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Abstract

Interlinked and fundamental aging processes appear to be a root-cause contributor to many 

disorders and diseases. One such process is cellular senescence, which entails a state of cell 

cycle arrest in response to damaging stimuli. Senescent cells can arise throughout the lifespan 

and, if persistent, can have deleterious effects on tissue function due to the many proteins they 

secrete. In preclinical models, interventions targeting those senescent cells that are persistent and 

cause tissue damage have been shown to delay, prevent or alleviate multiple disorders. In line 

with this, the discovery of small-molecule senolytic drugs that selectively clear senescent cells has 

led to promising strategies for preventing or treating multiple diseases and age-related conditions 

in humans. In this Review, we outline the rationale for senescent cells as a therapeutic target 

for disorders across the lifespan and discuss the most promising strategies—including recent and 

ongoing clinical trials—for translating small-molecule senolytics and other senescence-targeting 

interventions into clinical use.

The aging population is steadily increasing. The World Health Organization (WHO) 

estimates that 1 in 6 people, or 2.1 billion, are expected to be over age 60 by 2030 (ref. 
1). Chronological age is the major predictor for most of the diseases that account for the bulk 

of morbidity, mortality and health costs across low-, middle- and high-income countries2–7.

Aging progresses throughout the lifespan can be accentuated at etiologic sites of multiple 

acute and chronic diseases, including in children6,8–12. Indeed, fundamental aging processes 

can operate even before conception, for example, in the context of aged oocytes linked to 

Down syndrome12,13. A fundamental aging mechanism that has gained increasing attention 

is cellular senescence. Senescent cells accumulate during aging and at pathogenic sites 

of multiple disorders and diseases. After the first reports of senolytic drugs (agents that 

selectively eliminate senescent cells) in 2015 (ref. 14), promising results from preclinical 

studies have facilitated progression to early-phase clinical trials evaluating the safety and 

efficacy of senolytics, some of which have now been published (Table 1).
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Fundamental aging mechanisms can be grouped into so-called hallmarks or ‘pillars’ 

of aging; these include genomic instability, progenitor cell exhaustion/dysfunction, 

telomeric and epigenetic changes, dysregulated protein homeostasis, altered nutrient 

sensing, mitochondrial dysfunction, altered intercellular communication, chronic low-

grade inflammation, fibrosis, microbiome dysregulation and cellular senescence3,15. The 

Geroscience Hypothesis holds that these pillars of aging, including cellular senescence, 

tend to progress in concert and may be root-cause contributors to the pathophysiology 

of multiple diseases, age-related dysfunction (including the geriatric syndromes such as 

frailty, immobility, sarcopenia/muscle wasting, mild cognitive impairment and incontinence) 

and loss of resilience (for example, decreased ability to recover from stresses such 

as injury, surgery, chemotherapy or infections or to mount an antibody response 

to immunizations)3,15–18. The Unitary Theory of Fundamental Aging Mechanisms 

builds on the Geroscience Hypothesis by positing that interventions targeting any one 

fundamental mechanism may target the others6. For example, interventions that target 

cellular senescence tend to attenuate other fundamental aging mechanisms leading to 

reduced inflammation, attenuated exhaustion of progenitors, decreased fibrosis, alleviated 

mitochondrial dysfunction and a partially restored microbiome in experimental animal 

models of aging and chronic diseases6,7,18–36.

By understanding and targeting cellular senescence and the other pillars of aging, rather 

than targeting individual diseases that are downstream of fundamental aging processes, 

it is conceivable that multimorbidity could be reduced and healthspan increased, with 

realization of substantial societal and economic benefits4,6. In this Review, we consider the 

potential value of senescent cells as a therapeutic target, the current state of senolytic drug 

development and the path to bring preventive and therapeutic strategies targeting senescent 

cells to the clinic.

Cellular senescence: mechanisms and pathways

Cellular senescence was first reported in 1961 by Hayflick and Moorhead after serially 

subculturing human fibroblasts37. Senescent cells, which are in a state of essentially 

irreversible cell cycle arrest but remain viable, can accumulate with aging, especially 

in more frail individuals, and at pathogenic sites of multiple disorders and diseases 

in experimental animals and humans across the lifespan. The senescent cell fate can 

be triggered by a number of stressors including DNA damage, cancerous mutations or 

oncogene activation, mitochondrial dysfunction, reactive metabolites, hyperoxia or hypoxia, 

proteotoxic stress, extracellular signals, infections, mechanical or shear stresses that deform 

cells, resistance exercise and factors secreted by other senescent cells18,38–47. Many such 

stressors activate DNA damage response signaling and activation of the p53/p21CIP1/WAF1, 

p16INK4a/retinoblastoma protein or other pathways, resulting in cell cycle arrest and 

the development of a senescence-associated secretory phenotype (SASP)24,40,48−53 (Fig. 

1). Through upregulation of pro-survival and antiapoptotic pathways such as SRC 

kinases, the PI3K-AKT signaling pathway, heat shock protein (HSP) pathways, serpines, 

mitochondrial pathways or apoptosis regulator BCL-2-related proteins, those senescent 

cells with a proapoptotic SASP can survive, despite the cytotoxic microenvironment they 

create6,7,14,34,35,54–58.
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The senescence-associated secretory phenotype.

