(1M Tris, 5 M NaCl in H2O, pH 7.4, Tween-20), blocked with 5% BSA in TBS for 4 h, and
incubated with the appropriate primary antibodies at the specific dilutions referred to in
Supplementary Table S1. The membrane was then washed and the primary antibodies were
detected with goat anti-goat IgG, anti-mouse, or goat anti-rabbit IgG conjugated to HRP
for 1 h. The membrane was then washed again with TBS solution, and then the solutions
luminol (chromophore) and coumaric acid and hydrogen peroxide were applied to induce a
chemiluminescent reaction. The chemiluminescent reaction was detected in an Amersham
Imager 600 instrument (GE Healthcare Bio-Sciences AB, Danderyd, Sweden). All data
obtained from Western blot were calculated with ImageJ software version 1.8.0_172.

2.6. Measurement of Matrix Metalloproteinases Activities by Gelatin Zymography

The activities of matrix metalloproteinases (MMPs)-2 and MMP-9 were evaluated
using zymography in 10% polyacrylamide gels containing gelatin (2 mg/mL) as a substrate.
The diluted plasma samples were prepared in Laemmli buffer without 2-mercaptoethanol
and loaded onto gels without denaturation. After electrophoresis, the gels were washed
with 50 mM Tris-HCl (pH 7.4), containing 2.5% Triton X-100 and then incubated overnight
at 37 ◦C in a substrate buffer containing 50 mM Tris-HCl, 10 mM CaCl2 and 1.25% Triton
X-100, pH 7.4. After incubation, the gels were stained with 1% Coomassie Brilliant Blue
G-250 and then destained with 40% methanol and 10% acetic acid. The gelatinolytic
activities of the MMP-2 and MMP-9 were detected as transparent bands against a dark blue
background.

2.7. Statistical Analysis

The sample size of subjects recruited was determined according to availability, willing-
ness and the statistically minimal sample size needed. Statistical analyzes were performed
by JM using an R statistical software environment (www.r-project.org, accessed on 11 July
2022). All significance levels were set at α = 0.05. Normality of the data was tested using
the Shapiro–Wilk test. If the test rejected normality, the Mann–Whitney test was applied; if
not, two-sample t-tests were used.

www.r-project.org
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3. Results
3.1. Subjects

This study was performed in a randomized double-blinded, placebo-controlled fash-
ion. All selected patients (13 males and 17 females) were from the Bratislava region (Slovak
Republic). The average age was 53.23 (±9.13) years for placebo and 52.65 (±11.9) for the
hydrogen group. Almost all patients had obesity, with an average value of body mass index
(BMI) of 32.8 (±3.37) in placebo and 35.52 (±4.03) in the hydrogen group. All recruited
subjects completed the trial without adverse events. For both groups, the average blood
pressure was in a normal range.

Two months consumption of HRW had a positive trend in almost all measured basic
characteristics of patients: weight (decreased), BMI (decreased), systolic blood pressure
(decreased). However, these measurements did not show a statistical significance (p > 0.05)
(Table 2).

Table 2. Changes in anthropometric characteristics from baseline to 8-week follow up.

Characteristics
Placebo Hydrogen

Before After Before After

Weight 95.77 ± 14.21 96.00 ± 14.98 101.35 ± 15.14 100.26 ± 15.66
BMI 32.8 ± 3.37 32.91 ± 3.03 35.52 ± 4.03 35.16 ± 4.33 *

Systolic bp 125.38 ± 11.98 126.15 ± 11.93 128.47 ± 9.37 126.18 ± 9.28
Diastolic bp 77.69 ± 8.32 74.62 ± 7.76 77.94 ± 6.86 77.06 ± 4.70

Pulse 73.31 ± 8.22 71.64 ± 6.05 69.65 ± 8.96 71.29 ± 7.28
* Statistical significance p < 0.05.

