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Abstract: The architecture of eukaryotic cells is defined by extensive membrane-delimited com-
partments, which entails separate metabolic processes that would otherwise interfere with each
other, leading to functional differences between cells. G protein-coupled receptors (GPCRs) are
the largest class of cell surface receptors, and their signal transduction is traditionally viewed as a
chain of events initiated from the plasma membrane. Furthermore, their intracellular trafficking,
internalization, and recycling were considered only to regulate receptor desensitization and cell
surface expression. On the contrary, accumulating data strongly suggest that GPCRs also signal from
intracellular compartments. GPCRs localize in the membranes of endosomes, nucleus, Golgi and
endoplasmic reticulum apparatuses, mitochondria, and cell division compartments. Importantly,
from these sites they have shown to orchestrate multiple signals that regulate different cell pathways.
In this review, we summarize the current knowledge of this fascinating phenomenon, explaining how
GPCRs reach the intracellular sites, are stimulated by the endogenous ligands, and their potential
physiological/pathophysiological roles. Finally, we illustrate several mechanisms involved in the
modulation of the compartmentalized GPCR signaling by drugs and endogenous ligands. Under-
standing how GPCR signaling compartmentalization is regulated will provide a unique opportunity
to develop novel pharmaceutical approaches to target GPCRs and potentially lead the way towards
new therapeutic approaches.

Keywords: G protein-coupled receptors; nuclear membrane; mitochondria

1. Introduction

The best current estimate claims that cells appeared on Earth ~3.0–3.3 billion years
ago [1]. The process of cellularization is still highly debated, with specialists suggesting
that cells were originated by the evolution of the cytoplasm inside a primordial lipid vesicle,
while others argue the possibility that the cytoplasm was instead developed outside the
surface of early vesicles, and thus, cells were simply the result of an invagination pro-
cess of this proto-cytosol into those vesicles that had an early functional cytoskeleton [2].
The acquisition of the cell membrane was the first crucial step in biological evolution
that defined the boundaries of a cell and allowed controlled communications between
intracellular and extracellular environments to produce those relative stable equilibriums
crucial for life to evolve. In fact, besides its function as structural support and defense, the
cell membrane regulates exchanges of molecules from and to the external environment,
responding to environmental physical and chemical changes, and thus plays a crucial role
in the interactions with other cells and/or the extracellular environments; moreover, the
cell membranes are involved in energy formation and other chemical reactions. Notably,
even though some prokaryotes also contain intracellular structures that can be seen as
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primitive organelles, prokaryotes and archaea have maintained the mono-compartmental
structure of their ancestor cells [3]. In fact, it was the evolution from this simple membrane
organization into complex compartmentalized eukaryotic cell structures that profoundly
marked the second fundamental step in the history of biology: the ability to isolate different
types of enzymatic and chemical reactions into intracellular membrane compartments that
best favored the different types of cell processes. Delimited and chemically adjusted intra-
cellular microenvironments in fact increased reaction efficiency and limited the interference
from other cell processes, which allowed the evolutionary process to proceed towards
increasingly complex organisms.

2. Evolution Promoted Biological Complexity by Compartmentalization of
Metabolic Processes

A simple eukaryote cell shows more complexity than the most complex prokaryote.
The main difference lies in the eukaryote cell ability to compartmentalize the metabolic
reactions necessary for survival. Eukaryotes have developed subcellular structures sepa-
rated from each other to confine specific reactions to suitable cell compartments and allow
different reactions to take place simultaneously inside the same cell [4]. Intracellular func-
tional specialization and development of pluricellular organisms with increasingly complex
and specialized cells were the key features to maximize defense and take advantage of
environmental resources more effectively [5].

Given the remarkable complexity jump forward between prokaryotes and eukary-
otes and the absence of organisms with an intermediate complexity, intermediate cell
compartmentalization processes are difficult to identify. One of the main hypotheses, the
endosymbiotic theory, proposes that the intracellular compartments (organelles) derived
from different organism interactions to perform distinctive reactions such as oxidative
respiration and detoxification [6]. This high degree of complexity requires a tight regula-
tion especially for operating and maintaining the functions of these organelles. Notably,
each organelle has different protein sets that allow specific reactions to take place without
interfering with the reactions in other organelles or the cytosol. Moreover, considering that
the genetic information is kept in the nucleus and the protein synthesis happens in the cyto-
plasm (except for mitochondrial proteins) the targeting of proteins to different cell locations
is considered one of the most crucial steps in eukaryotic evolution [7]. However, protein
sorting to specific subcellular compartments raises important points. For instance, specific
protein sorting to a compartment implies that the targeting signals attached to the protein
sequence and the entire sorting process were subjected to evolutionary pressure, including
those soluble receptors/interacting proteins that recognize these signals and deliver the
proteins to their specific intracellular compartments. This process of signal appearance and
recognition happened over a long period of time, protein by protein, till whole pathways
were completely compartmentalized. Moreover, these evolutionary processes were not
efficient at the beginning and the protein targeting signals might have led to the delivery
of proteins into unwanted cell compartments where they were not useful. However, this
inefficient protein sorting would also be the cause of the gain of new functions by different
organelles [8] allowing the evolution process to select the most advantageous combinations
of enzymes and compartments. These interactions are probably the foundation of the
extraordinary ability of eukaryotes to take advantage and maximize the environmental
resources [9,10]. The ability to sustain functionally separate cell compartments in general
requires a precise control of the molecular machinery needed for assembly, maintenance,
and inheritance of diverse trafficking processes. The more regulated and articulated those
processes are, the more complex the organism becomes. This increased compartmentaliza-
tion accounts even for the de novo evolution process that allows for new functions, new
adaptations, and novel specialization processes to take place and thus for the formation of
increasingly highly complex organisms.
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3. G protein-Coupled Receptors (GPCRs) and Their Role in Modulating Different
Types of Stimuli

GPCRs are the largest family of membrane receptors, with nearly 800 genes coding for
these proteins. They are involved in many physiological processes such as sensing light,
taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion, cell
growth, and migration. In a simplistic way, GPCRs are composed of seven transmembrane
domains, three extracellular and three intracellular loops, an extracellular N-terminus,
and an intracellular C-terminus [11]. The extracellular loop and the extracellular portion
of the seven transmembrane domains are deputed to agonist recognition, while the rest
of the transmembrane core and the intracellular loops convey the receptor activation to
intracellular transducers.