Most cells undergoing senescence develop a SASP (Fig. 1). In 30–70% of senescent cells, 

this SASP entails pro-inflammatory, proapoptotic and pro-fibrotic factors7,31,40,59–64, some 

of which can cause previously non-senescent cells to become senescent both locally and 

at a distance in an endocrine manner24,39,47. This proapoptotic SASP can have detrimental 

effects both locally and systemically due to senescent cell accumulation and persistence24. 

In the other 30–70% of senescent cells, the SASP appears to comprise growth and other 

regenerative factors, potentially causing less apoptosis, tissue destruction and fibrosis than 

proapoptotic, pro-inflammatory senescent cells and can even contribute to tissue repair (for 

example, through the growth factors VEGF-A and PDGF-AA)61,65.

If senescent cells are present transiently, beneficial functions of both the proapoptotic and 

pro-growth types of SASP can orchestrate tissue remodeling (during fetal development, 

growth of younger individuals, and after cell or tissue damage), induce immune responses 

during infections or tissue injury, promote parturition by SASP factors released by placental 

senescent cells, and induce clearance of those senescent cells with a pro-inflammatory SASP 

because they attract, anchor and activate immune cells10,11,14,61,62,65.

Adverse impacts of persistent, proapoptotic SASP-expressing senescent cells.

Normally, senescent cells appear to be cleared within days to weeks after they develop 

by natural killer cells and other immune cell types62,66–69. However, if a threshold 

burden of senescent cells is exceeded, senescent cells can accumulate, perhaps because 

proapoptotic SASP-expressing senescent cells induce paracrine and endocrine spread 

of senescence at a rate exceeding immune clearance of preexisting and newly formed 

senescent cells24,62 (Fig. 2). Once senescent cell burden surpasses this threshold, continuing 

increases in proapoptotic/pro-inflammatory senescent cell burden may contribute to tissue 

destruction and hence development or progression of multiple diseases and age-related 

disorders (Table 2) as well as immune dysregulation, further amplifying senescent cell 

accumulation in a feed-forward loop36,38,62. Although not every senescent cell develops 

a proapoptotic, inflammatory SASP, accumulation and persistence of such senescent 

cells can induce a chronic low-grade, pro-fibrotic inflammatory state (usually associated 

with aging and chronic diseases), known as ‘inflammaging’70. This sterile inflammatory 

state can provoke dysfunction of neighboring and distant non-senescent cells, such 

as progenitor cells, contributing to impaired tissue function and reduced regenerative 

capacity18,21,24,26,34. Consistent with this, persistence of senescent cells has been implicated 

in causing disorders related to tissue inflammation, fibrosis and extracellular matrix 

degradation, adipose tissue insulin resistance, reduced muscle hypertrophy after resistance 

exercise and impaired fracture repair in older individuals, as well as promoting malignant 

transformation6,18,22,23,48,71–77.

The SASP of senescent cells is not static; it can change over time78–80 and varies depending 

on the type of cells that became senescent and how senescence was induced16,44,59,60,81. 

The intracellular and extracellular environment can modulate which SASP factors are 

produced and their abundance. Persistent senescent cells appear to be highly responsive 

to extracellular cues, such as damage-associated molecular patterns (DAMPs) and 
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pathogen-associated molecular patterns (PAMPs), which can exacerbate the proapoptotic, 

pro-inflammatory qualities of the SASP16. For example, in the case of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, some of these extracellular 

cues are mediated through Toll-like receptor 3 and angiotensin converting enzyme-2, 

contributing to coronavirus disease 2019 (COVID-19) morbidity44,82. Intracellular cues 

can exacerbate damaging, pro-inflammatory properties of the SASP several weeks or 

months after senescence has been induced. These include retrotransposable elements (for 

example, LINE-1), cytosolic mitochondrial DNA, or circular DNA—all of which can 

activate the cytosolic DNA-sensing (cGAS)-STING pathway, triggering the expression of 

pro-inflammatory genes79–81.

Discovery and development of senolytic drugs

The first senolytic drugs were identified using a hypothesis-driven, mechanism-based 

drug discovery approach (Fig. 3). Because those 30–70% of senescent cells that have 

a proapoptotic, tissue-destructive SASP are themselves resistant to apoptosis, it was 

hypothesized that such senescent cells depend on antiapoptotic, pro-survival pathways to 

avoid self-destruction14,83. Analysis of proteomic and transcriptomic datasets revealed there 

is indeed upregulation of one or more senescent cell antiapoptotic pathways (SCAPs) in 

senescent cells. SCAP pathways are similar to those that protect certain types of cancer 

cells, such as B cell lymphoma or chronic lymphocytic leukemia cells, which also release 

tissue-destructive proapoptotic factors but evade undergoing apoptosis themselves84,85. 

