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ABSTRACT Despite an ever-growing number of data sets that catalog and character-
ize interactions between microbes in different environments and conditions, many of
these data are neither easily accessible nor intercompatible. These limitations present a
major challenge to microbiome research by hindering the streamlined drawing of infer-
ences across studies. Here, we propose guiding principles to make microbial interaction
data more findable, accessible, interoperable, and reusable (FAIR). We outline specific
use cases for interaction data that span the diverse space of microbiome research, and
discuss the untapped potential for new insights that can be fulfilled through broader
integration of microbial interaction data. These include, among others, the design of
intercompatible synthetic communities for environmental, industrial, or medical applica-
tions, and the inference of novel interactions from disparate studies. Lastly, we envision
potential trajectories for the deployment of FAIR microbial interaction data based on
existing resources, reporting standards, and current momentum within the community.

KEYWORDS microbiome, microbial interactions, microbial ecology, data sharing,
accessibility, reproducibility, FAIR, metadata, co-occurrence, microbial networks

The enormous progress in biotechnological and computational techniques over the
last few decades has revolutionized our understanding of microbial communities. In

particular, studies based on amplicon and metagenomic sequencing have further clari-
fied the fact that microbiomes are not static entities, but dynamic ecosystems whose
constituent members interact in myriad ways with each other and with their environ-
ments (1–6). These sequence-based approaches have catalyzed early efforts to map mi-
crobial interrelationships and represent an invaluable first step in identifying the organ-
isms participating in these interactions. However, these approaches have largely been
limited to inferring microbial associations (e.g., via co-occurrences) (7, 8). While these
associations may partially reflect causal interactions between microbes, the full land-
scape of interdependencies is likely much richer and more nuanced in ways that we are
just starting to grasp (9–13). Indeed, interactions may be defined and measured in many
different ways (14, 15), for example, by evaluating direct contact between cells (16, 17),
physical proximity (18, 19), the cost of producing exchanged metabolites (20–22), and
the type of chemical mediators involved (23, 24). These factors are crucial in determining
the emergence and consequences of an interaction beyond its ecological classification
(mutualism, competition, etc.), and can provide a more complete view of microbial eco-
system properties, which is helpful for building mathematical models of community
dynamics.

Advances in metabolomics, transcriptomics, and high-throughput culturing plat-
forms are beginning to produce a growing body of data on the mechanisms and envi-
ronmental dependencies exhibited by microbial interactions (25–28). While this wealth

Editor Benjamin E. Wolfe, Tufts University

Copyright © 2022 Pacheco et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Daniel Segrè,
dsegre@bu.edu.

The authors declare no conflict of interest.

Published 25 August 2022

September/October 2022 Volume 7 Issue 5 10.1128/msystems.00659-22 1

PERSPECTIVE

https://orcid.org/0000-0002-1128-3232
https://orcid.org/0000-0001-9832-2507
https://orcid.org/0000-0003-4859-8681
https://orcid.org/0000-0003-4859-1914
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/msystems.00659-22
https://crossmark.crossref.org/dialog/?doi=10.1128/msystems.00659-22&domain=pdf&date_stamp=2022-8-25


of information has the potential to enhance our knowledge of specific microbial inter-
relationships, it poses the new challenge of finding an appropriate framework to
describe interactions in a way that efficiently encompasses their diversity and complex-
ity (Fig. 1A) (29–31).

Addressing this challenge would allow us to dynamically and continuously combine
diverse sources of data (Fig. 1B and C) to yield insights that could not be obtainable
from individual data sets. For example, one could use an open interaction database to
easily fetch experimentally-grounded parameters (e.g., metabolite uptake/secretion
rates) for simulating dynamics of microbial food webs and to predict the general con-
ditions that determine the stability of a community (Fig. 1D) (32). As another example,
network scientists and ecologists could use the same database to assess how wide-
spread particular interactions are (33), or to identify network structures that are com-
mon across biomes or taxonomic groups, refining our understanding of how microbial
ecosystems assemble (Fig. 1E) (34, 35). These inferences could then be used to clarify
the connection between causal interactions and observed co-occurrence patterns—
distinct data types whose combination can advance the understanding of how differ-
ent microbial relationships affect community function, dynamics, and resilience.
Finally, simultaneous mining of multiple data sets would enable searches for examples