The evolutionary success of GPCRs is thought to depend upon the interplay between
the distinctive properties of their extracellular domains to be readily adaptable for new
sensory functions, as shown by the ability to be activated by such different types of
stimuli as photons, odorants, neurotransmitters, and hormones, and the conservation
of a transmembrane core and intracellular signal transduction mechanisms [12,13]. In
fact, most of the vertebrate physiology is based on the signal transduction of GPCRs. G
proteins are the first and more characterized partners of GPCRs. They are trimeric proteins
composed of α, β, and γ subunits and are activated by the nucleotide GTP. The α and β/γ
subunits dissociate upon GPCR activation and are regarded as two independent functional
units that regulate different downstream effectors [14]. To date, eighteen α, five β, and
twelve γ G protein subunits have been discovered. Based on their similarity and functional
activities, the α subunits are further subdivided into four different families: (i) Gαs, that
stimulates adenylyl cyclase; (ii) Gαi that inhibits the activity of adenylyl cyclase; (iii) Gαq,
whose activation stimulates the phospholipase enzyme; and (iv) Gα12 that activates the
small GTPase Rho. Instead, Gβ/γ subunits form a tightly bound dimeric complex that
plays a critical role in regulating the catalytic activity of the G protein α subunits, and in
modulating the activity of several enzymes and ion channels [15]. In contrast to G protein
α subunits, the βγ do not have a catalytic activity on their own but modulate signaling
through protein–protein interactions. The first effector found to be activated by Gβγwas
the inwardly rectifying K+ channel (GIRK) in atrial myocytes after muscarinic M2 receptor
activation [16,17]. At the beginning, the idea that βγ dimers alone could be the primary
mediators of signal activation was controversial, but today, the list of Gβγ interacting
proteins comprises a substantial number of targets, such as enzymes and channels [15]. It
is worth mentioning that G proteins can also be activated in a GPCR-independent way [18].
Receptor-independent activators of G protein signaling (AGS) play surprising roles in
signal processing and have opened new areas of research related to the role of G proteins
in signal transduction [19].

The functional complexity of GPCRs could not be attributed to only the exclusive
activation of G proteins. Evidence has gradually emerged that GPCRs can signal through
many other proteins such as β-arrestins and small G proteins, among others [20]. Notably,
by means of a membrane yeast two-hybrid system, it has been recently shown that GPCRs
can form interactomes connecting more than 686 proteins that regulate diverse cellular
functions [21].

4. GPCRs Are Present in Different Cellular Compartments

GPCRs were originally thought to exclusively localize to the plasma membrane and
to mediate cellular signaling of stimuli coming from outside the cell. Even though early
evidence suggested a subcellular localization and function of some GPCRs, the interest
in these “unusual” locations was scarce as it was assumed that activation by ligands
was restricted to the plasma membrane. Progress in this area finally demonstrated that
GPCR-mediated signaling occurs not only from the plasma membrane but also from
intracellular compartments such as endosomes, Golgi membranes [22], mitochondria [23],
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cell division compartments (centrosomes, spindle midzone, and midbodies) [24], and
nuclear membrane [25] (Figure 1 and Table 1).
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Figure 1. GPCRs’ main cell localization. GPCRs are represented as orange proteins with carboxyl
groups shown as gray dots and N-terminal groups with symbols of different colors, blue, green, red.
Canonically functional GPCRs localize at the plasma membrane level (“1”), but they can also be
functional on the membrane of different intracellular compartments: endosomes where their carboxyl
domains face the cytosol (“2”); the Golgi apparatus, where they constitute a pre-existing receptor
pool and to where they are delivered after being assembled in the perinuclear endoplasmic reticulum
(“3”, “4”, respectively); the nucleolus, on the outer and inner nuclear membrane where the GPCR
carboxyl domains face the cytosol or the nucleoplasm, respectively (“5”, “6”). GPCRs can also form
pre-existing pools in the nuclear inner membrane with their carboxyl domain facing the nucleoplasm
(“7”). Finally, GPCRs can be found in the mitochondrial outer membrane where their GPCR carboxyl
domains face the intermembrane space (“8”).

Table 1. List of GPCRs that signal from intracellular compartments.

Subcellular Localization Receptor Reference

Early endosomes

β2-adrenergic receptor (β2AR) [26]

Calcitonin-gene-related-peptide receptor (CGRPR) [27]

Calcium-sensing receptor (CaSR) [28]

Dopamine receptor type 1 (D1R) [29]

Luteinizing hormone receptor (LHR) [30]

Neurokinin type 1 receptor (NK1R) [31]

Parathyroid hormone receptor (PTHR) [32]

Protease activated receptor 2 (PAR2) [33]

Vasopressin type 2 receptor (V2R) [34]

Nucleus

α1A-adrenergic receptor (α1A-AR) [35]

α1B-adrenergic receptor (α1B-AR) [35]

Adenosine A1 receptor (ADORA1) [36]

Adenosine A2B (ADORA2B) [36]
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Table 1. Cont.

Subcellular Localization Receptor Reference

Angiotensin AT1A receptor (AT1AR) [37]

Nucleus

Apelin receptor (APJ) [38]

Bradykinin B2 receptor (BKR2) [38]

Cysteine (C)-x-C receptor 4 (CXCR4) [39]

Oxytocin receptors (OXTR) [40]

C-C chemokine receptor type 2 (CCR2) [41]

Arginine vasopressin receptor 1α (AVPR1a) [41]

Sphingosine 1-phosphate receptor 1(S1P1) [41]

Mitochondria

Purinoceptor 1 like receptor (P2Y1) [42]

Purinoceptor 2 like receptor (P2Y2) [42]

Angiotensin II receptor type 1 (AT1R) [43]

Angiotensin II receptor type 2 (AT2R) [43]

5-hydroxytrptamine receptor (5-HTR3 and 5-HTR4) [44]

Melatonin MT1 receptor (MT1R) [45]

Cannabinoid type 1 receptor 1 (CB1R) [46]

Golgi

β1-adrenergic receptor (β1AR) [47]

Sphingosine-1-phosphate 1 receptor (S1P1R) [48]

Thyroid stimulating hormone receptor (TSHR) [49]

ER
G Protein-Coupled Estrogen Receptor 1 (GPR30) [50]

Metabotropic glutamate receptor 5 (mGluR5) [25]

Exosomes G Protein-Coupled Receptor Class C Group 5
Member B (GPRC5B) [51]

Spindle poles Olfactory receptor 2A4 (OR2A4) [24]

The functional importance of GPCR subcellular localization was originally shown for
the rhodopsin receptor [52,53] that primarily activates the G proteins from the intracellular
disk membranes of the rod cell outer segment. In particular, the disk membranes originated
from basal evaginations of the plasma membrane of the rod cell outer segment that were
retained intracellularly. The subcellular segregation is crucial for the optimal response
of rhodopsin to light, as the disk membrane contains six times less cholesterol than the
plasma membrane. Rhodopsin is also the major protein of the plasma membrane of rod
cells, but the high membrane cholesterol content inhibits rhodopsin participation in the
visual transduction cascade at this site [52].

