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Abstract: Automatically recognizing negative emotions, such as anger or stress, and also positive
ones, such as euphoria, can contribute to improving well-being. In real-life, emotion recognition
is a difficult task since many of the technologies used for this purpose in both laboratory and
clinic environments, such as electroencephalography (EEG) and electrocardiography (ECG), cannot
realistically be used. Photoplethysmography (PPG) is a non-invasive technology that can be easily
integrated into wearable sensors. This paper focuses on the comparison between PPG and ECG
concerning their efficacy in detecting the psychophysical and affective states of the subjects. It has
been confirmed that the levels of accuracy in the recognition of affective variables obtained by PPG
technology are comparable to those achievable with the more traditional ECG technology. Moreover,
the affective psychological condition of the participants (anxiety and mood levels) may influence the
psychophysiological responses recorded during the experimental tests.

Keywords: bio-signal processing; photoplethysmography; unobtrusive sensing

1. Introduction

The steady development of accurate emotion recognition techniques allows for their
application in many fields including marketing, robotics, psychiatry, entertainment, and
game industries [1–5]. Some of the technologies used to detect emotion can also be used as
biofeedback techniques to counter or mitigate stress [6].

The mental state of a person can be investigated with sensors measuring physiological
parameters coming from different parts of the body. Firstly, there are methods based
on the analysis of signals collected directly from the Central Nervous System by both
electrical and optical transduction. An extensive review of emotion recognition research
based on Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS)
is reported in the literature [7–9]. Sensors capable of extracting information from facial
expression, tone of voice, and posture are the most obvious and natural choice at first sight;
however, they have an important drawback: these modes of expression are largely under
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the voluntary control of the individual, therefore they can, to a certain extent, be modified
and thus mask the real emotional state.

On the contrary, sensors that obtain information from organs that are under the control
of the Autonomous Nervous System (ANS) are more reliable, since any intentionality
of reflexes can be excluded. The effects of the emotional states, mediated by ANS on
the cardiovascular system, the respiratory system, and electrodermal activity have been
studied very extensively: in some recent reviews, hundreds of scientific articles have been
mentioned and classified [10–12].

Most of the instruments used for the recognition of emotions were originally developed
for clinical diagnosis purposes and therefore do not have specifications suitable for field
use, in real life and for prolonged acquisition, and are often less versatile outside of a
controlled laboratory environment.

A clear aim of emotion recognition systems is to be applicable in everyday life [13].
Hence, a major goal is to use sensor setups that are minimally invasive and provoke only
minor limitations to the mobility of the user. Consumer wearables devices already offer
activity recognition, and recently the first generation of affect (e.g., stress) recognition
systems entered the sector [14]. Consumer wearable devices generally use the following
signals (in the following order): (a) cardiac cycle (e.g., ECG or PPG), (b) electrodermal
activity, (c) respiration, and (d) skin temperature.

The recognition of emotions in real life imposes several limitations on the range
of transduction modalities that can be used in practice. In order not to interfere with
daily activities, it is necessary to have non-intrusive sensors, i.e., sensors whose presence
is so discreet that their presence can be forgotten by the user. The set of non-invasive
physiological sensors is not very large. Among these, PPG sensors are the most explored
due to their advantages in miniaturization and noninvasiveness [15–17]. If the user is
seated at a desk, one can use head movement tracking systems based on visible light
cameras or face temperature detection systems based on infrared light cameras [18]. If the
user is on the move, they can be used for PPG heart rhythm sensors and little else.

In this paper, we present a study about the detection of some physiological parameters
related to heartbeat variability using a miniaturized PPG sensor and their comparison with
those normally extrapolated from the ECG. Additionally, we discuss whether with this
set of parameters we can obtain a good classification of emotions with levels of accuracy
comparable to those obtained with other systems.

1.1. Emotion Models

Effectively stimulating a predetermined emotional response in a sample of human
volunteers and then recognizing it is a challenge. The first difficulty consists of the fact that
it is not easy to uniquely define what an emotion is.

Plutchik [19] proposed a psycho-evolutionary classification approach for general
emotional responses. He created an emotion wheel to illustrate different emotions and
first proposed his cone-shaped (3D) model, or wheel model (2D), in 1980 to describe
how emotions were related. He suggested eight primary bipolar emotions: joy versus
sadness; anger versus fear; trust versus disgust; and surprise versus anticipation. His
model connects the idea of a circle of emotions to a color wheel. Like colors, primary
emotions can be expressed with different intensities and can mix with each other to form
different emotions.

These are based on the physiological reaction that any emotion creates in animals,
including humans. Emotions without color represent an emotion that is a mixture of the
two primary emotions.

In recent years, a new model has emerged, the so-called Russell circumplex model
of emotions (Figure 1), which argues that affective states are attributable to two main
neurophysiological systems, one that explains the value of emotion (along a continuum of
pleasantness-unpleasantness) and another that refers to the corresponding physiological
arousal/activation level [20].
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Figure 1. Russell’s circumplex model of affect [20].

According to this theory, each emotion can be explained as the linear combination of
the two dimensions, varying in the valence (positive or negative) and intensity of activation.
Joy, for example, is conceptualized as an emotional state characterized by positive valence
and a moderate level of arousal. The subsequent cognitive attribution, which allows for
the integration of the two dimensions, the underlying physiological experience and the
decisive stimulation, finally allows for the identification of the emotion of joy.

Emotions, according to this theory, should be the final product of the complex interac-
tion between cognitions, elaborated in the neocortical structures, and neurophysiological
modifications, linked to the valence and activation systems, regulated by subcortical
structures [21].

1.2. Emotion Elicitation Protocol

Emotions are closely linked to events, situations, and people, which have acquired
an affective meaning over the course of a person’s life. It is therefore expected that the
more naturalistic the circumstances in which emotions are provoked, the more likely it is
that those emotions reflect the normal experience of the subjects. Technology allows us
today to capture, in real time and in everyday circumstances, the physiological reactions
related to emotions thanks to the wide range of wearable sensors available on the market.
However, the study of emotions induced by certain types of actions, such as giving a speech
or driving a car, is problematic for another reason. Motor activity can produce artifacts
in the recording of physiological parameters, and so the task of laboratory studies is to
separate the physiology of emotions from the physiology of actions and motion [22,23].

The choice of stimulus type is critical and should be designed according to the purpose
of the research. Some characteristics that distinguish emotional stimuli must be carefully
considered: their ecological validity, complexity, and intensity. Ecological validity refers
to the ability of the stimulus to provoke an emotional reaction like the real emotional
experiences of daily life. From this point of view, watching film clips is preferable to other
stimuli, as they provide rich contextual information.