FIG 1 Applying a FAIR system to the study of microbial interactions and correlations. (A–B) Studies that
investigate microbial interactions gain relevant insights through the generation of multiple types of data
and metadata (DTs). As representative examples of microbe–microbe interactions, we may consider
fungi–bacteria or phage–bacteria cultivation experiments (DT1), correlations based on amplicon sequence
or operational taxonomic unit counts (DT2), and flux balance models of genome-scale metabolic
networks of two or more species (DT3). While specific databases (DT4 and Table 1) that compile these
data sources exist, they lack a common reporting standard, which hinders downstream application and
integration. (C) We envision a systematic approach for reporting microbial interactions following the
principles of Findability, Accessibility, Interoperability, and Reusability (FAIR). (D) A FAIR representation of
microbial interaction data, based on common identifiers for microorganisms and specific encodings of
interactions and uncertainty, can enable new insights that bridge subdisciplines and generate predictions
of new interaction networks. (E) Scientists spanning diverse areas of microbiome science can benefit from
FAIR reporting of interactions. For example, a network scientist could identify common structures relying
on a broader corpus of interactions, a modeler could more easily identify specific interactions to
realistically simulate ecological dynamics, and an experimentalist could assess whether a novel interaction
has been reported in other hosts or contexts. All these uses of the framework would lead not only to
new scientific insights and more streamlined contribution to data collections, but also to growing
interconnectedness within the diverse field of microbiome science.
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of specific interactions (Fig. 1E), to (i) identify interactions that occur robustly irrespec-
tive of biome and experimental details, (ii) facilitate the bottom-up design of synthetic
consortia by complementing existing approaches (36–38), or (iii) help create experi-
mentally-verified data sets for benchmarking microbial inference methods (39).

More generally, the prevalence and effects of specific interaction attributes (e.g., de-
pendence on specific resources (40), strain-level physiological differences (41), and def-
initions of ecological outcomes (8, 42)) across organisms and ecosystems could be
quantified and compared, contributing to an enhanced understanding of the general
ecological principles that govern living systems.

Despite this promising prospect, several factors complicate the integration of mi-
crobial interaction data. Among these, of particular importance is the fact that the ma-
jority of interaction data are not accessible outside the original study in which they
were reported and often appear in the form of arbitrarily formatted tables. For this rea-
son, efforts have been made to create interaction databases with standardized format-
ting (Table 1) (43–47). While these represent useful resources for finding specific inter-
acting participants from diverse microbiomes, such databases are often limited to one

TABLE 1 Databases containing microbial interactions and their relevant FAIR featuresa

Database Website Reference Relevant features
Microbial Interaction
Network Database (MIND)

microbialnet.org 43 Contains microbe–microbe interactions
categorized by environmental
contexts and metadata.
Microorganisms involved are mapped
to their NCBI Taxonomy ID to
facilitate comparisons.

Protist Interaction DAtabase
(PIDA)

github.com/ramalok/PIDA 44 Contains literature-extracted microbe–
microbe interactions categorized by
interaction source and type
(ecological). Microorganisms are
mapped using Genbank accession
nos. when appropriate.

Microbiota-Active Substance
Interactions database
(MASI)

http://www.aiddlab.com/MASI/ 45 Contains microbe–drug and microbe–
disease interactions with particular
emphasis on linking to external
resources. Microorganisms are
mapped using NCBI Taxonomy ID,
and molecules are mapped using
PubChem ID.

The Bacterial Diversity
Metadatabase (BacDive)

bacdive.com 57 Contains integrated bacterial
information on culture conditions
and physiology that are accessible
interactively and programmatically.
Deposited strains are mapped to their
NCBI Taxonomy ID and culture
collections persistent identifiers.

Web of Microbes (WoM) webofmicrobes.org 46 Contains microbe–metabolite–microbe
interactions for multiple media
conditions. Exptl information linking
metabolite (environment) and
microbe compatibility is displayed in
a browsable and searchable manner.

Global Biotic Interactions
database (GloBI)

globalbioticinteractions.org 47 Contains descriptions of relationships
between biological entities in general
(i.e., species–species, species–habitat,
etc.). Entities are indexed based on
independent repositories that comply
with light formatting and follow a
strict ecology-based interaction
ontology.

aIn addition to databases describing intermicrobial interactions, this table also contains databases that contain frameworks to compile a variety of biological relationships
(e.g., GloBI), as well as microbial databases aggregating scattered knowledge and promoting data sharing (e.g., MASI and BacDive).
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or a few types of data. Nonetheless, these efforts follow in the rich history of endeavors
within biology aimed at standardizing and sharing data and computational models of
biological systems (47–51). For example, one of the most prominent early cases for the
need for standardization was the explosion of high-throughput data generated from
DNA microarrays at the end of the 1990s. It is particularly telling that a commentary ar-
ticle accompanying the paper that proposed MIAME (Minimum Information About a
Microarray Experiment) (50) was titled “Microarray Standards at Last” (52), capturing
the acknowledged need for appropriate reporting standards at the time. As suggested
by the title, MIAME was not created overnight, but rather entailed a careful process
that integrated viewpoints from multiple stakeholders to create a useful and accepted
reporting framework that enhanced the reproducibility of results and the drawing of
broader insights from integrated sources of data. To begin a similar journey, we pro-
pose that a greater focus on reporting interaction attributes and mechanisms using
standardized formats will open up important opportunities for the microbiome field,
and outline specific steps that can be taken to reach this potential.