Further evidence suggesting that GPCR signaling also occurred within an internal
membrane compartment emerged in studies of β2 adrenergic receptor-mediated activa-
tion of the mitogen-activated protein kinases (MAPKs) Erk1/2, which was inhibited by
dominant-negative versions of dynamin and β-arrestin-1 that by preventing receptor inter-
nalization showed thatβ2 adrenergic compartmentalized signaling was responsible for ERK
activation [54]. Furthermore, overexpression of a mutant β-arrestin-1 that binds c-SRC (a
non-receptor tyrosine kinase that regulates the RAS-MAPK/Erk signaling) without promot-
ing β2 adrenergic receptor internalization also shows a reduced phosphorylation of ERK
mediated by β2 adrenergic receptor activation, supporting the concept that this receptor sig-
naling occurred within an internal compartment of the cell [55]. Several GPCRs have been
known to colocalize on endocytic vesicles together with β-arrestins and Erk1/2, strongly
suggesting that endosomes are specific compartments for GPCR–β-arrestin-mediated sig-
naling [22]. Recent evidence suggests that signaling from endosomes may participate in the
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pathogenesis of cardiac diseases. After prolonged isoproterenol stimulation, β1 adrenergic
receptors decrease on the cell surface by endocytosis, but they are still active and as shown
by Morisco et. al., they mediate cardiac hypertrophy [56]. In fact, the inhibition of the β1
adrenergic receptor internalization process by concanavalin A blocks isoproterenol-induced
cardiac hypertrophy, strongly suggesting that the cardiac hypertrophy was caused by the
ability of these receptors to signal from endosome compartments.

The Golgi apparatus is another compartment where ligand-dependent GPCR acti-
vation has been detected. For instance, the β1 adrenergic receptor is known to activate
the Gαs protein canonically in the plasma membrane, but also in the Golgi apparatus
where it is sorted to form a pre-existing receptor pool [57]. Physiologically, catecholamines
are charged and need transporters to cross the plasma membrane such as organic cation
transporter 3 (OCT3) to reach for example the Golgi β1 adrenergic receptor [57]. This
internal membrane pool of receptors contributes significantly to the overall production of
cellular cAMP elicited by β1 adrenergic agonists.

Among other receptors activated in the Golgi apparatus, there is the TSH receptor. In
this case, the receptor is internalized together with its agonist and when it reaches the Golgi
network it activates a local pool of Gαs protein. This critical receptor localization near the
nucleus seems required for efficient CREB phosphorylation and gene transcription [58].

Another internal compartment where GPCRs are localized and function is the mito-
chondrion. Early evidence of this localization came from the cannabinoid CB1 receptor that
was shown to be sorted in the outer mitochondrial membrane of skeletal and myocardial
cells. The activation of mitochondrial CB1 receptor by its lipophilic agonists in these tissues
was associated with mitochondrial regulation of the oxidative activity through relevant
enzymes implicated in pyruvate metabolism [23]. Thereafter, melatonin receptors (MT1Rs)
were recognized to localize in the outer mitochondrial membrane of neurons to regulate cell
respiration. Strikingly, it was shown that the lipophilic melatonin ligand was produced in
the mitochondrion to auto-regulate its MT1 receptors and in turn stimulate the Gαi proteins
localized in the intermembrane space to inhibit stress-mediated cytochrome c release [45].
These remarkable findings challenge our classical perception of GPCRs’ biological function
by showing that an intracellular organelle can both synthesize a ligand and directly respond
to it through an auto-receptor mechanism. To name this amazing new mechanism, the term
“automitocrine” was proposed, in analogy to “autocrine” when a similar phenomenon
occurs among cells [45].

Notably, GPCRs are also present in cell division compartments where they regulate
cytokinesis [24]. For instance, the odorant OR2A4 receptor localizes to the spindle poles
during mitosis and to the cleavage furrow and midbody ring during cytokinesis in HeLa
cells [24]. The crucial role played by these receptors in cell division was also established in
OR2A4 knockdown experiments where the lack of the receptor caused cytokinesis failure.

Furthermore, over thirty GPCRs have been described to localize at the nuclear mem-
brane and convincing evidence shows they play important physiological roles such as
gene regulation [25,59–61]. In isolated nuclei from rat hearts, isoproterenol through the
activation of β3 adrenergic receptors and Ang II through the activation of AT1 and AT2
receptors increase nuclear gene transcription. Importantly, these effects were blocked by
the pertussis toxin (PTX), suggesting that the activation of Gi proteins was essential for β3
adrenergic and AT1 and AT2 receptor regulation of gene expression [62,63].

Unexpectedly, GPCRs have also been found in extracellular vesicles produced by
eukaryotic cells, such as exosomes [51]. These tiny structures of 50–100 nm in diameter
are formed in multivesicular intracellular bodies that are late endosomal compartments
situated in the endocytic route between early endosomes and lysosomes. Internal vesicles
of multivesicular bodies are generated by inward budding of the membrane and are
released in the extracellular milieu following fusion of the multivesicular body with the
plasma membranes. Exosomes can carry various types of proteins, lipids, and nucleic acids
(mRNA and non-coding RNA) and have been recognized as important tools for cell-to-cell
communication [64–66]. Specifically, Kwon et al. [51] found that GPRC5B, an orphan GPCR,
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is present in exosomes released by hepatocyte growth factor (HGF)-treated Madin–Darby
canine kidney (MDCK) cell cysts. Exosomal GPRC5B is taken up by nearby MDCK cells
and together with HGF promotes Erk phosphorylation and tubulogenesis. Furthermore,
the same authors found that GPRC5B is elevated in urinary exosomes from patients with
acute kidney injury, suggesting that the transport of this receptor through exosomes could
recapitulate a repairing mechanism. After this initial finding, other GPCRs have been
found to be secreted from cells via exosomes in various physiological and pathological
contexts [67].