Watching movies can elicit a wide range of emotional intensities: from neutral to very
intense, probably not as strong as those provoked by real-life events, but stronger than
those aroused by static stimuli, like pictures or sounds, due to their great similarity to real
emotional experiences.

1.3. Emotion Prediction

The study of the heart rhythm, which can be obtained from the ECG, is a powerful
tool for extracting information on cognitive functions and emotional responses [24].
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A healthy heart can rapidly adjust its rhythm adapting to sudden physical and psycho-
logical challenges in an uncertain and changing environment. Its oscillations are complex
and constantly changing, with nonlinear behavior. They reflect the regulation of autonomic
balance, blood pressure (BP), gas exchange, gut, heart, and vascular tone. Heart Rate
Variability (HRV) consists of changes in the time intervals between heartbeats (inter-beat in-
terval, IBI). The acronym, HRV, does not indicate a single index but a vast family of indices,
all derived from the IBI series. Time-domain indices quantify the amount of variability
in measurements of the IBI series. Frequency-domain indices estimate the distribution
of absolute or relative power into four frequency bands. For frequency-domain analysis,
traces were interpolated using cubic-spline interpolation, and the power spectra were
obtained using fast Fourier transform (FFT). The absolute and relative powers of very low
frequency (VLF; < 0.04 Hz), low-frequency (LF; 0.04–0.14 Hz), and high-frequency (HF;
0.15–0.4 Hz) bands were measured.

Non-linear measurements allow us to quantify the unpredictability of a time series. A
non-exhaustive list of HRV indices is shown in Table 1.

Table 1. HRV indices based on IBI intervals.

Parameter Unit Description

SDNN ms Standard deviation of NN intervals a

RMSSD ms Root mean square of successive RR intervals differences
TRI Integral of the density of the RR interval histogram divided by its height

TINN ms Baseline width of the RR interval histogram
ApEn Approximate entropy, which measures the regularity and complexity of a time series
SD1 ms Poincaré plot standard deviation perpendicular to the line of identity
SD2 ms Poincaré plot standard deviation along the line of identity

SD1/SD2 Ratio of SD1-to-SD2
HR bpm Heart Rate
VLF ms2 Power in VLF range (<0.04 Hz)
LF ms2 Power in LF range (0.04–0.15 Hz)
HF ms2 Power in HF range (0.15–0.4 Hz)
pLF LF power in normalized units
pHF HF power in normalized units

LF/HF Ratio LF (ms2)/HF (ms2)
a NN intervals: interbeat intervals from which artifacts have been removed.

We underline that the HRV indices in Table 1, even the non-linear ones, are derived
from the series of IBI, that is, only from the duration of the beat, neglecting other information
obtainable from the ECG signal. Alternative features can be extracted using other ECG
signal-based techniques [25].

The values of the IBI intervals and the HRV indices can also be obtained from the PPG
traces. PPG is a low-cost optical technique widely used in medical devices for monitoring
oxygen saturation. A PPG probe essentially consists of two elements: a light source that
emits light in the visible or near-infrared (NIR) spectral range, where hemoglobin is the
main light absorber, and a photodetector that collects light transmitted or backscattered by
biological tissue.

PPG is sensitive to the volumetric modulations of peripheral arteries induced by
the propagation of the pulse pressure wave from the heart. PPG measurement can be
performed in two main modalities: in transmission modality, the source and the detector
are placed on two opposite surfaces of the same body district (finger, earlobe), whereas
in back-scattering modality, the source and the detector are placed on the same surface
(wrist, ankle).

The sensors that capture the PPG signal and process psychophysiological information
can be integrated into portable devices, such as smartphones [26], or wearable devices,
such as an Optical Heart Rate Monitor [27]. These devices have been used for a long time
for heart rhythm measurement and, more recently, as a convenient ECG surrogate for
non-clinical HRV analysis. They take a continuous measurement of the PPG waveform and
are typically based on LEDs that emit green or yellow light. Since green light has a much
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higher absorption coefficient than IR light, it is absorbed in the most superficial layers of
the skin, so OHRMs are sensitive to blood circulation in the capillaries.

Very often, the two techniques (PPG and ECG) are considered and used as two
interchangeable means to measure Heart Rate (HR) and HRV. However, on closer inspection,
there are several reasons why the variability of the beat recorded with the PPG, which from
now on we will call Pulse Rate Variability (PRV), is something substantially different from
HRV [28]. In fact, if the average duration of the beats, obtained with the two methods, is
necessarily the same, the duration of the individual beats can be quite different. In Figure 2,
we show a typical scatter plot of IBI values extracted from an ECG and PPG synchronous
acquisition. The plot is derived from one of our measurements.

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 25 
 

The sensors that capture the PPG signal and process psychophysiological infor-

mation can be integrated into portable devices, such as smartphones [26], or wearable de-

vices, such as an Optical Heart Rate Monitor [27]. These devices have been used for a long 

time for heart rhythm measurement and, more recently, as a convenient ECG surrogate 

for non-clinical HRV analysis. They take a continuous measurement of the PPG waveform 

and are typically based on LEDs that emit green or yellow light. Since green light has a 

much higher absorption coefficient than IR light, it is absorbed in the most superficial 

layers of the skin, so OHRMs are sensitive to blood circulation in the capillaries. 

Very often, the two techniques (PPG and ECG) are considered and used as two inter-

changeable means to measure Heart Rate (HR) and HRV. However, on closer inspection, 

there are several reasons why the variability of the beat recorded with the PPG, which 

from now on we will call Pulse Rate Variability (PRV), is something substantially different 

from HRV [28]. In fact, if the average duration of the beats, obtained with the two meth-

ods, is necessarily the same, the duration of the individual beats can be quite different. In 

Figure 2, we show a typical scatter plot of IBI values extracted from an ECG and PPG 

synchronous acquisition. The plot is derived from one of our measurements.  

 

Figure 2. IBI values obtained by a synchronous acquisition of ECG and PPG signals; two minutes 

acquisition. PP: IBI value derived from PPG; RR: IBI value derived from ECG. 