Transiently disabling SCAP pathways results in apoptosis of the senescent cells with 

a tissue-destructive SASP, while non-senescent cells or those senescent cells with a pro-

growth, non-apoptotic SASP remain viable (U. Tripathi, S.C., L.G.P.L. Prata, T.T. and 

J.L.K., unpublished data).

Bioinformatic analyses identified 46 compounds that target SCAP pathways as being 

potentially senolytic14. The first senolytic agents intentionally selected for further 

investigation were ones that: (1) target several SCAPs, rather than adhering to the traditional 

drug development approach of one drug/one molecular target/one disease, (2) can be 

administered orally, and (3) are natural products with known safety profiles or are already 

approved by the US Food and Drug Administration (FDA) for other indications, to facilitate 

translation from bench to bedside. These included the SRC/tyrosine kinase inhibitor 

dasatinib (D), which has been approved and extensively used since 2006 and has a quite 

good safety profile, and the natural flavonoids quercetin (Q) and fisetin (F), which are 

present in fruits and other foods14,86.

In some types of senescent cells, SCAPs can be redundant, so that targeting a single SCAP 

may not eliminate such cells—but combination treatment targeting multiple SCAPS may 

be effective. As an example, senescent mesenchymal embryonic fibroblasts from Ercc1−/− 

mice and bone marrow mesenchymal progenitors from old mice are not eliminated by 

either D or Q alone, but are eliminated by the combination of these agents14. Consistent 

with the heterogeneity of SCAPs across different senescent cell types, senescent human fat 

cell progenitors (preadipocytes or mesenchymal stromal cells) are sensitive to D but not Q 

or F, while senescent human umbilical vein endothelial cells are sensitive to Q or F but 

Chaib et al. Page 4

Nat Med. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not D14. Since the first SCAPs were discovered, others have been identified and, based 

on these, more senolytic strategies have been developed. For example, forkhead box O4 

(FOXO4) retains p53 in the nucleus, so peptides interfering with this interaction can lead 

to p53-mediated apoptosis in some types of senescent cells87. HSP90 prevents proteasomal 

degradation of AKT, hence inhibiting HSP90 disables pro-survival signaling through this 

SCAP node and results in elimination of some senescent cell types54. Consistent with 

this, certain HSP90 inhibiting drugs, such as geldanamycin, are senolytic against particular 

senescent cell types.

In some cases, senolytic compounds that target a single SCAP node, such as the BCL-2 

pathway inhibitors, N (ABT-263), A1331852 or A1155463, tend to induce apoptosis in 

a restricted range of senescent cell types57,86. However, it is worth noting that N can 

cause thrombocytopenia and neutropenia, even after brief exposures57,88–91; this raises the 

question of whether agents that target a single molecular pathway have a greater risk of 

toxicity due to off-target effects associated with the high dosing required to fully suppress a 

single SCAP node. Perhaps by using agents or combinations that ‘lightly’ impact a number 

of nodes, it may be feasible to target a broader range of senescent cell types while using 

lower doses of each agent, thereby potentially improving the side-effect profiles of these 

agents. The latter approach has been used to improve tolerability of antibiotic treatments, for 

example.

Second-generation senolytics are now being identified using high-throughput library 

screens and other approaches54. One approach stems from the increase in lysosomal 

mass and senescence-associated β-galactosidase activity in many senescent cells, whereby 

galacto-oligosaccharide-coated nanoparticles and β-galactosidase-activated prodrugs appear 

to eliminate at least some of these cells92,93. Another approach is based on the high 

lysosomal activity of some senescent cells that renders them sensitive to lysosomal ATPase 

inhibitors94. Due to ruptured lysosomal membranes, at least some senescent cells depend 

on glutamine metabolism as a pH-buffering system, inhibition of which renders them 

vulnerable to apoptosis95.

Other strategies for decreasing age-related senescent cell burden and pathologic conditions 

involve modulating immune clearance of senescent cells62. Certain cell surface proteins tend 

to be more highly expressed by senescent cells than most other cell types, which prompted 

development of engineered chimeric antigen receptor (CAR) T cells, vaccines and antibody–

drug conjugates targeting these cell surface markers. Each of these approaches eliminates 

senescent cells, although in some cases, activated macrophages and other non-senescent 

cell types are also affected96–99. It is not yet clear if these approaches eliminate primarily 

those senescent cells with a proapoptotic, inflammatory, tissue-destructive SASP, those with 

a mainly growth-promoting SASP, or both forms of senescent cells. A possible advantage 

of small-molecule senolytics over vaccines or transplanted CAR T cells is that if a need for 

senescent cells occurs, for example, during wound healing, tissue remodeling or pregnancy, 

then treatment can be discontinued—whereas the continued elimination of senescent cells 

induced by vaccines or CAR T strategies may not readily be switched off. Furthermore, 

CAR T cell therapy is expensive, generally has to be specifically formulated for each 
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individual being treated, and can lead to graft versus host disease, necessitating prolonged 

immunosuppressive therapy with all its attendant risks.

