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Abstract: Epilepsy is one of the most common neurological disorders, characterized by the occurrence
of repeated seizures. Given that epilepsy is considered a network disorder, tools derived from network
neuroscience may confer the valuable ability to quantify the properties of epileptic brain networks.
In this study, we use well-established brain network metrics (i.e., mean strength, variance of strength,
eigenvector centrality, betweenness centrality) to characterize the temporal evolution of epileptic
functional networks over several days prior to seizure occurrence. We infer the networks using long-
term electroencephalographic recordings from 12 people with epilepsy. We found that brain network
metrics are variable across days and show a circadian periodicity. In addition, we found that in 9 out of
12 patients the distribution of the variance of strength in the day (or even two last days) prior to seizure
occurrence is significantly different compared to the corresponding distributions on all previous days.
Our results suggest that brain network metrics computed fromelectroencephalographic recordings
could potentially be used to characterize brain network changes that occur prior to seizures, and
ultimately contribute to seizure warning systems.

Keywords: epilepsy; functional network; evolving network; graph theory; EEG; ECG; seizure lateralization

1. Introduction

The human brain is a dynamic system that undergoes several dynamic changes due
to, for example, different cognitive processes, states of vigilance or motor tasks [1]. The
brains of people with epilepsy (PWE) have an additional dynamic change in their dynamic
repertoire, making transitions between “normal activity” and “seizure activity” [2]. The
occurrence of repeated seizures is the main characteristic of epilepsy and seizures that
cannot be controlled by medications cause a significant burden in the lives of PWE [3,4].
Epilepsy is considered to be a network disorder, with several studies suggesting that even
focal seizures arise from large-scale networks [5–8]. A network can be characterized as being
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composed of nodes that are connected with edges. In a large-scale brain network, the nodes
represent brain regions whilst the edges denote statistical interactions between the nodes
(functional network) or anatomical connections between the nodes (structural network) [9].
Hence, to better understand epilepsy it may be valuable to study the topological properties
of the epileptic brain networks.

Brain networks can be studied at different spatial and temporal scales using different
data modalities [10]. Several studies that aimed to investigate the temporal evolution
of epileptic brain networks from minutes to hours and days used intracranial electroen-
cephalographic recordings (iEEG) and built functional networks [11–15]. They assumed
each iEEG channel constituted one node and inferred statistical connections between the
nodes using linear and non-linear connectivity measures. To characterize topological prop-
erties of the brain networks they used metrics from graph theory such as degree (number
of links of nodes), betweenness centrality (quantifying the influence that a node has over
the flow of information in the network), clustering coefficient (quantifying the tendency
of nodes to cluster together) and shortest path length [16,17]. These studies reported high
temporal variability of the graph theory metrics across many days with the presence of
daily rhythms having a key role in this temporal variation. Moreover, they reported that
the brain network evolves from a random structure to a more regular structure during
seizures with increasing randomness after seizure termination.

Although iEEG recordings have excellent data quality, their acquisition is highly inva-
sive as it requires brain surgery. In addition, the iEEG electrodes are implanted in spatially
limited brain regions and hence do not record electrical activity from the whole brain.
In this study, we use longitudinal non-invasive scalp electroencephalographic recordings
(EEG) from PWE and build evolving functional networks that span from 2 to 11 days. Using
metrics from graph theory we quantify the topological properties of the brain networks and
explore their temporal evolution across many days prior to seizure occurrence. We further
investigate the presence of periodic patterns in this temporal evolution. Considering the
influence of daily rhythms in the temporal evolution of the graph theory metrics, we ask
whether the graph metrics that are computed from brain networks of the day prior to
seizure occurrence show particular changes in the brain network topology compared to
the previous days. Since the EEG acquisition was accompanied with an electrocardio-
gram (ECG) acquisition, we also investigated the temporal evolution of cardiac metrics
(heart rate and heart rate variability). Finally, we discuss the study findings and highlight
their importance.