The reason is that electrical impulses from the heart are translated into optical signals 

through a long series of successive physiological processes [29]: 

1. The electrical trigger given by the sinoatrial node and then by the atrioventricular 

node causes the myocardium to contract; 

2. the contraction of the ventricle causes an increase in blood pressure in the left ventri-

cle (the pre-ejection period); 

3. when the pressure in the ventricle exceeds the pressure in the aorta, the aortic valve 

opens, so a blood bolus is pushed into the artery; 

4. the aorta dilates to accommodate the blood bolus in proportion to its elasticity (which 

depends on many factors, first on age); the pressure pulse generates a wave (ABP, 

arterial blood pressure waveform) that propagates along the walls of the arteries at a 

speed that depends on the diameter of the arteries, the thickness of the walls, their 

elasticity, and the viscosity of the blood; 

Figure 2. IBI values obtained by a synchronous acquisition of ECG and PPG signals; two minutes
acquisition. PP: IBI value derived from PPG; RR: IBI value derived from ECG.

The reason is that electrical impulses from the heart are translated into optical signals
through a long series of successive physiological processes [29]:

1. The electrical trigger given by the sinoatrial node and then by the atrioventricular
node causes the myocardium to contract;

2. the contraction of the ventricle causes an increase in blood pressure in the left ventricle
(the pre-ejection period);

3. when the pressure in the ventricle exceeds the pressure in the aorta, the aortic valve
opens, so a blood bolus is pushed into the artery;

4. the aorta dilates to accommodate the blood bolus in proportion to its elasticity (which
depends on many factors, first on age); the pressure pulse generates a wave (ABP,
arterial blood pressure waveform) that propagates along the walls of the arteries at a
speed that depends on the diameter of the arteries, the thickness of the walls, their
elasticity, and the viscosity of the blood;

5. the wave pulse reaches the body site where we placed the PPG probe and manifests
itself as a rhythmic variation in the diameter of the arteries, which is very small
in percentage;

6. the change in the diameter of the arteries results in a change in the volume of blood; the
variation of the blood volume results in a variation of the transmitted/back diffused
light which is then collected by the photodetector.

The relationships between the variables involved (blood pressure and volume, wave
propagation times) are complex and depend on several factors, including external ones.
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As an example, to adequately describe the relationship between the pressure and volume
of the arteries, we must also consider the external pressure. The curve that expresses the
relationship between pressure and volume has non-linear portions for extreme values (high
blood pressure or high probe pressure). It is increasingly difficult to further expand or
collapse the vessel after it reaches certain limits. Furthermore, the stiffness of the artery (or
its compliance) is not a static parameter.

Dynamic compliance means that vessels are stiffer when their pressure changes quickly
(e.g., intra-beat) and more compliant when their pressure changes slowly (e.g., inter-
beat). Therefore, a PPG curve can appear dampened relative to the arterial blood pressure
waveform (ABP) because the higher-frequency waveform components are lacking [30].

These few hints are enough to clarify that when we talk about the duration of the
systolic tract and the diastolic tract in the ECG, ABP, and PPG curves, we are talking
about correlated things, but not the same thing. Therefore, caution should be exercised
in considering the variability associated with PPG, i.e., PRV, as a good surrogate for HRV.
Some authors experimentally compared the PRV and HRV variability parameters [31] and
found that the values obtained with the first method roughly coincide with those obtained
with the second method only under certain physiological conditions and within certain
limits. Although HRV is a major source of PRV, the latter is generated and modulated
by many other sources and factors. Thus, the PRV could contain extra useful biomedical
information. Therefore, it is worth considering it as a new and distinct biomarker [32]. The
question then arises whether PRV is useful or not, especially if it is useful in the field of
emotion recognition.

2. Materials and Methods

For the reasons stated above (paragraph 1.2), we decided to provoke emotions by ask-
ing our volunteers to watch music videos. To obtain the greatest effectiveness of the test, we
adopted a video selection procedure that took into account the characteristics of our sample
of subjects: young adults of medium-high culture. The procedure to build our video clip
dataset was inspired by the methodology present in the work of Koelstra et al. in 2011 [33].
The video clips were selected through the “last.fm” site, which provides a taxonomy based
on the emotional reactions of the musical pieces, by means of tags associated with the
songs by users from all over the world, through adjectives characterizing emotional states
(e.g., sad, happy, etc.). We initially selected 10 video clips for each emotional quadrant
(high valence/high arousal—high valence/low arousal—low valence/high arousal—low
valence/low arousal), for a total of 40 video clips. We then administered the 40 video clips
to a sample of 40 subjects. The subjects were asked to give an opinion of the individual
emotional stimuli based on the Self-Assessment Manikin (SAM). SAM is a widely used
non-verbal assessment technique: each manikin pictorially represents a different level
of a certain emotional state. Nine of these manikins were displayed on the screen with
numbers printed below [34–36]. Five emotional variables were assessed: valence, arousal,
dominance, pleasantness, and familiarity (Figure 3).

The valence scale ranges from unhappy or sad to happy or joyful. The arousal scale
ranges from calm or bored to stimulated or excited. The dominance scale ranges from sub-
missive (or “out of control”) to dominant (or “in full control”). A fourth scale investigates
the participants’ personal satisfaction levels for the video. This last scale should not be
confused with the valence scale. This measure investigates the tastes of the participants,
not their feelings. These first four variables were evaluated with a scale of levels ranging
from 1 to 9. Moreover, the participants were asked to rate their familiarity with the song on
a scale of 1 (“Never heard of before the experiment”) to 5 (“I knew the song very well”).

Subsequently, we selected eight definitive video clips, two for each emotional quadrant,
based on the average scores obtained through the SAM, placed at the extremes of the score
range in relation to the valence and arousal dimensions. The first group of 40 volunteers
only participated in the selection of the eight music video clips, which were used in the
actual experiment.
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Figure 3. Self-Assessment Manikin (Familiarity and pleasantness). Screenshot of the user interface.

2.1. Emotion Elicitation Protocol

The experimental sample was composed of 31 healthy adult subjects of both sexes
(14 male and 17 female) of an age group between 18–39 years (mean = 27.3; standard
deviation SD = 4.4).

Information was collected on the participants’ general condition, health status, and
whether they were taking any drugs or substances that could alter physiological activation
levels. The inclusion criteria were possession of a driving license, good health, and age.
Volunteers signed informed consent and were also informed of their right to privacy, non-
recognition, and anonymity. They could withdraw from the study at any time. The study
was approved by the Human Board Review and Ethical Committee Catania 1 (authoriza-
tion n. 113/2018/PO, University of Catania, Italy). The study was performed in agreement
with the ethical standards of the Helsinki Declaration.

The sample of 40 volunteers had no subjects in common with the sample of 31 vol-
unteers who were subjected to all tests, i.e., also to physiological measures; however, the
40 subjects had similar biographic features with the experimental sample, i.e., age, sex, and
instruction level.