5. GPCR Sorting to the Plasma Membrane and to Intracellular Compartments

Distribution of proteins to different cellular compartments requires protein-sorting
codes that are recognized and segregated by cytoplasmic adaptor complexes that regulate
protein trafficking. Many proteins are sorted by short signal peptides attached to the
N-terminus (or occasionally at the C-terminus or along the internal sequence) of the
protein [68]. Integral membrane proteins including GPCRs are first synthesized in the
perinuclear endoplasmic reticulum and then transported along the secretory pathway
through the Golgi apparatus and the trans-Golgi network to be delivered to the plasma
membrane. Once the nascent protein is inserted into the membrane, the signal peptide is
normally cleaved off from the mature protein [69]. Most GPCRs lack a cleavable signal
peptide and the molecular mechanisms that lead to their targeting to the plasma membrane,
or their sorting to intracellular compartments, are poorly understood. Only a small group
of GPCRs contains cleavable signal peptides and their removal results in the retention of
the receptor in the endoplasmic reticulum [70]. The variety of the cellular destinations of
GPCRs raises the question of how GPCRs are delivered to these targets.

Most of the work on GPCR trafficking has focused primarily on their plasma mem-
brane localization and internalization. Several chaperone proteins bind to nascent GPCRs
in the endoplasmic reticulum and carry them to the Golgi complex and finally to the
plasma membrane [71]. Receptor activity-modifying proteins (RAMPs) are a family of
three single pass membrane proteins that were initially discovered as regulators of the
calcitonin receptor-like receptor (CLR) function and plasma membrane expression [72]. It is
recognized that RAMPs also interact with several other GPCRs to switch ligand selectivity,
and to modulate signal transduction and receptor trafficking [73,74]. Among others, the
chaperone effects, first noted for CLR, have been shown for the calcium sensing recep-
tor [75], the secretin receptor [76], the GPR30 receptor [77], and the type 1 corticotrophin
releasing factor receptor (CRF1) [78].

Other proteins that have been shown to deliver GPCRs to the membrane are the
receptor expression enhancing proteins (REEPs) and the receptor transporting proteins
(RTPs), identified for their ability to enhance odorant and taste receptors’ cell surface expres-
sion [79]. Furthermore, the integral protein calnexin regulates the membrane expression of
dopamine D1 and D3 receptors [80], CD4 enhances the plasma membrane expression of
the chemokine CCR5 receptor [81], the transmembrane protein 147 (tmem147) reduces the
M3 receptors at the membrane levels [82], and Rab43 regulates the expression of adrenergic
α2B and muscarinic M3 receptors [83].

This brief overview indicates the heterogeneity in the molecular chaperones involved
in GPCR trafficking and the lack of a common thread associated with this phenomenon.
Furthermore, GPCR trafficking to the plasma membrane varies depending on the expression
of the molecular chaperone and the context in which the two proteins (GPCR and chaperone)
are expressed. In addition, the same GPCR can use different sorting mechanisms depending
on the cell context in which it is expressed. For example, in primary neurons and in neuronal
SH-SY5Y cells, Rab43 selectively regulates the total surface expression of the endogenous
adrenergic α2 receptors, but not of the muscarinic M3 receptors. In contrast, the surface
transport of both receptors requires Rab43 in non-neuronal NRK49F cells, suggesting that
the sorting function of Rab43 is neuronal cell specific [83].
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The nuclear membrane is another important target of GPCR sorting. In this compart-
ment, GPCRs regulate nuclear events such as DNA synthesis and gene expression [63,84–86],
transcription initiation [47], and histone modification [87]. The nuclear membrane is an
extension of the endoplasmic reticulum and is formed by three connected membrane do-
mains: the outer nuclear membrane that is a continuation of the ribosome-studded rough
endoplasmic reticulum that also contains specific protein complexes; the pore membrane,
where large macromolecular assemblies called nuclear pore complexes control the passage
of molecules to and from the nucleus; and the inner nuclear membrane that faces the
nucleoplasm and hosts a number of specific proteins that directly regulate the genome [88].
Like the plasma membrane, GPCR translocation in the inner nuclear membrane appears
to be controlled by several processes including lateral diffusion through the membrane of
the nuclear pore and those regulated by proteins of the canonical soluble protein transport
machinery [41,88,89].

Some GPCRs localize to the nuclear membrane by using canonical nuclear localization
signal (NLS) peptides, short basic sequences that confer specificity for one or more karyo-
pherin nuclear transport proteins [90]. Karyopherin proteins were initially described as
carriers of soluble proteins, but they are also recognized to play a major role in the transport
of transmembrane proteins. The GPCRs that have been recognized to date to use this mech-
anism to localize to the nuclear membrane are the adenosine A1 and A2B, the angiotensin
AT1, apelin, the bradykinin B2, CXCR2 and CXCR4, the coagulation factor II receptor-like 1
(F2rl1, previously known as Par2), and the oxytocin receptors [37–40,91,92]. Moreover,
some GPCRs contain multiple NLS import sequences in different receptor parts. For ex-
ample, F2rl1 has two NLS domains, in the first and third intracellular loops; mutations in
either loop prevent nuclear translocation, suggesting that both are essential for karyopherin
β1 binding [92]. Remarkably, this receptor has an additional C-terminal domain, that does
not contain an NLS, but has a prominent role in nuclear transport. It probably interacts
with proteins different from karyopherins that still concur with F2rl1 nuclear transloca-
tion. Other GPCRs instead translocate to the nucleus though a phosphorylation-mediated
mechanism as shown for the glutamate mGlu5 receptor [93].

Interestingly, the Ras superfamily proteins of small GTPases, such as Rab and Arf
GTPases, have also emerged as crucial regulators of GPCR localizations [94]. In particular,
they control vesicular trafficking, vesicular budding from donor membranes, interactions
with cellular motors, and vesicle docking. They are networked to one another through a
variety of mechanisms to coordinate the individual events of one stage of transport and to
link together the different stages of an entire transport pathway [95]. Among others, Rab11a
plays a pivotal role in agonist-independent nuclear translocation of the platelet-activating
factor receptor [96]. Interestingly, emerging evidence suggests that several family members
of the Ras and Rho small GTPases have putative NLSs. The most prudent assumption
is that these proteins complex to GPCRs on one side and to canonical nuclear transport
proteins on the other to translocate GPCRs to the nucleus [97].