It should be noted that in commonly used preclinical models, senescence is abolished 

by means of p16INK4a-based or p21CIP1/WAF1-based genetic clearance and this senescence-

targeting approach acts through mechanisms that are distinct from first-generation, SCAP-

targeting small-molecule senolytics; as a result, there appear to be differences in the 

types of senescent cells targeted. For example, cell types such as activated macrophages, 

which may not be classically senescent, can have high p16INK4a expression100, but are 

not targeted by D + Q24. Unpublished work from our own laboratory suggests that there 

may be differences in the phenotypic effects (such as those relating to wound healing 

and healthspan) of targeting senescent cells in transgenic mice compared to the effects 

of senolytic agents in wild-type mice. This is in agreement with a recent report showing 

that the removal of senescent cells expressing high levels of p16INK4a can lead to fibrosis 

in mice101, whereas small-molecule senolytics appear to reduce fibrosis in several mouse 

tissues22,71,73,75,102. Indeed, work to develop senolytics began before genetic models of 

senescent cell clearance were published and did not depend on those models34,56. These 

genetic models have been useful in pinpointing those cells expressing particular senescence-

linked markers (for example, p16INK4a or p21CIP1/WAF1) and as complementary tools in 

senolytic proof-of-concept studies (Table 2). However, given their inability to eliminate the 

naturally occurring heterogeneous senescent cell pool (that is, elimination of both p16INK4a-

expressing or p21CIP1/WAF1-expressing cells or senescent cells that express neither) and 

the fact that also non-senescent cells such as activated macrophages are targeted100, these 

genetic models are of limited use to assess the translational potential of senolytic agents—

but are useful for mechanistic insights nonetheless.

SASP inhibitors

Suppressing the SASP without eliminating senescent cells is an alternative therapeutic 

approach for alleviating cellular senescence-related phenotypes or diseases. SASP inhibitors 

(senomorphics) can directly or indirectly attenuate the SASP of senescent cells by inhibiting 

transcription factor nuclear factor (NF)-κB, the JAK-STAT signal transduction pathway, 

the serine/threonine protein kinase mTOR, mitochondrial complex-1-related or 4-related 

targets, or other pathways involved in the induction and maintenance of the SASP103–106. 

In vitro and in vivo, inhibitors of NF-κB (mediating the cell response to inflammation), 

can reduce pro-inflammatory SASP cytokines and chemokines104. In addition, an RNA-

mediated interference screen revealed that targeting alternative splicing in senescent cells 

may be a viable approach for inhibiting the SASP107. Rapamycin and its analogs (so-called 

‘rapalogs’) suppress the SASP by inhibiting mTOR and appear to extend healthspan and 

lifespan in mice105,108,109. The antidiabetic drug metformin, which, among other activities, 

inhibits the SASP, alleviates several age-related conditions and chronic diseases110–114. A 

clinical trial (TAME, Targeting Aging with Metformin) is planned to test if metformin 

delays the time for a second age-related disease to occur in patients who already have a 

single age-related condition115.
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Advantages and disadvantages of senolytics versus SASP inhibitors

There are important differences between SASP inhibitors and senolytics. Whereas SASP 

inhibitors potentially suppress both the growth-promoting as well as the proapoptotic, 

inflammatory, tissue-destructive sets of SASP factors, the first-generation senolytics target 

the underlying cause of detrimental SASP factor production by eliminating those senescent 

cells that release proapoptotic factors. In the case of SASP inhibitors, continuous treatment 

is needed to maintain suppression of the SASP, although some agents, such as rapamycin, 

can have prolonged effects after a brief course of administration116,117. This may be a 

result of inhibiting SASP-mediated spread of senescence, thereby allowing the innate and 

adaptive immune system to further reduce senescent cell burden, consistent with the Unitary 

Theory (Fig. 2). With senolytics, intermittent administration appears to be as effective as 

continuous treatment for attenuating senescent cell burden21. This intermittent ‘hit-and-run’ 

strategy of senolytic administration could serve to reduce side effects of agents such as D, 

which generally appear after weeks to months of continuous administration118,119. In this 

regard, the advantages of D, Q or F over some other senolytics are their brief half-lives (4, 

11 or 3–4 h, respectively, in humans) and rapid elimination120–122. The greater need for 

continuous administration of SASP inhibitors could lead to more side effects than seen with 

intermittently dosed senolytics and could also lead to off-target effects due to suppression 

of cytokine secretion—even when such cytokines are needed—by non-senescent cells 

such as innate or adaptive immune cells. Furthermore, some SASP inhibitors can have 

agent-specific off-target effects, for example, rapamycin, which can cause nephrotoxicity, 

metabolic impairment and susceptibility to infections, at least at higher doses in mice109.

Senolytics cause SASP-expressing senescent cells to undergo apoptosis, and such senescent 

cells are present at sites of dysfunction. Interestingly, a study involving transplanted 

mesenchymal stromal cells, which have therapeutic effects in a wide range of disease 

models, may hint at a possible mechanism for the beneficial effects of senolytic-induced 

apoptosis. The study suggested that apoptosis of mesenchymal stromal cells is required for 

their therapeutic effects, possibly by means of downstream immunosuppressive effects of 

apoptotic processes123. This raises the intriguing hypothesis that senolytic-induced apoptosis 

of destructive SASP-expressing senescent cells, which are concentrated at sites of pathology, 

might contribute to the beneficial effects of senolytics, which has not been directly tested in 

preclinical models in currently available reports.