3.2. Consumption of HRW Improved Plasma Biomarkers

Biochemical parameters indicative of lipid levels and liver functions as well as blood
analysis were measured with standard biomedical and hematological methods in a clinical
biochemical/hematological lab. For each group, we compared the individual biomarkers
of their baseline values to their values after 8 weeks follow up (Table 3).

Table 3. Plasma biochemical markers from baseline and after 8-week intervention.

Marker Placebo Hydrogen
Baseline Follow Up Baseline Follow Up

Albumin (ALB) (g/L) 43.22 ± 2.6 44.47 ± 2.90 42.68 ± 2.36 44.58 ± 2.04
Alkaline phosphatase (ALP) (ukat/L) 1.07 ± 0.33 1.09 ± 0.37 1.28 ± 0.53 1.32 ± 0.55

Alanine transferase (ALT) (ukat/L) 0.69 ± 0.34 0.58 ± 0.24 0.77 ± 0.48 0.75 ± 0.30
Aspartate aminotransferase (AST) (ukat/L) 0.57 ± 0.22 0.48 ± 0.14 0.62 ±0.41 0.53 ± 0.22

C-reactive protein (CRP) (mg/L) 3.26 ± 1.50 4.49 ± 2.50 4.52 ± 3.55 4.57 ± 3.20
MDA (µM/µL) 3.11 ± 1.53 2.34 ± 0.60 2.67 ± 0.82 3.13 ± 1.60 *

8-OHdG (ng/mL) 26.93 ± 8.70 27.87 ± 7.67 24.36 ± 9.51 26.39 ± 9.72
LDH (mU/mL) 71.23 ±32.50 73.10 ± 39.16 68.53 ± 28.91 64.43 ± 32.82

Total cholesterol (TC) (mg/dL) 179.34 ± 31.60 187.76 ± 41.06 180.32 ± 39.28 190.06 ± 38.85
High density lipoprotein (HDL) (mg/dL) 44.50 ± 9.29 46.05 ± 8.70 43.38 ± 4.19 46.52 ± 3.96
Low density lipoprotein (LDL) (mg/dL) 114.34 ± 24.40 119.91 ± 30.70 116.33 ± 31.21 120.54 ± 30.63

Triglycerides (TG) (mg/dL) 170.19 ± 58.59 195.60 ± 69.62 156.88 ± 39.12 169.45 ± 74.47
TG/HDL ratio 3.82 ± 6.31 4.25 ± 8.00 3.62 ± 9.33 3.64 ± 18.80

* Statistical significance p < 0.05.

In both groups, there was a similar nonsignificant decrease in AST and ALT (p > 0.05).
On the other hand, both groups had a mild increase in CRP, ALB, ALP, TG, TC, HDL, LDL
and the TG/HDL ratio (p > 0.05). These non-significant increases were the greatest in the
HRW group, except for CRP, TG, LDL and the TG/HDL ratio, which increased more in the
placebo group (p > 0.05). In contrast, LDH levels tended to increase (2.63%) in the placebo
group and decrease (5.98%) in the HRW group (p > 0.05).
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3.3. Biomarkers of Redox Status

As seen in Table 3, the levels of MDA tended to decrease in the placebo group, but
increase in the HRW group, which difference between the two groups reached statistical
significance (p < 0.05). However, the post-MDA level in the HRW group was about the
same as the baseline level in the placebo group, 3.13 ± 1.60 and 3.11 ± 1.53, respectively.
Both groups had non-significant increase in 8-OHdG, with a tendency to have a greater
increase in the HRW group. We also monitored levels of Cu/Zn superoxide dismutase
(SOD1). As seen in Figure 2, the levels of SOD1 increased (≈20 ± 16.71%) in the placebo
group but remained unchanged (0.04 ± 22.61% increase) in the HRW group. The difference
between the groups reached statistical significance (p < 0.05).
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3.4. Inflammatory Markers and Heat Shock Proteins