In general, GPCRs that localize on endosomes, endoplasmic reticulum, and Golgi
and outer nuclear membranes have their N-terminus embedded in the lumen of these
structures with the carboxyl terminal facing the cytoplasm (Figure 1). On the contrary,
activated GPCRs in the inner nuclear membrane signal into the nucleoplasm and directly
influence nuclear functions [88]. In mitochondria, GPCRs have been localized in the
outer [44,45,98,99] and inner membranes [43] and they seem to be oriented with their
signaling part toward the intermembrane space and the matrix, respectively.

GPCR trafficking to internal compartments can be independent from endocytosis, as
it is for the platelet-activating factor receptor (F2RL) that can directly reach the nuclear
localization through the trans-Golgi network [96] or receptor internalization in endosomes.
While the former is normally agonist independent, the latter is an agonist-dependent
process [94].
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6. β-Arrestin-Mediated GPCR Compartmentalization

The binding of agonists to GPCRs is characterized by key conformational changes
necessary for G protein-dependent signaling transduction and for the exposure of phospho-
rylation sites to kinases such as GRKs. GPCR phosphorylation is a crucial step for G protein-
dependent signal desensitization, leading to the uncoupling of G proteins from the receptor
and the recruitment of the β-arrestin proteins. β-Arrestins are crucial for receptor removal
from the plasma membrane and thus for the regulation of GPCR endocytic trafficking.

The “barcode” model of β-arrestin/GPCR interaction suggests that the degree and
patterns of GPCR phosphorylation match different β-arrestin structural changes, and this
matching favors different intracellular signaling [100]. The pattern of phosphorylation
directly affects the interaction with the β-arrestin family as described for the β2 adrenergic
receptor phosphorylated by GRKs [101,102]. Moreover, besides the canonical GRKs, GPCR
phosphorylation could also be mediated by more versatile kinases such as casein kinase 2
(CK2), a kinase that plays per se a crucial role in the cell cycle. In particular, CK2 regulates
the M3 muscarinic receptor activity by direct phosphorylation and in β-cells it affects
the M3 receptor’s ability to favor insulin secretion [103–105]. Protein kinase C (PKC) is
another GPCR-phosphorylating enzyme that regulates β-arrestin recruitment as shown
for the chemokine receptor CXCR4, at Ser-346 and 347 after agonist stimulation [106].
Therefore, GPCR phosphorylation and the ability to recruit β-arrestin to signal are highly
intertwined, especially for their ability to evoke specific intracellular signaling such as Erk
phosphorylation, desensitization, and antiapoptosis effects [101].

In cancer and healthy cells, these GPCR–β-arrestin-dependent multiprotein complexes
interact with signaling proteins involved in gene transcription, protein ubiquitination, and
cytoskeletal remodeling, forming signalosomes. These large supramolecular complexes
promote cancer progression and metastasis production by activation of mitogen-activated
protein kinase/extracellular signal-regulated kinase, Wnt/β-catenin, nuclear factor κB, and
phosphoinositide 3 kinase/Akt [107]. Several in vitro systems have recently been developed
to investigate radio- and chemotherapy-resistant cancer cells. In particular, cancer cell lines
were exposed to drugs or radiation with the aim of selecting treatment-resistant clones
and thus analyze the processes of cancer therapy resistance [108,109]. Notably, based
on the major roles played by GPCR–β-arrestin signalosomes in regulating cell growth
and survival, the mentioned in vitro approaches could lead to the identification of the
GPCR–β-arrestin complex-based mechanisms that promote cancer chemo- or radiotherapy
resistance. Intriguingly, it has been observed that the overexpression of GPR35 receptor
strongly correlates to drug resistance in epithelial lung cancer cells [110].

While in cancer the GPCR–β-arrestin signalosomes play a crucial role in promoting
disease progression, in neurodegeneration they are beneficial by slowing down the develop-
ment of misfolded proteins involved in neurodegenerative disorders. This is the case of the
M1 muscarinic receptor and its ability to efficiently signal through β-arrestin [111,112]. Mu-
tant mice with phosphorylation-deficient M1 receptors have more rapid and pronounced
misfolded prion-mediated neurodegeneration progression than controls. This strongly
suggests that the M1–β-arrestin complex signal has important neuroprotective effects
(Figure 2). Therefore, the next generation of GPCR ligands designed to directly modu-
late GPCR–β-arrestin-dependent intracellular signaling could pave the way towards, for
example, the development of novel neuroprotective and anticancer strategies.
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Figure 2. GPCR/β-arrestin-dependent signaling pathway. GPCRs are illustrated as orange trans-
membrane proteins whose carboxyl groups are shown as gray dots and their N-terminal groups
as differently shaped symbols. GPCR phosphorylation processes can take place through the action
of GPCR kinases (GRKs) or casein kinase (CKs), represented with red and blue dots, respectively.
β-arrestin functions are to reduce GPCR coupling to G proteins, favor the internalization of the
receptor in endosomes and signal through the GPCR-β-arrestin complex to promote JNK, ERK,
phosphoinositide 3 kinase (PIK3), and Akt signaling. Different degrees of GPCR phosphorylation
affect the interaction between receptor and β-arrestin, thus initiating preferential intracellular re-
sponses such as β-arrestin mediating ERK, JNK, or GPCR desensitization (barcode theory). In cancer
cells, these GPCR–β-arrestin-dependent multiprotein complexes interact with signaling proteins
involved in gene transcription: in ovarian cancer, the activation of ET-1R promotes the interaction
between β-arr1/p300 and HIF-1α, enhancing the transcription of genes, such as ET-1 and VEGF,
required for tumor cell invasion and proangiogenic effects. Meanwhile, in neurodegenerative disease,
GPCR–β-arrestin signalosomes exert a crucial neuroprotective effect as shown in the right part of the
figure, where the complexed, internalized muscarinic M1 receptor signaling reduces the accumulation
of misfolded prion protein (PrPsc).

7. Activation of GPCRs in Internal Cell Compartments

One of the critical issues when considering GPCRs localized in internal compartments
is how they are activated by endogenous ligands (Figure 3).