Consideration of the different cell populations affected by senolytic and SASP inhibitor 

interventions, whether expressing a detrimental tissue-destructive or beneficial pro-growth 

factor secretory phenotype, is crucial to the successful development of senotherapeutic 

interventions61. Elimination of all senescent cells or general inhibition of the SASP might be 

detrimental in some instances in which senescent cells are beneficial. However, interventions 

that predominantly target the persisting, tissue-destructive SASP-expressing senescent cells 

might have superior therapeutic potential and fewer off-target effects.
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Senolytics in preclinical models

First-generation senolytics, such as D + Q, have been tested in several preclinical models of 

aging and diseases, including type 2 diabetes, and bone, heart, kidney, liver, lung, muscle 

and neurological disorders (Table 2). Whereas transplanting senescent cells decreases 

healthspan and lifespan in preclinical models, eliminating transplanted or endogenous 

senescent cells increases healthspan, thereby fulfilling Koch’s postulates for causality24,124.

In mouse models of diet-induced obesity, reducing the burden of senescent cells in adipose 

tissue by administering D + Q attenuates adipose tissue inflammation, alleviates metabolic 

dysfunction, and restores the capacity of preadipocytes to differentiate into functional, 

mature, insulin-responsive fat cells25. High-fat diets (HFDs) and obesity result in senescent 

cell accumulation and lead to impaired function of multiple organs. For example, HFD-

induced senescent mouse kidney cells are linked to renal fibrosis and functional impairment; 

Q treatment reduces senescent cell burden and SASP marker expression, alleviates renal 

fibrosis and improves kidney function102. In livers of HFD-fed mice, oral D + Q reduces the 

burden of senescent hepatocytes and hepatic steatosis75. Obesity also leads to accumulation 

of senescent cells near the third ventricles of the murine brain, together with development of 

neuropsychiatric dysfunction, particularly anxiety, which results from altered function of the 

limbic system situated near the third ventricles. Oral D + Q reduces this neuroinflammation, 

increases markers of neurogenesis, reduces gliosis and alleviates anxiety in obese mice33. 

Fibrosis can be a senescence-driven progressive process that contributes to reduced organ 

function; in a mouse model of idiopathic pulmonary fibrosis (IPF), D + Q treatment 

improved lung compliance and reduced frailty71. In age-related osteoporosis linked to 

senescent-like osteocytes and bone marrow cells in mice, D + Q reduced development of 

bone-resorbing osteoclasts, while increasing differentiated bone-forming osteoblasts, with 

restoration of bone mass21. After resistance exercise, senescent cells develop in muscle 

of old mice in tandem with impaired exercise-induced muscle hypertrophy compared to 

young mice18. D + Q alleviates this negative impact of aging on muscle growth. Recently, 

senescent cells have been implicated in accentuating the severity of viral infections due 

to amplification of SASP factor secretion, predisposing to cytokine storm and multi-organ 

failure. In mice infected with a murine coronavirus, the mortality rate was reduced following 

administration of D + Q or F16.

Transplanted senescent cells or organs from old mice have been shown to spread the 

senescent phenotype to distant sites in recipient mice, predisposing to detrimental outcomes 

after transplantation24,31. D + Q treatment of either old donor mice, the organs harvested 

from the old donors before transplantation, or the recipients, led to decreased senescent 

cell burden and increased survival of recipient mice – so that outcomes resembled those 

observed in mice receiving a transplant from a young donor31. Hence, a potential new 

application of senolytics may entail ex vivo perfusion of organs from older donors that are 

currently being discarded because of increased risk of organ failure or allograft rejection, 

potentially offsetting shortages of organs for transplantation125.

A recent study implicated cellular senescence and the beneficial effects of senolytics for 

Down syndrome (trisomy 21)13. A third copy of chromosome 21 in neural progenitor cells 
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leads to transcriptional and nuclear organizational changes similar to those in senescent 

cells. Interestingly, D + Q alleviated transcriptional changes and cellular dysfunction in an 

in vitro human neural cell Down syndrome model. An accelerated aging-like phenotype 

has been observed in astronauts who are exposed to radiation, high G-forces, zero gravity 

and cabin air quality126. Thus, senolytics might support long-distance space exploration by 

eliminating the senescent cells caused by cosmic and solar radiation, especially outside the 

van Allen radiation belts. In April 2022, effects of space travel on senescence biomarkers in 

astronauts and cultured human fat cell progenitors were tested during the Axiom-1 mission 

to the International Space Station; data are pending127.

Systemic versus local administration

According to the threshold theory of cellular senescence, senescent cells can be present 

without clinical manifestations but, if their abundance exceeds a threshold, senescent 

cell burden can increase further and contribute to development of local and systemic 

dysfunction and multiple diseases (Fig. 2). Senescent cells can spread even to distant sites 

because of their SASP; therefore, systemic, intermittent administration of senolytics for 

senescence-associated diseases is potentially more promising than local administration, with 

the exception of perhaps eye, skin or dental topical or other local applications34. Perhaps 

there may not need to be strict cell type specificity of senolytics administered in vivo. 