As illustrated in Figure 3, the inflammatory marker, tumor necrosis factor-alpha (TNF-
α), did not significantly change in either group from baseline compared to follow up
(placebo 98.20 ± 16.55%; HRW 99.34 ± 21.71%). However, nuclear factor kappa B (NF-κB)
had a non-significant tendency to increase in the placebo group (101.23 ± 12.62%) and
decrease in the HRW group (99.41 ± 15.15%). Similarly, heat shock protein-60 (HSP60) and
HSP70 were unchanged in either group. However, HSP70 mildly increased in the placebo
(104.60 ± 14.24%) and decreased in the HRW group (99.90 ± 19.14%), whereas HSP60
tended to increase in both groups (placebo 101.92 ± 18.06%; HRW 102.37 ± 16.02%).
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Figure 3. Markers of inflammation (a) and levels of heat shock proteins (b). HSP60 = heat shock
protein 60; HSP70 = heat shock protein 70; TNF-α = tumor necrosis factor alpha; NF-κB = nuclear
factor kappa B. n = 13 for placebo group, n = 17 for hydrogen group, p < 0.05.
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3.5. Matrix Metalloproteinases

We found that the plasma levels of matrix metalloproteinases (MMPs), MMP2 had a
non-significant trend to decrease in both the placebo (96.15 ± 7.14%) and in the HRW
(95.07 ± 10.09%) groups. Moreover, MMP9 tended to increase in the placebo group
(103.67 ± 8.89%) and decrease in the HRW group (97.12 ± 8.36%), but the difference
remained statistically insignificant (Figure 4).
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4. Discussion

In this randomized, double-blinded, placebo-controlled study, we investigated the
effects of high-dose HRW (i.e., >12 mg/day) in subjects with NAFLD for 8 weeks. There
were no adverse events with HRW intervention as indicated by non-significant changes
in liver enzymes. Moreover, the frequent consumption, three times per day, of HRW was
well-tolerated by subjects.

In the two-month study, there was a trend of increased weight gain in the placebo
group (≈0.23 kg). In contrast, in the HRW group, the opposite trend occurred, with an
average body mass reduction of ≈1 kg. Although the change in weight was statistically
insignificant, there was a statistically significant decrease in BMI in the HRW group com-
pared to the placebo group. These improvements in weight and BMI may have clinically
meaningful implications, especially given the short duration of our study. These results
are corroborated with our previous finding that 24 weeks of high-concentration HRW
consumption in subjects with metabolic syndrome significantly reduced body weight and
BMI [10].

We found a positive trend in the HRW group of reduced systolic blood pressure
(≈2 mm Hg). However, this change did not reach statistical significance. Perhaps this is
due to the short duration of the study and relatively normal blood pressure values of the
subjects. For example, diastolic blood pressure was below 80 mm Hg and systolic blood
pressure was on the low end of pre-hypertensive criteria. However, although a 2 mm
Hg reduction in systolic blood pressure is statistically insignificant, it may have clinical
relevance [14]. Indeed, a meta-analysis found that a 2-mm Hg decrease in resting systolic
blood pressure was associated with reductions in mortality of 4% in coronary heart disease,
6% from stroke and 3% from all causes [15].

We also investigated the effects of HRW on various biomarkers of liver function
and cholesterol and observed beneficial trends in these areas. However, in contrast to
other studies, the changes in these parameters remained insignificant, likely attributable
to either (i) the values already being in homeostasis/range, or (ii) the shorter duration
of the study. Our previous six-month investigation in subjects with metabolic syndrome
showed improvements in many of these parameters [10], which corresponded to other
clinical reports [11,16,17]. For example, HRW had an important trend of increasing HDL
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cholesterol compared to the placebo group. Moreover, HRW attenuated the rise in TG levels
that occurred over the two months. These effects on TG and HDL resulted in a significantly
better TG/HDL ratio in the HRW group compared to the placebo group (i.e., 3.64 vs. 4.25,
respectively). That is, in the placebo group there was an 11.2% increase compared to only a
0.55% increase in the HRW group. The higher the TG/HDL ratio, the greater the risk for
development of coronary disease [18], which also serves as an independent predictor for all-
cause mortality [19]. Despite these favorable trends, the absolute changes were not as large
compared to previous studies where baseline cholesterol levels were more significantly
elevated [11,12,16,17]. In our study, total cholesterol was still below 200 mg/dL, which,
for subjects of similar age, large prospective cohort studies suggest that having a TC level
lower than 200 mg/dL is associated with increased mortality [20,21]. Since cholesterol
levels and health may follow an inverse U-curve association [22], it would be interesting to
test the effects of HRW administration on those with higher cholesterol, e.g., >250 mg/dL.