Each subject was seated comfortably in an armchair in front of a screen, with one
bracelet on the wrist, where the PPG detector was applied. ECG activity was measured
by means of three electrodes: two placed on the arms, forming the lead I of Einthoven’s
triangle; the third, placed on the right ankle, ensured the grounding. The subjects were
asked to view some music videos, used as triggers to activate emotional reactions.

The experimental session took place like this: the 31 subjects were provided with a
series of accurate instructions and performed a practical test to familiarize themselves with
the computerized system. Each trial consists of the following steps:

i. A basic recording of 30 s, where the subjects were asked to fix a pre-selected neutral
image.

ii. Listening to and viewing the music video.
iii. Self-evaluation of feelings experienced while watching the videos through the

administration of the SAM.

Finally, the participants were given some psychological tests. Specifically, they were
required to fill in two assessment tests of the affective state (mood, anxiety), such as the
“Profile of Mood State” (POMS) [37] and the “State-Trait Anxiety Inventory-Y” (part 1 and 2;
STAI-Y) [36]. We decided to evaluate the mood and the levels of anxiety of the participants
to monitor the initial psychic condition (trait anxiety, mood state), able to influence the
psychophysiological responses recorded during the experimental tests and the impact they
had on the participants (state anxiety).

The questionnaires are detailed below:
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(a) STAI-Y parts 1 and 2: a test for the assessment of anxiety levels, consisting of two
parts, which measure state and trait anxiety levels. State anxiety is understood in contingent
terms, of self-perception here and now; trait anxiety refers to the levels of anxiety as a
personological, a distinctive trait of the subject [38].

(b) POMS: a test that measures the mood of the subject, as it is perceived. It measures
six mood factors (Tension, Fatigue, Confusion, Vigour, Depression, and Aggression) and
returns a global index of the subject’s mood (Total Mood Disturbance, or TMD), referable
to the last week as lived by the subject [35].

2.2. Signal Acquisition and Pre-Processing

The signals were collected employing a homemade multi-channel system. The optical
probe was composed of a light source consisting of a couple of Light Emitting Diodes (LED)
emitting red and infra-red light (wavelength range centered, respectively at 735 and 940
nm) coupled with a very sensitive photodetector: the Silicon PhotoMultiplier (SiPM) [39].
The probe was inserted inside a cuff exerting an under-diastolic pressure of 60 mmHg. The
cuff was placed on the left wrist. The sampling frequency was 1 kHz.

The off-line analysis included: (a) filtering with a fourth-order, band-pass Butterworth
digital filter (from 0.5 to 10 Hz); (b) identification of the R wave of the ECG with the Pan–
Tompkins method; (c) identification of the instant of the start of the PPG beat; (d) calculation
of the IBI sequences. IBIs obtained from ECG and PPG are named RR and PP, respectively.

After filtering, we divided the signals into single beats and discarded spurious beats,
then we truncated traces from the initial part to obtain a duration always equal to 120 s.

2.3. Dataset

We considered 30 features which derive from the analysis of the beat length (see
Table 1), whether it is expressed as the RR distance between the R peaks of the ECG trace
or expressed as the PP distance.

Several additional features, deriving from PPG pulse shape analysis were also obtained.
The meaning of these additional parameters, described by La Yang and colleagues [40], is
explained in Figure 4 and Table 2.
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Table 2. Shape parameters.

Parameter Definition Description

Asys Area of a systolic phase The area of a pulse from the diastolic peak to the next systolic peak
Adia Area of a diastolic phase The area of a pulse from the systolic peak to the next diastolic peak

ACAbl AC Amplitude from baseline Difference of the systolic peak amplitude and the interpolated baseline
amplitude of two adjacent diastolic peaks

ACVsys AC Variation Systole Difference of the amplitude of systolic peaks
ACVdia AC Variation Diastole Difference of the amplitude of diastolic peaks

Lrs Rising Slope Length Distance between the diastolic peak and the next systolic peak
Lfs Falling Slope Length Distance between the systolic peak and the next diastolic peak

ACAdia AC Amplitude from the previous diastole Difference of the systolic peak amplitude and the previous diastolic
peak amplitude

RS Rising Slope Slope between the diastolic peak and the next systolic peak
P90 Pulse Width at 90% of amplitude Pulse width at 90% point of maximum amplitude
R1 ACVsys/ACAdia Ratio of AC variation systole to head peak height
R2 ACVsys/ACAbl Ratio of AC variation systole to AC amplitude
R3 ACVdia/ACAdia Ratio of AC variation diastole to head peak height
R4 ACVdia/ACAbl Ratio of AC variation diastole to AC amplitude

AsAd Asys/Adia Ratio of systolic area to diastolic area
LrLs Lrs/Lfs Ratio of rising slope length to falling slope length

The last nine parameters (shape parameters, SP) were calculated for each pulse, or
for each couple of consecutive pulses, when applicable. Our hypothesis is that, like RR or
PP, also the variability of the shape parameters is linked to the inputs of the Autonomous
Nervous System. Following this hypothesis, we calculated, for each SP parameter, its
RMSSD index and its mean value.

Physiological parameters have great intra and inter-subject variability due to age, sex,
motor activity, and time of day. While selecting healthy volunteers who fall into the same
age group, the subjects may have physiological parameters with very different resting
values. Normalization is primarily an attempt to subtract the effect of this variability not
attributable to emotions. We adopted Z-score normalization: we normalized the data for
each feature (for each subject separately) by subtracting the mean value of the measured
parameters and dividing the result by their standard deviation.

The self-assessment of the first four emotional variables was expressed according to
nine levels of intensity. For the fifth variable (familiarity), only five levels were used. The
number of volunteers is not so high as to allow a classification with so many levels. Thus,
we grouped the nine levels of intensity (the five levels in the case of the familiarity variable)
into two classes. Levels from 1 to 5 belong to the first class; levels from 6 to 9 belong to the
second class (see Table 3).

Table 3. Binary classes.

Emotional Variables SAM Scores Classes Observations [%]

Valence 1 ÷ 5 Negative 104 43.7
6 ÷ 9 Positive 134 56.3

Arousal 1 ÷ 5 Low 142 59.7
6 ÷ 9 High 96 40.3

Dominance 1 ÷ 5 Out of control 76 31.9
6 ÷ 9 In control 162 68.1

Pleasantness 1 ÷ 5 Unpleasant 105 44.1
6 ÷ 9 Pleasant 133 55.9

Familiarity 1 ÷ 2 Unknown 171 71.8
3 ÷ 5 Familiar 67 28.2

The total number of feature vectors (observations) was 248 (31 volunteers times
eight video clips). Ten observations were discarded, because of the poor quality of
the registration.
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2.4. Classification

We used for the classification machine-learning algorithms implemented in Matlab
R2019b. We experimented with a variety of algorithms; the ones which gave us the best
performances are:

(a) KNN—an algorithm that provides a prediction based on k training instances nearest
to the test instance. We selected k = 10 and Euclidean distance.