Apart from small solutes of moderate polarity, the number of natural molecules that
can passively diffuse across the plasma membrane is surprisingly limited, and among them
we can recognize the steroid hormones [113] and melatonin [114]. For instance, extracel-
lular melatonin equilibrates with the cytoplasm with a half time of about 3.5 s while the
different steroid hormones equilibrate with half times ranging from 10 to 20 s [115]. On the
other hand, charged small natural ligands such as noradrenaline and 5-hydroxytriptamine
need 5 and 1.5 h, respectively, to equilibrate, suggesting that they reach the internal cell
compartments by other means than passive diffusions [114]. Bioactive lipids such as en-
docannabinoids, prostaglandins, and sphingolipids, just to name a few, in principle could
cross the plasma membrane due to their lipophilicity, but for each of these ligands one or
more specific transporters have been identified. The transporters take up these signaling
molecules and in combination with other proteins and carriers deliver them to specific
intracellular organelles for signaling and/or degradation [116–118]. Anandamide, for in-
stance, crosses the plasma membrane though the endocannabinoid membrane transporter
(EMT) and following internalization it interacts with cytosolic carriers (albumin, HSP70,
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FABP5) to be degraded by hydrolase or lipase enzymes or to reach CB1 receptors on the
mitochondria (Figure 3).
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Figure 3. Extra- and intracellular GPCR activation by endogenous ligands. GPCRs are represented as
orange proteins whose carboxyl groups are shown as gray dots whereas their N-terminal groups are
differently shaped symbols of different colors. Canonically, ligands activate GPCRs at the plasma
levels (“1”) where they promote internalization as shown for oxytocin receptors (OXTR). Internalized
receptors are recycled (“2”) and their ligand degraded in lysosomes (“3”) or translocated in complex
with their ligand to the outer and inner nuclear membrane (“4”). Some GPCRs embedded in the
inner nuclear membrane are activated by hydrophilic ligands that cross the plasma membrane
through transporters (organic cation transporter 3, OCT3) such as noradrenaline (NA) that activates
the nuclear compartmentalized adrenergic receptors (“5”). Additionally, highly lipophilic ligands
such as anandamide (AEA) cross the plasma membrane through transporters (EMT) and reach the
cannabinoid receptors on the outer mitochondrial membrane through intracellular carriers, regulating
cell respiration (“6”). Some ligands such as melatonin reach their intracellular GPCR targets by
crossing the plasma membrane through simple diffusion and by an “automitocrine” mechanism in
which the intracellular organelle itself synthesizes the ligand, autoregulating its own functions (“7”,
“8”, respectively).

In fact, it has been shown that prevention of bioactive lipid degradation by the dual
inhibition of fatty acid amide hydrolase and monoacylglycerol lipase (EDE), the two main
endocannabinoid-degrading enzymes, boost the neuronal mitochondrial cannabinoid CB1
receptor signaling that contributes to the endocannabinoid-dependent depolarization-
induced suppression of inhibition in the hippocampus [119].

Other natural ligands that can activate their intracellular GPCR targets following
uptake are small molecules such as glutamate and catecholamine. Glutamate can acti-
vate nuclear mGlu1 receptors in rat cortical nuclei after uptake by the sodium-dependent
excitatory amino acid transporters and the cystine/glutamate exchanger. Importantly,
the inhibition of these transporters can interfere with the intracellular receptor activa-
tion [120,121].

With respect to catecholamines, it is unlikely that the classic reuptake system plays a
role in carrying these small molecules to intracellular receptor targets, as it has mainly a
role in terminating the synaptic signaling at neuronal terminals. However, non-selective
uptake systems such as the extraneuronal monoamine transporter could transport these
molecules across the plasma membrane [122,123]. For example, following incubation
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of neonatal rat ventricular myocytes with [3H]noradrenaline, Buu et al. [124] observed
a time-dependent intracellular accumulation of this amine with the highest proportion
recovered in the nuclear fraction. Previously, these authors demonstrated the presence
of α1 and β1 adrenergic receptors in isolated cardiomyocyte nuclei by binding assay and
suggested that intracellular noradrenaline could bind these targets [124]. It has also been
shown that OCT3, the major component of the extraneuronal monoamine transport system,
takes noradrenaline inside the cells to activate intracellular adrenergic receptors such as the
nuclear α1 adrenergic receptors in adult cardiac myocytes or the β1 adrenergic receptors at
the inner nuclear membrane in astrocytes [125–127].

In analogy to the autocrine activation of a receptor on the plasma membrane, we could
generally talk of “autointracrine” activation when a cell produces a natural ligand that
acts on a receptor inside the cells. We have already mentioned this effect for melatonin
MT1 receptors located in mitochondria (Figure 3) [45], but it has been shown that other
natural ligands such as prostaglandins and platelet-activating factor of lysophosphatidic
acid show these types of autointracrine regulation system [128]. For instance, biogenesis
of prostaglandins depends on the sequential action of cyclooxygenases and prostaglandin
synthetase enzymes on the arachidonic acid released by phospholipase A2 from the plasma
membrane. All these enzymes can be found on the nuclear envelope to locally direct
the formation of prostaglandins and regulate the activity of nuclear, localized prostanoid
receptors [129,130].

For natural peptide ligands, crossing the plasma membrane and targeting intracellular
GPCRs is difficult in terms of size and charges; however, it has been shown that small
peptides, such as the melanostatin or thyrotropin-releasing hormone (TRH), could in prin-
ciple use the peptide transporters to cross the cellular membrane and reach intracellularly
compartmentalized receptors [131]. These transporters are integral membrane proteins
that uptake di- and tri-peptides: PEPT1 is the low-affinity, high-capacity transporter and
is mainly expressed in the small intestine, PEPT2 is the high-affinity, low-capacity trans-
porter and has a broader distribution in the body. Expression of PEPT2 has been shown
in glia [132] and evidence for the uptake of TRH by glial cells has been provided by
Pacheco et al. [133]. Nevertheless, this mechanism seems to mainly have a role of clearance
of these di- and tri-neuropeptides. However, chances are that in some cases the uptake of
active short chain peptides could bypass degradation and stimulate intracellular GPCRs.

In any case, it is more likely that natural peptide ligands can reach the intracellular
compartment by internalization with their cognate receptors. As a rule, in early endosomes,
after internalization, hormone peptides dissociate by their cognate receptors to be degraded
in lysosomes, while the receptors are recycled to the cell membrane [134,135]. Nevertheless,
the ligand/receptor complex could continue its journey to an intracellular compartment.
This is the case of oxytocin that in osteoblasts, breast cancer cells, and primary fibroblasts
internalizes with its receptor and reaches the nuclear membrane (Figure 3) [40,136].