2. Materials and Methods
2.1. Participants Recruitment

Study participants were recruited from July 2017 to February 2020 via the European
RADAR-CNS (Remote Assessment of Disease and Relapse—Central Nervous System)
study. During this period, 71 participants with an epilepsy diagnosis were admitted to
the Epilepsy Monitoring Unit (EMU) of King’s College Hospital, London as part of their
clinical workup. The length of the patients’ stay in the EMU was no more than two weeks
and was determined by clinical considerations. All patients were monitored continuously
via a video-EEG system that recorded simultaneously brain and cardiac activity resulting
in 21-channel EEG (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, A1, A2, P3, Pz, P4,
T6, O1, O2; electrode placement according to the modified Maudsley system) and two ECG
signals. The sampling frequency was either 256 Hz or 512 Hz. An expert neurologist (E.B.)
reviewed all EEG recordings and annotated the timestamps of the seizures′ onset and offset.
More details regarding the data acquisition can be found in Bruno et al. [18].

2.2. Inclusion and Exlusion Criteria

Since we were interested in the multiday temporal evolution of brain networks prior
to seizure occurrence we excluded from the analysis all patients who did not experience
seizures during their stay in the EMU. In addition, patients who had seizures for which
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there was not at least a two-day seizure-free period prior to the seizure occurrence were
also excluded from this analysis. Hence, the final dataset that we analyzed comprised 12
participants (one seizure per patient) for whom the seizure-free period prior to the seizure
occurrence spanned from 2 to 15 days (Table 1).

Table 1. Demographic information of the study participants.

Patient ID Age Sex Seizure
Focus

Epilepsy
Type

Number of
Analyzed
Days Prior
to Seizure

Occurrence

Number of
Analyzed

EEG Epochs

Number of
Analyzed

ECG Epochs

KCL 1 65 male right RTLE 11 262 258
KCL 2 32 female unclear TLE 6 142 128
KCL 3 38 female unclear FLE 5 110 0
KCL 4 28 male left LTLE 4 91 64
KCL 5 37 female left LTLE 3 61 0
KCL 6 35 male left LTLE 3 64 41
KCL 7 52 male unclear TLE 3 70 69
KCL 8 47 female right RTLE 3 71 71
KCL 9 43 male unclear FLE 3 70 68
KCL 10 39 male unclear IGE 2 45 45
KCL 11 22 male unclear TLE 2 47 46
KCL 12 55 male unclear TLE 2 48 0

Abbreviations: RTLE (Right Temporal Lobe Epilepsy); LTLE (Left Temporal Lobe Epilepsy); TLE (Temporal Lobe
Epilepsy); FLE (Frontal Lobe Epilepsy); IGE (Idiopathic Generalized Epilepsy).

2.3. Ethics Statement

The study was conducted in accordance with the Declaration of Helsinki. All par-
ticipants gave written informed consent and the study procedures were approved by the
London Fulham Research Ethics Committee (16/LO/2209; IRAS project ID216316).

2.4. EEG Measurements

We visually inspected the available EEG recordings and selected a 20 s artifact-free
epoch from every hour (i.e., 24 EEG epochs/day). Across all patients, the minimum amount
of available daily EEG epochs was 21 (missing epochs originated due to the disconnection
of the electrodes or low signal quality).

2.4.1. Data Preprosessing

An overview of the data preprocessing and analysis pipeline is illustrated in Figure 1.
First, we excluded from the analysis the Fp1, Fp2, A1, A2 channels due to the frequent
presence of eye/muscle artifacts. Hence, the EEG channels that we analyzed comprised
17 channels. All EEG data were downsampled to 256 Hz, re-referenced to the median and
band-passed filtered with a fourth-order Butterworth filter (forward and backward filtering
was applied to minimize phase distortions) in four frequency bands, i.e., delta (1–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz) and theta (13–25 Hz).
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2.4.2. Functional Network

We built functional networks for each 20 sec EEG epoch by associating the network
nodes to electrodes, whilst the edges between the nodes i and j were derived by the phase
locking value (PLV) [19–21],

PLVi, j =
1
N

∣∣∣∑N
k=1 ei ∆φi, j(tk)

∣∣∣ ,

where N is the number of samples and ∆φi,j(tk) is the instantaneous phase difference
between the EEG signals that correspond to nodes i and j. The phases were extracted
from the filtered signals using the Hilbert transform. To account for the possible effects
of volume conduction [22], connections at zero time lag τi, j = arg