Arguably, once systemic senolytic treatment has reduced overall senescent cell burden to 

below a threshold, the immune system might clear remaining senescent cells, including 

those resistant to that particular senolytic. This could be especially important for older 

individuals or those with chronic diseases, who already have a high systemic senescent cell 

burden24,128. Strategies for systemic senolytic administration include oral or intravenous 

routes, with orally active senolytics generally being more accepted by patients and less 

expensive to administer. The timing, the particular senolytic agent used, and the age, sex, 

and other characteristics of the individual may impact effectiveness of senolytics24. For 

example, F may be beneficial but D detrimental in healthy young female mice that have not 

yet accumulated many senescent cells129.

Clinical trials and future directions

Based on promising results in preclinical models, over 20 clinical trials of senolytic 

therapies are completed, ongoing or planned34 (Table 1). Because side effects of senolytics 

in humans are not yet fully known, and to maximize benefit–risk ratios, the first clinical 

trials are underway in patients with serious health conditions, such as diabetic kidney 

disease, Alzheimer’s disease, frailty and IPF34. The first in-human trial of senolytics 

(D + Q), the Hematopoietic Stem Cell Transplant Survivors Study, is still underway 

(NCT02652052; first patient dosed on 1 April 2016). The first senolytic clinical trial 

published was an open-label pilot study in which 14 patients with IPF were treated with 

intermittent D + Q on 3 d per week for 3 weeks63. Results suggested that senolytics 

improved physical function in these frail patients. Furthermore, post hoc analysis of a study 

involving 20 patients with IPF showed that urine levels of the ‘geroprotective’ factor α-

Klotho were higher after oral D + Q than before treatment19. In an open-label phase 1 pilot 

study in 9 patients with diabetic kidney disease, a 3-d course of oral D + Q was sufficient to 
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decrease adipose tissue senescent cell burden, inflammation, fibrosis and circulating SASP 

factors for at least 11 d after the last dose of senolytics, indicating target engagement and 

suggesting that an intermittent dosing regimen may be effective in humans48. These early 

data warrant evaluation in larger randomized, double-blind, placebo-controlled trials for 

senescence-associated disorders and diseases, some of which are underway34 (Table 1).

It should be noted that a phase 2, randomized, double-blind, placebo-controlled clinical 

trial (NCT04349956)—in which the senolytic agent was a p53-destabilizing protein MDM2 

inhibitor, UBX0101 (also known as nutlin-3a)—did not achieve its primary endpoint of 

improving pain in patients with osteoarthritis of the knee in a 12-week follow-up. In our 

hands and others, nutlin-3a does not show or shows only weak senolytic activity and, in 

some cases, can even induce cellular senescence95,130. Furthermore, in a mouse model 

of osteoarthritis, a combination of UBX0101 with N was necessary to restore aged joint 

structure131. Thus, the failure of this clinical trial seems related to the particular agent 

administered, which may not have been a fully effective senolytic.

Biomarkers of senescent cell burden and senolysis: gerodiagnostics.

Identification and monitoring of senescent cell burden in situ, especially during clinical trials 

to assess safety and efficacy, can be challenging if solely based on analysis of tissue biopsies 

given the contextual and complex regulation of the senescent cell fate. However, SASP 

factors, senescence markers and markers of other fundamental aging processes (for example, 

α-Klotho) can be assayed in body fluids such as urine, saliva, blood or cerebrospinal 

fluid7,19,48,59,61,64,132,133. Additionally, ongoing efforts are underway to identify and define 

biomarkers of senescent cell accumulation (senescence biomarkers) and destruction of 

senescent cells during senolytic treatment (senolysis biomarkers) that meet requirements 

of regulatory authorities. Panels of SASP factors and senolysis markers for clinical trials 

and, ultimately, clinical practice will be important as diagnostics/predictors for multiple 

disorders and diseases, monitoring target engagement and individualizing senolytic regimens 

for patients. Indeed, to facilitate developing interventions targeting fundamental aging 

processes and for eventual use in clinical practice, such indicators will need to be more than 

mere ‘biological clocks’. Indicators are needed that are reproducible, reliable, feasible and 

inexpensive to measure, and reflect not only biological age, but also correlate with clinical 

function and/or disabilities. These should also change in response to interventions, predict 

or reflect changes in clinical function caused by these interventions, and indicate which 

senolytic or SASP inhibitor may be best for an individual. Such biomarkers or composite 

scores of biomarkers are known as ‘gerodiagnostics’. Indeed, the first gerodiagnostic score 

sensitive to senolytic administration in humans was a blood composite score published in 

2019 (ref. 48). Additionally, we propose the concept of ‘gerodiagnostic ratios’, whereby 

gerodiagnostic indicators that increase with aging or disorders linked to acceleration of 

fundamental aging mechanisms, could be summed into a composite in the numerator (for 

example, markers of senescent cells, SASP factors, CD38 and mTOR activity indicators), 

while beneficial geroprotective factors (for example, α-Klotho or perhaps nicotinamide 

adenine dinucleotide (NAD+) or Sirt-6) could be in the denominator. This approach could 

both enhance sensitivity and reduce ‘denominator effects’; for example, creatinine is often 
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used as a dominator for urine analytes, introducing the confounding variable of muscle 

mass, upon which creatinine levels depend.