A FAIR REPRESENTATION OF MICROBIAL INTERACTIONS

We specifically envision the adoption of data sharing and stewardship practices
that would enable microbial interaction data to fulfill the principles of Findability,
Accessibility, Interoperability, and Reusability (FAIR). These principles, first formally pre-
sented in 2016 to address growing challenges in scientific data management, serve to
guide efforts that aim to improve access to reliable and reproducible scholarly data
(53) and have already been adopted as an important component of microbiome data
management (1, 6, 54–58). We therefore focus our present discussion on two concrete
efforts that can be initiated in order to make data on intermicrobial interactions more
FAIR, namely (i) the creation and/or adoption of open web infrastructures for catalog-
ing and making data from disparate sources available to the community (hence
Findable and Accessible), and (ii) the adoption of a minimal set of metadata require-
ments that are human- and machine-readable (i.e., Interoperable and Reusable).

1: An open web catalog for findable and accessible microbial interaction data.
It is difficult to imagine how to make progress on Findability and Accessibility without a
centralized resource that is capable of capturing the wide breadth of interactions currently
available only in individual publications or split into type-specific repositories (Fig. 1B and
Table 1), and designed to be able to grow to accommodate newly generated data. Such a
resource could be generated via multiple strategies, including the following:

A. Integrating existing repositories of microbial interaction data into an
established infrastructure. Several existing infrastructures could in principle
serve this purpose. To illustrate the potential advantages and challenges of this
strategy, we may consider as an example Global Biotic Interactions (GloBI) (47),
a metadatabase for sharing and analyzing species interaction data. It provides a
searchable platform to identify specific interactions based on the organisms
involved and the relationships they experience (e.g., X preys on, hosts, is
symbiont of Y), and can therefore serve as a structure for integrating a wider
breadth of microbial interaction data and their attributes. Nonetheless, as GloBI
considers the species level as the most phylogenetically precise, it may not
easily capture strain- or mutant-specific interactions common in microbial
ecology research (59). Integration into GloBI would also require amending
existing metadata items not applicable to microbes, as well as the ontologies of
interactions (apart from “interacts with,” “parasitizes,” “ecologically co-occurs
with”) to match features of microbial interactions.

B. Using existing database-building tools and available metadata. For example,
one could consider using the recently-published tool mako (35) to create a
database by importing network files or deposited sequences to be analyzed. If
these input files contain metadata on nodes, edges, or samples from which
sequences were obtained, the metadata in question can be readily propagated
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into the database. However, mako is currently limited to undirected interactions
and to creating a local interaction database, which complicates continuous online
access and editing.

C. Establishing a new database specific to microbial interactions. Such a
database could be designed from the ground up to more flexibly store multiple
types of microbial interactions (e.g., co-occurrences, causal interactions, and
higher-order interactions), as well as their attributes. This approach could apply
several modalities for importing and organizing data in a standardized or
automated way, facilitating the incorporation of data from individual studies as
they are published. Recent manually-compiled catalogs of interactions and
their attributes (14, 15) as well as of tools to convert them into searchable
online resources (cpauvert.github.io/mi-atlas) may serve as small-scale exam-
ples for planning such a larger-scale resource.

2: A minimal set of metadata requirements for interoperability and reusability.
While a centralized database would lay a foundation for FAIR microbial interaction
data, its impact would remain limited if its contents cannot be easily updated by scien-
tists and accessed by humans and machines. We therefore also advocate for the inclu-
sion of metadata with reports of interactions as a way to promote interoperability and
reusability. While convergence to specific guidelines will require significant community
discussions and buy-in from stakeholders, we propose that the following four catego-
ries of metadata could serve as a starting point: microbial entities, interaction inference
methods, interaction context, and attributes. These are described in detail in Table 2
and are outlined as follows:

A. Microbial entities. The species (and strain, if relevant) names of each of the
microbes participating in an interaction should be provided, e.g., in a comma-
separated list, along with their taxonomic accession numbers and eventually
their sequence identifier (Table 2A). These lists would also accommodate
interactions that cannot be easily described via a pairwise representation.
Interaction attributes and effects specific to each participant could be matched
with each identifier.