(b) SVM—an algorithm for building a classifier where the classification function is a
hyperplane in the feature space.

To validate the models, we employed a LOSO (leave one subject out) method. Accord-
ing to this method, the algorithm is trained on the data of N-1 subjects (where N = 31), and
after, it was validated on the excluded subject. The procedure is repeated N times so that
each of the N subsets is used exactly once as test data. The metrics used to evaluate the
models are: accuracy, precision, recall, and F1 score, defined by Equations (1)–(4).

Accuracy =
Correctly predicted classes

Total number o f observations
(1)

Precision =
Correctly predicted class j
Total predictions o f class j

(2)

Recall =
Correctly predicted class j

Total observations o f class j
(3)

F1 score =
2·(Precision·Recall)
Precision + Recall

(4)

We used the HRV and PRV features as two separate sets. The third set is formed by
shape parameters (SP) and the fourth by SP + PRV. Each of the four sets of parameters went
through a selection process to find discriminative features. A sequential forward selection
method was used. The features were added one at a time, having as a selection criterion
the accuracy value. The entire process was repeated for each psychological variable.

3. Results

We first analyzed the SAM self-assessment values and the data on mood obtained
from the POMS and STAI-Y questionnaires. We wondered if the mood and anxiety levels
of the volunteers could affect the values assigned to the five emotional variables. We,
therefore, calculated the correlation between the two sets of data. On the one hand, we
have: TMD, the six mood factors of POMS (Tension, Fatigue, Confusion, Vigour, Depression,
and Aggression), State, and Trait Anxiety, a total of nine variables. On the other hand, we
have the judgments expressed with the SAM technique after viewing the eight video clips,
relating to the five emotional variables (Valence, Arousal, Dominance, Pleasantness, and
Familiarity), a total of 40 variables. We found some statistically significant correlations,
shown in Figure 5.

We then analyzed the non-normalized experimental values of the physiological param-
eters to verify: (a) if our group of volunteers responded to the stimuli in a homogeneous
way; (b) if the HRV and PRV parameters are well aligned.

We, therefore, compared the changes in the parameters from one subject to another
with the changes in the parameters due to viewing the music videos.

In Figure 6, we show two extreme cases. The Heart Rate changes very little in a subject
because of our stimuli but changes more from one subject to another. The RMSSD shows
big spreads in both intra and inter-subjects.
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We should prefer little variations in inter-subject and big variations in intra-subject,
but this is not true, at least in our experiment.

3.1. Alignment of HRV and PRV Parameters

The alignment of the HRV and PRV parameters was verified with linear regression
(Table 4) and with Bland–Altman plots.

Table 4. Linear regression of HRV features versus PRV features.

Feature Best Fit Equation r (Pearson) p Value

SDNN y = 0.01 + 0.78x 0.91 <0.0001
RMSSD y = 0.01 + 0.69x 0.82 <0.0001

TRI y = 2.75 + 0.74x 0.86 <0.0001
TINN y = 0.05 + 0.69x 0.77 <0.0001
ApEn y = 0.36 + 0.53x 0.55 <0.0001
SD1 y = 0.01 + 0.69x 0.82 <0.0001
SD2 y = 0.01 + 0.79x 0.94 <0.0001

SD1/SD2 y = 0.11 + 0.83x 0.84 <0.0001
HR y = −0.23 + x 0.99 <0.0001
pLF y = 8 + 0.73x 0.83 <0.0001
pHF y = 18.2 + 0.74x 0.83 <0.0001

LF/HF y = 0.26 + 0.55x 0.78 <0.0001
VLF y = 1.13 + 0.24x 0.51 <0.0001
LF y = 2.16 + 0.16x 0.40 <0.0001
HF y = 2.24 + 0.33x 0.67 <0.0001

The best correlation occurs in the case of the HR parameter; the worst correlations
are for the four parameters: ApEn, VLF, LF, and HF. The plots of the PRV versus the HRV
values clearly show that the observations belong to two distinct populations (Figure 7). We
can evaluate this effect also by the Bland–Altman plots (Figures 8 and 9).
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Figure 9. Bland−Altman plots comparing HRV and PRV measurements: (a) VLF, (b) LF, (c) HF,
(d) pLF.

The first graph shows the heart rhythm measured by the two methods. As expected,
the average value is approximately equal (bias approximately zero). The difference of about
one beat that is found in some measures can be easily explained bearing in mind that the
acquisition duration is the same for ECG and PPG, but the number of discarded beats is
greater in the PPG trace. The other time domain and non-linear parameters show very
good agreement, with three exceptions (as expected): VLF, LF, and HF.



Biosensors 2022, 12, 811 14 of 24

In each frequency range, there is a significant percentage of observations (about 40%)
in which the value of the parameter extracted from ECG is greater than that extracted from
PPG. The observations with this anomalous behavior are the same in the three graphs and
come from a sub-group of our volunteers (12 subjects). It seems that for some reason, the
reactivity of these subjects to emotional stimuli is different (in a certain sense greater) than
most of the volunteers. The two subgroups do not have statistically relevant differences in
terms of sex and age. In the plots of pLF and pHF, this anomalous group of observations
disappears (Figure 9).

The results we have shown indicate that responses to emotional stimuli are quali-
tatively and quantitatively different between subjects, despite having chosen a group of
volunteers homogeneous in age and health conditions. The correlations shown in Figure 5
seem to indicate that the values attributed by the different volunteers to the emotional
variables are in some way influenced by the state of anxiety or the mood in the last week.
The spread of intra and inter-subject PRV parameters, the Bland–Altman plots, and the
regression plots tell us that the values of some physiological parameters belong to two
different populations. The minority population refers to 12 subjects.

Then, we wondered if among the different volunteers, in addition to the obvious
differences due to physiology, there are also differences due to the psychological state of
the moment or period [41]. Therefore, we correlated the 30 HRV and PRV parameters with
the TMD and STAI-Y parameters. The statistically significant correlation cases are shown
in Figure 10.
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Figure 10. Correlation plots of HRV or SP values and TMD or STAI−Y values: (a) pLF ECG,
(b) LF/HF ECG, (c) amp_m, (d) SD1/SD2 ECG.