Molecular hydrogen has been reported to exert antioxidant effects in cell, animal and
human clinical studies [4]. Compared to baseline, SOD1 levels slightly increased in the
placebo group and remained the same in the HRW group. Interestingly, we observed a mild
non-significant increase in MDA (≈17.2%) and in 8-OHdG (≈8.3%), which are markers of
oxidative stress in the HRW group. These increases were significantly less than the increase
induced following an intense exercise bout. For example, following a self-paced 21 km
run at 77% VO2 peak in trained male runners, MDA increased by ≈11.5% [23] and 60-min
running at a similar intensity increased urinary 8-OHdG by ≈276% [24]. These values
should be compared to the several hundred percent increases often reported in chronic
diseases and pathological conditions [25]. Moreover, unlike with exercise or molecular
hydrogen, the oxidative stress in the diseased states remain chronically elevated, which
results in antioxidant depletion and cellular injury. We found that levels of LDH were
reduced by ≈6% following HRW administration, which may indicate a protective effect as
previously demonstrated [26].

In addition to its known antioxidant effects, molecular hydrogen has also been shown
to exert selective anti-inflammatory effects [4]. However, in contrast to previous studies
our results show no changes in TNF-α, with only a slight tendency of decreased NF-κB by
HRW. Heat shock proteins (HSP) can be upregulated by inflammation; accordingly, we
observed no changes in either HSP60 or HSP70. However, HSP70 followed a similar trend
as NF-κB levels in that they tended to increase in the placebo group and decrease in the
HRW group. At the same time, we found that MMP-2 and MMP-9, which are regulated by
inflammation, were also not significantly altered. However, MMP-9 had a modest tendency
to increase in the placebo group and decrease in the HRW group. This is in line with
previous research demonstrating that HRW potently reduced smooth muscle cell migration
by inhibiting MMP-9 and MMP-2 [27]. The serum expression of MMPs is correlated with
the serum levels of markers of liver damage [28], which were not significantly altered in
either group. This raises the possibility that the null effects of HRW on MMPs could be due
to their lower expression in the NAFLD subjects compared to the studies in which MMPs
were significantly upregulated by a greater stimulus [29].

HRW has shown promise in attenuating many disease pathologies, including COVID-
19 [30,31], due to its antioxidant, anti-inflammatory and anti-apoptotic effects [32]. In
an animal model of diet-induced NAFLD, HRW effectively improved body composition
and decreased lipid accumulation in the liver [33]. These benefits were at least partly
mediated by HRW-induced upregulation in acetyl CoA oxidase, levels of adiponectin,
reduced expression of CD36 and the inflammatory markers TNF-α and IL-6 [33]. This is
in line with other studies demonstrating beneficial effects of HRW in NAFLD in animal
models [9,34]. Furthermore, a 28-day double-blinded, placebo-controlled, crossover trial in
12 subjects with NAFLD revealed that HRW significantly attenuated liver fat accumulation
as assessed by dual-echo MRI [11]. However, similar to our study, there were no statistically
significant changes on metabolic profiles.
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We previously demonstrated in a double-blinded, placebo-controlled study of 60
subjects with metabolic syndrome that six-month administration of high-concentration
HRW significantly improved body composition, lipid profiles, oxidative stress and inflam-
mation [10]. These favorable effects were often greater than those reported in previous
clinical studies of metabolic syndrome [11,12,16,17]. The reasons for the differences may be
attributed to the shorter duration and lower dose of HRW in those studies. These same
reasons may also account for the lack of statistically significant changes in our NAFLD
study. Moreover, we were unable to track subject compliance to determine how tightly the
protocol of using the HRW-producing tablets was followed. Additionally, HRW adminis-
tration may have improved other biomarkers that we did not examine (e.g., CD36, PPAR
expression, adiponectin, fibroblast growth factor-21, insulin sensitivity, etc.), which were
improved in previous studies [4]. Furthermore, it should not be expected that HRW would
significantly influence biomarkers that are already within the range of normal homeostasis.