Constitutive activity is another way GPCRs could activate signaling in intracellular
compartments. Many GPCRs exhibit constitutive activity [137,138] and the different com-
positions of the membrane in the different cellular compartments could affect it. As an
example, cholesterol can positively or negatively affect the activity of many GPCRs [139]
and its amount is clearly higher in the plasma membrane, where it reaches 60% to 80% of
total cellular cholesterol, compared to other cellular membranes [140]. Another mechanism
of ligand-independent stimulation of GPCRs is by association with proteins that switch on
GPCR activity by direct interaction, as has been shown for Homer1a protein that leads to
the agonist-independent activation of mGlu5 receptors [141].

8. Distinctive Signals Generated by GPCRs in Intracellular Compartments

The biggest limitation to explore GPCR intracellular signaling is represented by the
fact that cells need to be lysed and this procedure clearly directly affects the temporal and
spatial resolution of the biochemical events of these phenomena. A major breakthrough in
the field was achieved with the development of fluorescent and bioluminescent resonance
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energy transfer (FRET/BRET) sensors [142]. These RET sensors allow monitoring of GPCR
signaling in real time without altering the cell homeostasis.

The first RET sensor to be developed was for the second messenger adenosine 3′,5′-
cyclic monophosphate (cAMP). The sensor consisted of cAMP-dependent protein kinase in
which the catalytic and regulatory subunits were each labeled with a different fluorescent
dyes able to generate FRET signals when complexed to the holoenzyme. Binding of cAMP
to the holoenzyme induced subunit dissociation and the elimination of the FRET signal. The
change in shape of the fluorescence emission spectrum allowed the quantification of cAMP
concentrations in single living cells [143]. In 2009, by using an Epac cAMP FRET biosensor,
Calebiro et al. [49] demonstrated that the thyroid-stimulating hormone (TSH) receptor
can generate sustained cAMP signal after internalization and Ferrandon et al. [32] showed
the same effect for the internalized parathyroid hormone (PTH) receptors. Interestingly,
the effect of the TSH receptor was cell specific as it occurred in primary thyroid cells
but not in HEK293 cells [144], while the stimulation of the internalized PTH receptor
was agonist specific as it was stimulated by PTH1-34, but not by PTH-related peptide
(PTHrP1-36) [32]. The substantial difference between PTH1-34 and PTHrP1-36 is that the
former displays an exceptional ability to stabilize an active state of the receptor and to also
remain associated with it for a long time when the receptor is internalized in endosomes,
while the latter rapidly dissociates, especially after internalization [145]. Another example
of an intracellular GPCR that is differently stimulated by agonists with distinct binding
strength is the vasopressin V2 receptor. The arginine vasopressin agonist, that binds
tightly to the V2 receptor, induces a prolonged G protein signaling in endosomes, whereas
oxytocin that binds with lower affinity results in predominantly plasma membrane receptor
activation signaling [34]. These characteristics, evidently, can be exploited to construct
drugs targeting specifically intracellular GPCRs.

Biosensors generated to measure inositol-1,4,5-trisphosphate (InsP3) [146] and dia-
cylglycerol [147] have demonstrated the production of these second messengers by the
activation of intracellular GPCRs, as well. Furthermore, FRET-based calcium biosensors,
with a reduced number of calcium binding sites per sensor, have been optimized to allow
visualization of tonic action potential firing in neurons and high-resolution functional
tracking of T lymphocytes [148].

Other biosensor types can directly measure GPCR activation [149]. For example,
Irannejad et al. [26] examined the subcellular distribution of the activated β2 adrenergic
receptor using the nanobody-based translocation sensor Nb80-GFP. This sensor selectively
recognizes the β2 adrenergic receptor active forms. Strikingly, after a prolonged stimulation
with the agonist isoprenaline, Nb80-GFP signal was localized to the intracellular puncta
that contained internalized, endosomal β2 adrenergic receptors. Furthermore, these types
of sensors have shown that β1 adrenergic receptors localized in the Golgi membrane [150].

Persistent activation of GPCRs in endosomes after internalization contrasts with the
common notion that the interactions of GPCRs with β-arrestins and G proteins are mutually
exclusive. This intriguing issue was solved by Thomsen et al. [151] who demonstrated that
a single GPCR can simultaneously bind through its core region with G protein and through
its phosphorylated C-terminal tail with β-arrestin, forming a super-complex or “megaplex”.
These results established a novel paradigm in the GPCR signaling in which the interaction
of G protein and β-arrestin with the activated receptor is no longer limited to events at the
plasma membrane levels but also in intracellular compartments. Recent studies uncovered
an even more complex scenario of GPCR signaling in endosomes, with the β2 adrenergic
receptor promoting endosomal cAMP production mediated by the PTH receptor through
the stimulatory action of Gβγ protein subunits on adenylate cyclase type 2, which in
turn resulted in a prolonged nuclear PKA activation and CREB phosphorylation [152].
These studies raise the intriguing possibility that the cAMP generated in endosomes has
a distinct role compared to cAMP generated at the plasma membrane, for instance, to
activate the PKA within specific intracellular compartments, such as the nucleus [153].
These results reveal that the complexity of GPCR signaling is much greater than currently
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appreciated. The rapidly evolving technology of RET sensors will allow us to gain deeper
insights into the emerging field of intracellular GPCR signaling and their physio- and
patho-physiological roles.