We can conclude that there is a small effect of the subject’s mood on some HRV and
PRV parameters. An effect that adds up and interferes with the effect caused by watching
music videos.

We underline the fact that while the correlation of Figure 5 is between two sets of
self-assessment scores, the correlation of Figure 10 is between one set of self-assessment
values and some physiological features.
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Finally, we have investigated if, with the PPG-derived parameters, we can obtain
a better prediction of emotive variables. Dividing the observations into the classes they
belong to (positive or negative, high or low, etc.), we obtain distributions of HRV and PRV
features which, in general, have similar p-values (see Table 5).

Table 5. One-way ANOVA analysis of binary classes.

Features Valence Arousal Dominance Pleasantness Familiarity

ECG PPG ECG PPG ECG PPG ECG PPG ECG PPG
RMSSD 0.019 0.045 0.022 0.006

SD1 0.019 0.045
HR 0.003 0.002 0.022 0.024
HF 0.047 0.003 0.002

TINN 0.023
TRI 0.029
SD2 0.021
pLF 0.030 0.021
pHF 0.030 0.021

LF/HF 0.021 0.021

Only significant p-values are shown.

3.2. Classification

Our aim was to use a straightforward algorithm to compare parameters extracted
from the ECG and PPG waveforms. Thus, we used two of the most popular algorithms in
the field of emotion recognition.

In Tables 6 and 7, we show the results of the classification obtained with two algorithms
(KNN and SVM) and with subject-independent LOSO cross-validation. The F1 score and
accuracy in both cases are slightly better using PRV features. The classification with PPG
shape parameters (SP) obtains accuracy values like those that use HRV or PRV features.
This is the most important result of our study. It can be deduced that the autonomic
nervous system, in response to emotional stimuli, modulates in a distinctive way not only
the duration of the beat but also the shape of the PPG signal.

Table 6. Classification metrics: HRV versus PRV features.

Weighted kNN HRV PRV
Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Valence
Positive 0.59 0.65 0.62 0.56 (0.22) 0.60 0.69 0.64 0.58 (0.16)Negative 0.51 0.45 0.48 0.53 0.43 0.47

Arousal
High 0.59 0.61 0.60 0.63 (0.17) 0.59 0.56 0.57 0.62 (0.15)Low 0.67 0.65 0.66 0.65 0.68 0.66

Dominance
In control 0.67 0.65 0.66 0.61 (0.21) 0.68 0.74 0.71 0.63 (0.18)Out of

control 0.51 0.53 0.52 0.55 0.48 0.51

Pleasantness
Pleasant 0.63 0.65 0.64 0.58 (0.18) 0.63 0.64 0.63 0.58 (0.19)Unpleasant 0.53 0.50 0.51 0.52 0.51 0.51

Familiarity Familiar 0.51 0.34 0.41 0.66 (0.13) 0.53 0.41 0.46 0.67 (0.16)Unknown 0.70 0.83 0.76 0.72 0.81 0.76

Gaussian SVM
HRV PRV

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Valence
Positive 0.63 0.73 0.68 0.61 (0.16) 0.65 0.66 0.65 0.62 (0.20)Negative 0.59 0.48 0.53 0.58 0.56 0.57

Arousal
High 0.44 0.55 0.49 0.58 (0.19) 0.63 0.56 0.59 0.65 (0.17)Low 0.70 0.60 0.65 0.66 0.72 0.69

Dominance
In control 0.61 0.97 0.75 0.62 (0.25) 0.65 0.89 0.75 0.64 (0.19)Out of

control 0.69 0.09 0.16 0.63 0.28 0.39

Pleasantness
Pleasant 0.63 0.83 0.72 0.63 (0.17) 0.67 0.77 0.72 0.66 (0.14)Unpleasant 0.63 0.38 0.47 0.64 0.52 0.57

Familiarity Familiar 0.59 0.16 0.25 0.67 (0.13) 0.70 0.32 0.44 0.72 (0.16)Unknown 0.68 0.94 0.79 0.72 0.93 0.81

Standard deviations of the accuracy are inside brackets
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Table 7. Classification metrics: shape parameters (SP) versus PRV + SP.

Weighted kNN SP PRV + SP
Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Valence
Positive 0.68 0.73 0.70 0.66 (0.18) 0.71 0.74 0.72 0.69 (0.16)Negative 0.64 0.58 0.61 0.67 0.62 0.64

Arousal
High 0.58 0.58 0.58 0.62 (0.19) 0.59 0.56 0.57 0.62 (0.15)Low 0.65 0.65 0.65 0.65 0.68 0.66

Dominance
In control 0.68 0.69 0.68 0.62 (0.17) 0.68 0.83 0.75 0.67 (0.19)Out of control 0.53 0.51 0.52 0.63 0.43 0.51

Pleasantness
Pleasant 0.68 0.75 0.71 0.66 (0.20) 0.67 0.70 0.68 0.64 (0.16)Unpleasant 0.62 0.54 0.58 0.59 0.56 0.57

Familiarity Familiar 0.57 0.45 0.50 0.69 (0.16) 0.57 0.41 0.45 0.69 (0.16)Unknown 0.74 0.82 0.78 0.74 0.79 0.82

Gaussian SVM
SP PRV + SP

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Valence
Positive 0.64 0.77 0.70 0.63 (0.15) 0.65 0.82 0.73 0.66 (0.16)Negative 0.63 0.47 0.54 0.68 0.47 0.56

Arousal
High 0.59 0.44 0.50 0.61 (0.18) 0.62 0.48 0.54 0.63 (0.17)Low 0.62 0.75 0.68 0.64 0.75 0.69

Dominance
In control 0.65 0.87 0.74 0.65 (0.19) 0.65 0.90 0.90 0.65 (0.21)Out of control 0.63 0.31 0.42 0.66 0.28 0.39

Pleasantness
Pleasant 0.62 0.78 0.69 0.61 (0.16) 0.67 0.77 0.72 0.66 (0.16)Unpleasant 0.58 0.39 0.47 0.64 0.52 0.57

Familiarity Familiar 0.84 0.78 0.20 0.71 (0.13) 0.70 0.32 0.44 0.72 (0.16)Unknown 0.70 0.39 0.98 0.72 0.93 0.81

Standard deviations of the accuracy are inside brackets

In Table 8, we report the features we chose with the SFS (Sequential Forward Selection)
procedure. We performed a total of 40 classifications (four sets of features times two
algorithms times five emotional variables). In many cases, the SFS procedure has selected
similar HRV and PRV parameters for the same emotional variable.