Clinical trajectory for the next decade.

Large, randomized controlled trials to assess and ensure safety, benefit and target 

engagement of senolytics are needed to validate preliminary results from early-phase 

clinical trials (Table 1). If safety and effectiveness of senolytics are first demonstrated in 

patients with serious diseases for which current treatments are inadequate, it could become 

acceptable to test them for less severe senescence-linked disorders. If safe and effective for 

such conditions, senolytics might then be tested for prevention of age-related dysfunction 

and diseases in older individuals, using a strategy like that which is planned for metformin 

in the TAME study115. TAME will test if metformin delays the appearance of a second 

age-related disorder in patients who already have one such disorder; it will not be a trial 

including completely healthy older adults115. If attempts to extend human healthspan are 

effective, future studies might conceivably aim to evaluate the role of senolytic therapies in 

extending human lifespan.

Combination therapeutic strategies.—Clinical studies of geroscience interventions 

targeting the other pillars of aging are currently underway or being planned. Dietary 

interventions, such as caloric restriction and intermittent fasting, might be protective 

against development of age-related dysfunction and diseases based on studies in animal 

models134,135. Exercise may delay senescent cell formation and reduce inflammation, frailty 

and chronic disease onset in mice136,137. Metformin, resveratrol and rapalogs (agents related 

to rapamycin) are SASP inhibitors and appear to impact some of the same basic processes as 

caloric restriction or exercise110,138. Sirtuins facilitate DNA damage repair, partially relying 

on oxidized NAD+ to do so. Senescent cells can decrease NAD+ through SASP activation 

of the NAD-degrading enzyme CD38 on the surface of macrophages and, remarkably, 

senolytics partially restore tissue NAD+ levels139,140. NAD+ or NAD precursors can increase 

healthspan in experimental animals141. The non-feminizing estrogen, 17α-estradiol, declines 

with aging in females and males and 17α-estradiol treatment extends healthspan and 

alleviates age-related metabolic dysfunction and inflammation in mice142. As considered 

above, senolytics can increase α-Klotho, which is geroprotective, neuroprotective and 

linked to healthspan in mice19. Interestingly, α-Klotho overexpression in mice increases 

healthspan and lifespan by up to 30% (ref. 143). Hence, consistent with the Unitary 

Theory, interventions targeting the different fundamental aging mechanisms appear to 

alleviate aging phenotypes, delay, prevent or treat multiple diseases, and extend healthspan 

in preclinical models. Testing combinations of these lifestyle, nutritional, natural product 

and pharmacologic interventions may be informative. However, if the Unitary hypothesis 

is correct, they may contribute less-than-additive effects because fundamental aging 

mechanisms are tightly interconnected. A more promising strategy could be to combine 

geroscience with disease-specific interventions.
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Conclusions

The elimination of senescent cells has emerged as a plausible therapeutic strategy for 

preventing, delaying or alleviating multiple diseases and age-related dysfunction. Promising 

results of senolytics in preclinical models suggest therapeutic and preventive opportunities 

for delaying multimorbidity and increasing healthspan. While randomized controlled trials 

will define the safety and potential benefits of senolytic strategies, scientific and regulatory 

challenges must be addressed in the near term if senolytics are to be used in the clinic (Box 

1).

A key priority should be the identification of reliable, sensitive and specific gerodiagnostics

—biomarkers to quantify senescent cell abundance, the SASP and senolysis as well as 

other pillars of aging. Interventions modulating the SASP (including those that specifically 

upregulate or downregulate tissue-destructive factors versus growth factors) or topical 

senolytic agents, especially those that eliminate senescent cells with a proapoptotic SASP, 

could accelerate wound healing, a possibility that needs to be experimentally tested and 

correlated with predictive gerodiagnostics.

The lack of WHO International Classification of Disease (ICD) codes for multimorbidity, 

sarcopenia, healthspan or the geriatric syndromes represents a barrier to clinical 

development. Such ICD codes would facilitate regulatory approvals, recording of conditions 

linked to fundamental aging processes in hospital and insurance records, epidemiological 

studies, physician and hospital reimbursement and engagement of the pharmaceutical 

industry. The possible interdependencies among fundamental aging mechanisms need to be 

investigated to deepen our knowledge about basic aging mechanisms and disease etiologies 

and to develop treatment strategies to reduce multimorbidity and enhance healthspan.

Finally, a note of caution is important. Even though preclinical data are promising, unless 

and until carefully monitored, rigorous clinical trials demonstrate safety and effectiveness of 

senolytics or SASP inhibitors, they should not be endorsed for the prevention or treatment 

of diseases over-the-counter or in clinical practice. In the meantime, the results of ongoing 

and planned clinical trials will yield informative data and insights into the role of cellular 

senescence as a therapeutic target for age-related disorders, potentially enabling translation 

of small-molecule senolytics into the clinic in the near future.
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Box 1 |

Scientific, logistical and regulatory obstacles

• Methods to stop effects of interventions such as vaccines or CAR T cells 

need to be devised, in case the fundamental aging mechanism that they target 

becomes necessary in a patient, for example, in the context of tissue repair, 

wound healing or pregnancy.