B. Interaction inference methods. Despite being challenging to standardize,
documentation of the methods that were used to identify an interaction
represent highly relevant metadata. As a first step, the evidence for the
interaction in question can be broadly categorized using the Evidence and
Conclusion Ontology (60), which would indicate whether experimental or
computational methods (or both) were used. We also propose a more specific
metadata item for the type of computational or experimental method used
(e.g., simulation, microscopy, cultivation, and sampling) (Table 2B). Lastly, the
relevant publication, code, detailed protocols, and other literature-based
evidence should be accessible via persistent identifiers (e.g., DOIs).

C. Interaction context. The environmental context of the interaction—such as the
biome (e.g., host-associated, synthetic)—could be documented using the Environment
Ontology (61) or propagated from the samples used to infer the interaction. Cultivation
conditions could also be integrated following the standards established by databases
of bacterial isolates (57) and extended to co-cultures. Relevant metadata are proposed
in Table 2C with an emphasis on linking values to existing resources such as the Gene
Ontology for cellular components, the Chemical Entities of Biological Interest Ontology
for compounds, and the Genome Standards Consortium (51) for the oxygen status of
the environment.

D. Interaction attributes.Defining an interaction’s type (e.g., cooperation, antagonism,
association, pairwise or higher-order, etc.) is also not trivial, but could be guided by
incorporating existing ontologies such as the active list maintained by the OBO
Foundry (62). Several other frameworks exist to describe interaction types such as
GloBI, Population and Community Ontology (63), and Interaction Network Ontology
(64). It nonetheless remains to be seen whether these ontologies are appropriate for
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TABLE 2 List of proposed metadata for minimum information about intermicrobial interaction dataa

Metadata Level Description
A. Which microbial entities are involved?

participants M Comma-separated list of the microbial entities’ names, with descriptions of any
genetic manipulations performed.

tax_id M Comma-separated list of the matching identifiers from the NCBI Taxonomy at the
relevant taxonomic level. (e.g., NCBI:txid1043002, NCBI:txid411903). Novel taxa
lacking identifiers are denoted by N/Ab.

sequence_id R Comma-separated list of the accessions to the matching sequence data (e.g.,
genome, marker gene sequence). Taxa from presequencing era articles could
be denoted by N/A.

env_origin X Term from the Environmental Ontology indicating from which biome the
microbial entities originate (e.g., soil [ENVO:00001998]).

source_collection X Comma-separated list of the source of the participants engaging in this
interaction: isolation, commercial collection, academic collection

B. How was the interaction uncovered?
evidence_type M Type of evidence used to determine the interaction using the Evidence and

Conclusion Ontology. At least one of the following broader terms are required:
exptl [ECO:0000006], computational [ECO:0007672], or both [ECO:0007661].

method_type R One or several of the following types of methods used to determine the
interaction:

� Simulation-based (e.g., generalized Lotka-Volterra model, genome-scale
metabolic model)

�Microscopy-based (e.g., co-localization with fluorescent markers, assisted motility)
� Cultivation-based (e.g., continuous co-culture in bioreactor, co-plating on solid

media)
� Sample-based (e.g., co-occurrences drawn from analyses of abundances

obtained from in situ or in vivo sampling).
reference M Persistent identifier (e.g., DOI or URL) to a resource, script, or article, documenting

the method.
software_parameters X Name, version, and parameters of the software used, using the following syntax:

{software}:{version}:{parameters}.

C. What is the environmental context of the experiment?
env_broad_scale R Biome term from the Environmental Ontology. Engineered ecosystems such as

bioreactors, agar plates, or computational models use N/A.
Site X Cellular component (from the Gene Ontology) involved in the interaction:

cytoplasm [GO:0005737], membrane [GO:0016020], or the extracellular region
[GO:0005576].

compounds X One or several chemical entities involved in the interaction using either broad or
precise terms from the CheBI ontology with their identifiers. Example: short-
chain fatty acid [CHEBI:26666], bacterial metabolite [CHEBI:76969], or penicillin
[CHEBI:17334].

medium_name X Name of the (in vitro or in silico) cultivation medium used, with URL to the
composition. Example: BHI [https://bacmedia.dsmz.de/medium/215].

rel_to_oxygen X Term indicating the oxygen status of the environment using terms from the MIxS:
aerobic or anaerobic.

ph X Measurement of the pH in the environment.
temp X Measurement of the temp of the environment (in °C).
carbon_source X Term from the ChEBI indicating the specific carbon source(s) used.
nitrogen_source X Term from the ChEBI indicating the specific nitrogen source(s) used.
inoculation_densities X Comma-separated list of densities for cultivation experiments measured with the

associated units in brackets: with optical density [OD 600], with colony forming
units [CFU/mL].