Table 8. Relevant features.

Weighted kNN HRV PRV SP PRV + SP

Valence SD1SD2R, VLF HR, SDNN, LFHFratio RMSSD_AsAd HR, RMSSD, RMSSD_R3,
RMSSD_R4

Arousal SDNN, SD2, VLF, LF SDNN, SD1 R1_m SDNN, SD1

Dominance LFHFratio RMSSD, pLF R2_m, amp_m RMSSD, pLF, RMSSD_R2,
RMSSD_LrLs

Pleasantness HF LF RMSSD_AsAd,
RMSSD_R3, LrLs_m LF, LFHFratio, AsAd_m

Familiarity ApEn, VLF, HF RMSSD, SD1, SD2 RMSSD_R3, LrLs_m RMSSD_R3, LrLs_m

Gaussian SVM HRV PRV SP PRV + SP

Valence HR, TRI, SD2, LFHFratio,
VLF, LF TRI, ApEn RMSSD_LrLs,

RMSSD_amp, P90_m pLF, pHF, P90_m

Arousal HR, SDNN, SD1SD2R, LF,
VLF TINN, SD2, LF RMSSD_AsAd SDNN, RMSSD_AsAd,

RMSSD_amp

Dominance RMSSD SDNN, RMSSD RMSSD_AsAd,
RMSSD_RS

RMSSD, RMSSD_RS,
R3_m

Pleasantness
SDNN, TINN, apen, SD2,
SD1SD2R, pLF, LFHFratio,

VLF, LF
SD1, SD2 RMSSD_LrLs, P90_m SD1, SD2

Familiarity SD1SD2R, LF RMSSD, SD1, SD2 RMSSD_R4, LrLs_m RMSSD, SD1, SD2

To better appreciate the performance of the KNN and SVM algorithms, in Figures 11 and 12,
we make an equal comparison of the classification results obtained with the two methods. The
graphs show the accuracy values and the standard deviation of the accuracy (the same reported
in Tables 6 and 7). In total, we have 40 values: 5 emotional variables times, 4 sets of features
(HRV, PRV, SP, PRV + SP) times, and 2 algorithms. The standard deviation of the accuracy was
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calculated based on the accuracy values of each volunteer, i.e., based on the percentage of exact
predictions referred to that volunteer.
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Figure 12. Accuracy standard deviation. Each point represents the accuracy standard deviation with
which one of the five emotional variables was classified, having used one of the four sets of features.

The SVM algorithm gives us better results than the KNN algorithm; in most cases, we
have higher accuracy values and a smaller standard deviation.

3.3. Impact on Classification of the Individual Differences

We made an analysis to understand if individual differences produce a disturbing
effect that could worsen the results of the classification. As is known, HRV and PRV
parameters have values that depend on individual factors, such as sex, age, time of day,
and physical activity. First, we made a stratification of the data according to the sex of our
volunteers. The male–female distribution of some PRV features is shown in Figure 13. Our
trends are like those described in [27].
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Figure 13. Analysis of six PRV features. Values distributed into the two classes: Man, Woman. Un-
paired t-test, two-tailed. The means are significantly different in four cases: SDNN, HF, LF, and SD2.

In Figure 14, there are some more details about the classification results. The 238 observations
were divided into two groups: 109 belong to men, 129 to women. The confusion matrices show the
results of classification using: the KNN algorithm, PRV + SP features, and LOSO cross-validation.
There is only one statistically significant difference between the results for men and women: the
classification of pleasantness (“unpleasant” class).
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Figure 14. Confusion matrices. Values distributed into the two classes: Man, Woman. Classification
obtained with: KNN algorithm, PRV + SP features, LOSO cross-validation. The values marked with
one asterisk, in the box relating to the Pleasantness variable, are significantly different (Mann–Whitney
test, two-tailed, based on the values that refer to each volunteer). p = 0.038.

In Figure 15 the 238 observations were divided into two groups: 125 belong to anxious
volunteers (State anxiety > 45), and 113 belong to calm volunteers (State anxiety < 45). The
confusion matrices show the results of classification using: the KNN algorithm, PRV + SP
features, and LOSO cross-validation. There is only one statistically significant difference
between the results for anxious and calm subjects: the classification of dominance (“in
control” class).
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Figure 15. Confusion matrices. Values distributed into the two classes: Anxious, Calm. Classification
obtained with: KNN algorithm, PRV + SP features, LOSO cross-validation. The values marked with
two asterisks, in the box relating to the dominance variable, are significantly different (Mann–Whitney
test, two-tailed, based on the values that refer to each volunteer). p = 0.0064.

We analyzed the data in more detail to understand the extent to which the state
of anxiety can determine the accuracy of the classification. In Figure 16, there are the
correlation plots of accuracy and anxiety values, referred to as the dominance emotional
variable. The accuracy of the classification is significantly reduced as state anxiety increases,
especially if the SVM algorithm is used. The KNN algorithm seems less sensitive to
individual disturbing factors.
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4. Discussion

Differences in HRV and PRV have been studied under various physiological conditions.
Mejia-Mejia and colleagues [28] investigated the differences between HRV and PRV, in a
whole-body cold exposure (CE) experiment. Most of the PRV time-domain and Poincaré
plot indices increased during cold exposure. HRV-derived parameters showed a similar
behavior but were less affected than PRV. Frequency-domain absolute power indices (i.e.,
LF, HF, and total power TP) showed the worst agreement between HRV and PRV, as in our
experiment. However, they found that PRV generally overestimates HRV indices, especially
under cold exposure.

The HRV and the PRV measures obtained from the index fingers of both hands were
compared in the work of Wong and colleagues [31]. The values of LF and HF obtained
from ECG and PPG exhibit significant differences. Additionally, insufficient agreement was
found in the pairwise comparisons of left PRV versus right PRV. The authors of that work
concluded that, for this reason, PRV cannot be used as a surrogate for HRV.

We experimentally found a good match between the HRV parameters and the cor-
responding PRV parameters, with some exceptions as reported in the previous section
(Figures 7–9). These differences have already been reported in the literature in volunteers
subjected to physiological stimuli of a different nature (not emotional) [26,40]. The use of
PPG as an ECG surrogate must be evaluated case by case. It is more convenient to think of
the PPG signal as a different biomarker, which provides a richer set of information than
what can be derived from the IBI sequence. [42]

We have shown that PPG technology can be used for emotion recognition instead of
ECG technology with comparable, slightly better, results. The use of shape parameters
derived from the PPG signal, combined with the more traditional HRV parameters, derived
from beat duration, is advantageous. It, therefore, appears that the form of the PPG signal
contains additional physiological information that is useful for emotion recognition.