• Interventions that appear effective in preclinical models, for example, in 

mice, often fail in clinical trials222. There will be inevitable clinical trial 

failures, which could become a psychological barrier and tarnish the field. 

A strategy to mitigate this could involve the conduct of multiple, parallel 

smaller trials of different geroscience interventions (for example, senolytics 

versus SASP inhibitors versus NAD+ precursors versus sirtuin agonists 

versus placebo) for different indications, each linked to fundamental aging 

mechanisms. These could be carried out across multiple institutions, but with 

shared outcome variables (for example, blood, saliva or urine gerodiagnostics, 

imaging studies, assessments of physical findings, activity, or other indicators 

and/or questionnaires).

• There are currently no FDA-recognized gerodiagnostics to serve as primary 

outcomes of clinical trials, nor any consensus-based recommendations to 

inform study design.

• There is a lack of ICD codes for relevant clinical states such as frailty, 

multimorbidity or sarcopenia.

• Given the importance and potential of the geroscience field, there are 

insufficient funding opportunities and incentives to spur progress.

• There are few academic geriatricians with expertise in basic or preclinical 

geroscience research or interventional clinical trials, and there are no 

resources to train sufficient numbers of such individuals223.

• Occasional exaggerated ‘antiaging’ claims and profiteering have caused 

skepticism.

• Many companies and entrepreneurs are not interested in lifestyle, natural 

product or repurposed off-patent agents that may be effective geroscience 

interventions, but for which intellectual property protection is unattainable.

• Drug regulatory agencies often lack sufficient expertise and familiarity 

with geroscience interventions, which can drastically slow bench-to-bedside 

translation.

• Academic or financial ambitions, incentives and rivalries among investigators, 

disciplines and institutions can hinder discovery and testing of geroscience 

interventions.
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Fig. 1 |. Senescence-associated secretory phenotype.
The SASP is a key feature of cellular senescence. Cellular stressors induce DNA damage 

response signaling, which activates key transcription factors and pathways including NF-κB, 

CCAAT/enhancer binding protein-β (C/EBPβ), GATA binding protein 4 (GATA4), p38 and 

JAK-STAT, which can drive and modulate the SASP31,48,60,63,64,103,157,214–218. The various 

forms of the SASP can comprise chemokines, extracellular matrix proteases, remodeling 

factors, bioactive lipids, noncoding nucleotides and reactive metabolites7,31,59–64. IL-6, 

interleukin-6; ROS, reactive oxygen species; TGF-β, transforming growth factor beta; 

TIMPs, tissue inhibitors of metalloproteinases; TNF, tumor necrosis factor.
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Fig. 2 |. The threshold theory of senescent cell accumulation.
This theory postulates that once senescent cell burden exceeds a threshold, self-amplifying 

paracrine and endocrine spread of senescence through the SASP outpaces clearance of 

senescent cells by the immune system34,219. Additionally, increased abundance of SASP 

factors may impede immune system function62,78, further amplifying accumulation of 

senescent cells. Senescent cell accumulation may also accelerate other fundamental aging 

mechanisms. In studies of effects of transplanting senescent versus non-senescent cells into 

middle-aged mice, a minimum number of transplanted senescent cells was necessary to 

cause accelerated aging-like phenotypes24. In conditions in which senescent cell burden 

is already high, such as obesity, fewer senescent cells need to be transplanted to induce 

the same effect as in lean mice of the same age23,24,151. Consistent with this, in human 

childhood cancer survivors who have had DNA-damaging anticancer therapy, a subsequent 

accelerated aging-like phenotype can occur at a considerably earlier age than in older 

individuals who do not have a history of childhood cancer treatment169. Hence, senescent 

cells with a proapoptotic, inflammatory SASP may need to exceed a threshold to exert 

detrimental effects. Systemic clearance of senescent cells by genetic or pharmacologic 

means tends to attenuate the other pillars of aging and can delay, prevent or alleviate 

multiple age-related disorders and diseases23,24,30,49.
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Fig. 3 |. First and second-generation senolytic strategies.
First-generation senolytics target different SCAPs, including tyrosine kinase receptors 

(TKRs), growth factor receptors (GFRs), ephrin receptor B1 (EFNB1), SRC 

kinases, PI3K-AKT, HSP90, BCL-2 family members, caspase inhibition and p53 

modulation14,54,57,86–88. High-throughput library screens and other approaches have 

informed second-generation senolytic strategies, including lysosomal and SA-β-gal-

activated prodrugs and nanoparticles54,92,93,220, sodium–potassium pump (Na+/K+-ATPase)-
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dependent apoptosis194,221, SASP inhibition103–106 and immune-mediated clearance by 

CAR T cells, antibody–drug conjugates or vaccines62,96–99.
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