9. Designing Drugs to Target GPCRs Localized in Internal Compartments

Receptors in internal compartments may represent a potential drug target with pos-
sible therapeutic relevance. Lipophilic ligands might have access to intracellularly com-
partmentalized GPCRs by simple diffusion throughout the plasma membrane, whereas
hydrophilic compounds could be transported across the cell membranes by specific proteins
(Figures 3 and 4). In 1997, our group showed how the highly lipophilic dopamine agonist
pergolide can reach and activate intracellular dopamine D2 receptors, suggesting that
ligands could have distinctive pharmacological profiles based on their ability to exclusively
activates GPCRs on the cell surface or intracellularly [154]. Strikingly, twenty years later
Shioda et al. [155] reported a novel signaling pathway through the intracellularly localized
long isoform of the dopamine D2 receptor (D2L). In particular, they showed that when lo-
calized in the Golgi, D2L elicits Gαi3-mediated Erk signaling and dendritic spine formation
through Rabex-5/platelet-derived growth factor receptor-β (PDGFRβ). Furthermore, they
showed that dendritic spine density in striatopallidal medium spiny neurons significantly
increased following treatments of striatal slices with the lipophilic agonist quinpirole; im-
portantly, those changes were lacking in D2L knockout mice. This evidence clearly suggests
a role for dopamine receptors that go beyond the extrapyramidal motor regulation and the
induction of psychotic symptoms such as delusions and hallucinations. This could in fact be
relevant in neuropsychiatric disorders such as schizophrenia that has been conceptualized
as a disorder of connectivity and abnormal synaptic modeling [156,157]. In this respect,
antagonists that reach dopamine receptors inside the cells could re-establish a normal
connectivity among neurons compared to drugs with less propensity to reach intracellular
receptors. As a matter of fact, the most effective atypical antipsychotic, clozapine [158,159],
has a higher lipid membrane penetration coefficient than the typical antipsychotics chlor-
promazine and haloperidol [160], indicating that clozapine’s peculiar pharmacological
profile could depend in part on the effective antagonist concentrations reaching inside
the neurons. Similar findings were also reported for olanzapine, another highly effective
atypical antipsychotic, when compared with chlorpromazine [161], suggesting that one
of the differences between typical and atypical antipsychotics could be correlated to the
efficacy of the latter to antagonize intracellular dopamine receptors.

Another way these drugs could cross the plasma membrane is by carrier-mediated intra-
cellular transport. In humans, more than 300 solute carrier (SLC) transporters have been iden-
tified and these mainly include organic anion-transporting polypeptides (OATPs/SLCOs,
organic anion transporters (OATs/SLC22As), organic cation transporter (OCTs/SLC22As),
organic cation and carnitine transporters (OCTNs/SLC22As), peptide transporters (PEPTs/
SLC15As), and multidrug and toxin extrusions (MATEs/SLC47As) (for a broad review of
the argument, see [162] and articles in the same volume). Most SLC transporters belong
to influx transporters and mediate movement of drugs from the extracellular to the intra-
cellular compartments, either by passive diffusion along the drug concentration gradient,
by cotransport, or counter-transport against its concentration gradient and by co-opting
the concentration gradient of another solute. SLC transporters are known to transport
countless drugs and they could be exploited to target intracellular GPCRs. On the other
end, drug efflux mediated by the ABC transporter family could have a counter-effect by
reducing intracellular drug concentrations [163]. In fact, these proteins are best known
for their contributions to chemoresistance through the efflux of anticancer drugs. In this
context, inhibitors of these efflux transporters could increase the concentration of drugs in
intracellular compartments [164].

Finally, drugs could target intracellular GPCRs by conjugation with compounds that
increase their rapid incorporation into the plasma membrane, such as polyethylene glycol
or the transmembrane lipid cholestanol [165]. For example, antagonists of neurokinin
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type 1 (NK1), spantide, and the calcitonin receptor-like receptor (CLR) CGRP8–37, when
conjugated with polyethylene glycol and cholestanol, inhibit signals that originated from
endosomal NK1 and CLR receptors emphasizing the physiological importance of GPCR
signaling from endosomes (Figure 4) [27,31]. These conjugated compounds, intrathecally
injected, have also been shown to inhibit mechanical nociceptive responses, suggesting
their development as pain relivers. Drugs could also be designed to reduce/inhibit the
recycling of GPCRs to the plasma membrane, thus increasing their intracellular pool. The
atypical antipsychotic clozapine, unlike other antipsychotic drugs such as haloperidol that
increase the number of D2 receptors on the plasma membrane, reduces their translocation
from the intracellular pool to the cell surface [166]. This effect of clozapine does not seem
to be correlated with its fast dissociation kinetics, low affinity, and transient occupancy of
the D2 receptor [167], but it seems to be correlated to a negative pharmacoperone effect. All
these considerations support the possibility to develop drugs targeting GPCRs localized in
intracellular compartments.
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Figure 4. Compartmentalized GPCRs as novel pharmacological targets. The endogenous ligand
anandamide (AEA) after uptake by the endocannabinoid membrane transporter (EMT) interacts with
cytosolic proteins such as albumin, HSP70, FABP5 and is degraded by fatty acid amide hydrolase and
monoacylglycerol lipase enzymes (EDE). These steps can be pharmacologically targeted to decrease
(guineensine, “1”; BMS309403, “2”) or increase (LY2183240, “3”) the intracellular levels of AEA,
modulating its compartmentalized intracellular signaling effects. Intracellular GPCR signaling is also
blocked by conjugation of receptor-specific antagonists. NK1R is depicted as a seven-transmembrane
orange protein, whose gray dots represent carboxyl groups, and the N-terminal group is a blue symbol.
Antagonists of neurokinin type 1 (NK1) and spantide (SPT), when conjugated with polyethylene
glycol (PEG) and cholestanol (CHO), inhibit signals that originate from endosomal NK1 receptors
emphasizing the physiological importance of GPCR signaling from endosomes (“4”).

10. Concluding Remarks and Future Outlook

In the last decade, the plasma membrane-centric view of GPCR signaling was confuted
with accumulating data showing that intracellular GPCRs can signal in the same way as
those in the plasma membrane. Intracellular GPCRs activate unique pathways, different
from those activated on the plasma membrane, and/or they prolong biological responses
starting at the plasma membrane [86]. Furthermore, intracellular GPCRs can intervene in
many physiological and pathological processes. Activation of GPCRs within subcellular
compartments is not a bizarre phenomenon of minor significance but is an essential cellular
mechanism to confine signals and separate metabolic processes that would otherwise inter-
fere with each other. For instance, the transport of the receptor to internal compartments,
such as the nucleus or the mitochondria, the activation of internally localized GPCRs that
requires endogenous molecules to cross the plasma membrane and reach the receptors
inside, and the convergence of GPCR effectors, such as G proteins, in the same intracellular
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compartment, are all well-orchestrated mechanisms that have required a finely coordinated
evolutionary process. We are just at the beginning in understanding this complex GPCR
signaling and many questions still need to be answered, such as: is there any way to
selectively activate or inhibit intracellular GPCRs without interfering with cell surface
receptors? How long would a drug targeting intracellular GPCR remain inside the cell and
stimulate or block the receptor, given the slower clearance? Are there mechanisms of down-
or up-regulation like the GPCRs on the cell surface?

However, the evidence reported in this review is already compelling regarding the pos-
sibility that compartmentalized GPCR signaling will soon be an important pharmacological
target for the development of novel and more effective drugs.
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