D. What are the attributes of the interaction?
participant_outcomes R Comma-separated list of the outcome for each participant: 0 (not affected), 1

(positively affected), –1 (negatively affected), N/A.
ecological_outcome X For pairwise interactions, one or several terms describing the overall outcome

(https://doi.org/10.2307/1307540): co-occurrence, cooperation, commensalism,
exploitation, amensalism, competition, neutralism.

strength X Numerical value quantifying the intensity of the interaction. Example: the
inhibition score after co-plating, the correlation value between relative
abundances, or estimate of generalized Lotka-Volterra model parameters.

dependencies X One or several of the following terms: contact, time, space.
keywords X Comma-separated list of terms providing more detail on the broader context of

the interaction (e.g., disease-related, biofuel production, uncultivable
organisms, metabolic engineering).

notes X Open text field for additional relevant comments.
aThe level of requirement of the metadata is either mandatory (M), recommended (R), or optional (X). Four general questions regarding interactions divide the metadata
into four categories (A–D).

bNA, not applicable.
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describing all known attributes of microbial interactions, or if a larger set defined
by the community is needed. In the meantime, we propose the inclusion of the
ecological effect experienced by each participant or by each set of participants
(positive/negative/neutral) (42), as well as of information on whether the association
described is a co-occurrence by providing the associated metric strength. Lastly, we
propose the inclusion of any known interaction dependencies (e.g., on spatial
structure or physical contact) and any additional user-defined keywords that provide
further relevant information not captured in the previous items (Table 2D).

As an example of how these metadata can be compiled for different data types
(Fig. 1B), we have used them to describe three interactions gathered from the literature
(Table 3).

OUTLOOK

The practices, standards, and use cases we have outlined here are by no means ex-
haustive, but are rather meant to catalyze further discussion on ways to improve the
access to and usability of data on microbial interactions and their attributes. We
believe the time is opportune for such discussions to take place, not only due to the
rapidly growing body of data on microbial interactions and their mechanisms, but also
because of a growing momentum within the microbiome community to improve the
reliability and reproducibility of research outputs. These are exemplified by govern-
ment-funded initiatives such as the National Microbiome Data Collaborative (NMDC,
USA (56, 65) and the National Research Data Infrastructure (NFDI4Microbiota, Germany;
(https://nfdi4microbiota.de), which advocate for the adoption of reporting standards for
microbiome data. As with existing accepted data reporting standards, any proposed
global framework for describing microbial interactions must be shaped by its various
stakeholders, including computational and empirical researchers, industry representa-
tives, funding agencies, educational users, and publishers. Such involvement would ena-
ble any formalism to be flexible and broadly embraced, as opposed to a rigid standard
with little endorsement or room for growth.

Bearing these considerations in mind, we suggest the following roadmap toward
FAIR microbial interaction data. First, we call for increased discussions within the scien-
tific community to select and prioritize the interaction features that are most useful to
report. These can be carried out via dedicated workshops that, in addition to biologists,
could include philosophers of biology interested in microorganisms, as well as physi-
cists and mathematicians who can help define the qualitative and quantitative nature
of intermicrobial interactions and their important attributes. This first community-
driven effort could lead to the creation of a reporting standard, extending our sugges-
tions in Table 2 to a more mature “Minimal Information for Intermicrobial Interactions”
definition similar to those for publishing microarray data (50) and genome sequences
(51, 66, 67), or for assessing the quality of genome-scale metabolic models (68).
Second, these metadata suggestions could be further implemented as usable formats
such as SBML (49, 69) or BIOM (70), which enable the standardized export and sharing
of genome-scale models and count data, respectively. As such, data scientists and
bioinformaticians could take part in hackathons to develop such a toolbox with stand-
ardized file formats, converter scripts, and validators to streamline the adoption of
microbial interaction metadata. Third, we envision teams of investigators and students
gathering for “annota-thons” to collaboratively extract knowledge from the microbial
interaction literature and use the aforementioned toolboxes to compile the relevant
metadata, ensuring that an open web catalog of microbial interactions truly relies on
known published material. Last, the rise of an open community, willing to quickly share
protocols and methods of scientific projects enabled by FAIR microbial interaction data
resources, would provide further incentives for adoption of standard formats, creating
a positive feedback loop that could accelerate benefits for the whole community and
pave the way for major integrative and collaborative advances in microbiome research.
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