In fact, the shape of the PPG signal and its variation are determined by the electrical
input that arrives at the sino-atrial node of the heart, but also by inputs that arrive directly
to the arteries, and many other factors, like arterial stiffness. What is interesting is that the
simultaneous presence of so many concomitant factors is not a source of confusion, but
rather contributes to improving the recognition of emotions.

The results we obtained are in line with the most recent literature. Here, we cite some
examples of studies where a procedure comparable to our work was used.

In the article by Sepulveda and colleagues [43] the physiological signals of a public
dataset AMIGOS [44] were used. Valence and Excitation binary classes were evaluated
with a parameter extraction procedure using wavelet transform scattering. For comparison,
the classification with traditional HRV parameters was also made. Six of the most common
classification algorithms were tested.

Using HRV parameters, accuracy values were obtained in the range of 52–59% for
valence and values in the range of 57–60% for arousal.

Wei and colleagues [45], using the MANHOB-HCI [46] dataset, developed an emotion
recognition model based on the fusion of multichannel physiological signals. In their study,
they attempted to classify five emotions, according to the Discrete Emotional Model by
Ekman [47]: Sadness, Happiness, Disgust, Neutral, and Fear. Based only on the ECG
signals, they obtained an average recognition rate (accuracy) of 68.75%. With their four-
signal fusion model (EEG, ECG, respiration, and GSR), the accuracy reaches 84.62%.

Ferdinando and colleagues [48], using ECG signals from the MANHOB-HCI [44]
database and features from standard Heart Rate Variability analysis, obtained average
accuracies for valence and arousal of 42.6% and 47.7%, respectively, with 10-fold cross-
validation. Much better accuracy values were obtained using methods other than the
traditional HRV analysis. Selvaraj and colleagues [49] induced six basic emotional states
(happiness, sadness, fear, disgust, surprise, and neutral) using audio-visual stimuli. The
non-linear feature ‘Hurst’ and Higher Order Statistics (HOS) were computed. The features
were then classified using several classifiers. An accuracy of 92.87% for classifying the six
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emotional states was obtained using a Fuzzy KNN classifier with random cross-validation.
The accuracy is reduced to 76.45% using a subject-independent validation (Leave-one-
subject-out, LOSO).

Valenza and colleagues [24] proposed a personalized probabilistic framework able to
characterize the emotional state of a subject through the analysis of heartbeat dynamics
exclusively. They achieved an average accuracy of 71.43% in recognizing self-reported
emotions with a non-linear feature set. The accuracy is reduced to 67.19% using only linear
features. LOSO cross-validation was used.

This brief review of emotion classification studies, based on ECG only, makes no claim
to completeness. We undertook it with the sole purpose of verifying whether the accuracy
values we obtained are in line with what is reported in the literature.

5. Conclusions

The traditional parameters derived from ECG/PPG signals in the time domain and in
the frequency domain (SDNN, RMSSD, LH, HF, . . . ) are still considered the most obvious
and natural choice to describe HRV. For this reason, using these traditional parameters for
an ECG versus PPG comparison makes sense.

This study examined whether the use of PPG sensors can be effective in detecting
emotional states, such as anger, overexcitement, and anxiety. For this purpose, a range of
emotional responses was elicited in thirty-one young, healthy subjects.

The detection rate of the main emotional variables obtained with the PPG technology
was compared and statistically analyzed, with the detection rate obtained using ECG
technology. It is confirmed that with PPG technology, we can obtain the recognition rates
of emotional variables comparable to those obtainable with the more traditional ECG
technology. We made an equal comparison by extracting from ECG and PPG signals the
parameters that are commonly referred to as HRV and PRV parameters, and we found that
they have similar values and trends (with some exceptions), as well as similar effectiveness
in discriminating the levels of some emotional variables.

There are large disturbances in HRV measurements, due to individual differences, as
can be easily seen in Figure 6. Individual differences can be compensated to a certain extent
by the normalization procedure we adopted. Our experimental procedure highlighted an
important disturbing factor: the individual’s state of anxiety and mood, which we have
measured with psychological tests (POMS and STAI -Y). The effect of this factor can be
seen in the Figures 14–16. The ability (of the algorithms we use) to predict the emotional
response degrades as the state of anxiety increases. This is clear evidence that physiological
parameters are driven both by the mood of the individuals and by the stimuli. Future
studies on emotion recognition should carefully take into account this factor and introduce
the measure of state anxiety as a standard step of the experimental procedure.

The main finding of our work is the following: we have shown that from the PPG
signal, it is possible to extract new parameters related to the shape of the pulse, not derived
from the period, like the traditional HRV parameters. These new shape parameters (SP)
have been found to be effective in recognizing levels of emotional variables.

The variability of the parameters obtained from PPG, both the traditional PRV and
those derived from the shape, is controlled by the inputs of the autonomic nervous system,
such as HRV. However, the ways through which this control is carried out are different.
The electrical signal comes directly from the heart and indicates the interaction of the
autonomic nervous system with the heart’s nerve centers. The optical signal derives
from the oscillations of the heart but also from the arteries, which have nerve endings
independent from those of the heart, and which receive input from the autonomic nervous
system through different nerve endings.

We have shown that it is possible to measure the response of the autonomic nervous
system to emotional stimuli thanks to a physiological effect, so far not considered or little
considered (to our knowledge).
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The circulation of the blood in the peripheral vessels is favored/disadvantaged by
a low/high stiffness of the arteries. Our study indicates that the stiffness of the arteries,
mainly linked to factors such as age, atherosclerosis, etc., is also modulated by responses
to emotional stimuli. This modulation effect is new, or at least rarely reported in the
literature. The autonomic nervous system, in response to emotional stimuli, acts in two
ways: it changes the rhythm of the heart (HR and HRV) and, at the same time, changes
the stiffness of the arteries. This change is temporary and reversible. The stiffness of the
arteries is easily detectable because it modifies the shape of the PPG pulse. Thus, the shape
parameters (SP) are a different biomarker from HRV and PRV but are useful for revealing
emotional responses.

Even if these results were obtained from a homogeneous sample of young adults,
they are promising in view of further validations with other age cohorts and people with
pathological health conditions.

Ultimately, this work represents the first step of a larger project, which aims to diversify
the sample and use a multimodal system that includes other psychophysiological detection
techniques, such as EEG and GSR.
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