Importantly, although not statistically significant in our study, a hydrogen-induced
increase in markers of oxidative stress has been previously reported [35]. Indeed, several
studies show that the therapeutic benefits of H2 are also correlated with slightly increased
levels of MDA [36], even in the sham group [37]. Similarly, we demonstrated that H2
prevented irradiation-induced increases in plasma levels of TNF-α and MDA [38]. How-
ever, when H2 was administered alone, TNF-α initially increased above control and then
decreased and remained below both the irradiated group and the non-irradiated control,
whereas MDA tended to initially decrease then increase [38]. This demonstrates that al-
though H2 primarily reduces MDA, sometimes its therapeutic effects are associated with
transiently increased levels of MDA. Similarly, some of the benefits of H2 in plants are
also mediated by increases in ROS production [39]. Additionally, pretreatment of SH-SY5Y
cells with H2 transiently increased mitochondrial superoxide production [40]. This was
followed by an upregulation of the antioxidant enzymes via induction of the nuclear factor
erythroid 2-related factor 2 (Nrf2) pathway, which resulted in cytoprotection from H2O2
induced oxidative stress [40]. The induction of the Keap1-Nrf2 pathway plays an important
role in the protective effects of molecular hydrogen [4].

Our results correspond with the proposed hormesis model underlying the mechanistic
mode of action for molecular hydrogen [41]. This may also be true for the discrepant
changes in inflammatory markers and heat shock proteins, which H2 may increase or de-
crease depending on the time of testing [35,41,42]. It was recently shown that H2 induces the
mitochondrial unfolded protein response, which can subsequently improve mitochondrial
function and cellular regeneration [43]. The mitochondria and other redox-active heme
prosthetic groups may be important targets for molecular hydrogen [44]. Accordingly, the
actions of hydrogen might transiently increase various biomarkers of cellular stress similar
to the hormetic effects of exercise, followed by their decrease and subsequent improvements
in cellular function and clinical parameters [41]. However, additional and/or longer-term
studies are needed to confirm a hormetic effect by determining if more favorable biological
effects occur as are seen in other H2 studies.

5. Conclusions

In conclusion, our study adds to the growing body of literature that molecular hydro-
gen has favorable biological effects. However, in our study, most of the observed trends
either did not reach statistical significance and/or, if they did, their clinical implications are
not clear. Nevertheless, since ingestion of HRW is both simple and safe, there are practical
applications for its daily use. Moreover, unlike pharmaceuticals but similar to exercise, it is
likely that daily and long-term consumption of HRW is required to elicit optimal clinical
effects. Significant changes in short periods, although reported, may be unlikely for most
people and HRW should serve as an adjuvant wellness therapy of habit as opposed to a
primary medicine for treatment. In short, although not as significant as other research, our
preliminary results, in conjunction with previous studies, indicate that oral ingestion of
HRW may provide beneficial effects for NAFLD and that H2 may act as a mild hormetic
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effector in eliciting these biological benefits, similarly to exercise. Longer-term studies
are needed to determine if hormesis is involved, and studies focused on the prevention,
maintenance and treatment of NAFLD and early stages of NASH are warranted.
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