(
∑N

k=1 ei ∆φi, j(tk)
)

were
discarded. Further, to account for the presence of connections that are due to chance or
due to the finite length of the signals we additionally used surrogate signals. In particular,
for every pair of signals, we generated 99 surrogate pairs of signals using the iterative
amplitude-adjusted Fourier transform (IAAFT) with 10 iterations [23,24]. Hence, for every
PLV value of the (i, j) pair of nodes we obtained a distribution of 99 PLV values from the
surrogate signals. If the PLV value of the (i, j) pair was higher than 95% of the PLV values
of the surrogate pairs, it was retained as a weight between the nodes i and j, otherwise it
was set to zero. This process was executed for all four frequency bands and hence for each
20 s EEG epoch, we obtained four functional networks.

2.4.3. EEG Metrics

Following the computation of the undirected, weighted functional networks we char-
acterized their structure by using brain network metrics from graph theory such as strength,
eigenvector centrality and betweenness centrality [16,17]. The strength of a node is the sum
of its weights whilst the betweenness centrality of a node denotes the number of times for
which the shortest path lengths of other nodes pass through that node. The eigenvector
centrality is a measure of the importance of a node, i.e., nodes with large eigenvector
centrality are connected to other central nodes. In our study, we are interested in global
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network properties and thus we computed the mean strength
(
SM)

, average betweenness
centrality

(
CB), average eigenvector centrality

(
CE) which are the average of strength,

betweenness and eigenvector centrality across all nodes. In addition, we computed the
variance of strength

(
SV) which is the variance of the strength across all nodes.

2.5. ECG Metrics

As is clinically standard, the acquisition of the EEG signals was performed simultane-
ously with an ECG acquisition and hence the selected 20-s EEG segments were accompanied
by two channels of ECG data. Therefore, along with the temporal evolution of the EEG
metrics we sought to investigate the temporal evolution of ECG metrics. In each 20 s epoch
from the two available ECG signals, we selected the signal with the best quality. In the case
where neither ECG channel showed reasonable quality, we discarded the corresponding
ECG epoch from the analysis. If the amount of the available ECG epochs was less than
16 (i.e., 2/3 of the expected amount of daily epochs) we discarded that patient from this
analysis. This was the case for 3 out of the 12 analyzed patients (Table 1). Similarly to the
EEG acquisition, the sampling frequency of the ECG signal was either 256 Hz or 512 Hz.

HR and HRV Metrics

After downsampling the ECG signal to 256 Hz, we used the Pan-Tompkins algo-
rithm [25] to detect the QRS complexes. Using detected R-peaks of the QRS complexes, we
computed the heart rate (HR) and heart rate variability (HRV) for each ECG epoch. We
estimated the HR by multiplying by three the number of R-peaks of the corresponding
ECG segment (i.e., 3 × 20 s = 1 min), whilst the HRV was estimated by the root mean
square of the successive difference (RMSSD) of the R-peaks [26,27].

2.6. Statistical Analysis

For each EEG and ECG metric, we obtained a distribution of values whose number
was equal to the number of the analysed 20 s epochs. To account for local, single-sample
fluctuations that occur in the distributions of the EEG/ECG measurements, all values were
smoothed with a moving average backward filter of lag 5 (i.e., 5 samples) and normalized in
the [0, 1] range. In addition, to evaluate whether the distribution of the EEG/ECG metrics
of the day before the seizure occurrence was statistically significantly larger or smaller
compared to the corresponding distributions of the previous days we performed multiple
one-sided non-parametric Wilcoxon rank-sum tests. For instance, if a patient had six seizure-
free days before the seizure occurrence, we applied five one-sided Wilcoxon rank-sum tests
between the EEG metrics of the day prior to the seizure, i.e., d−1 and the EEG metrics of
each previous day {d−2, d−3, d−4, d−5, d−6}. To decide the side of the non-parametric test
(i.e., right or left sided) we compared the medians of the EEG metrics distributions from
the day d−1 and the furthest day from , e.g., day d−6. If median(d−1) > median(d−6) we
applied one-sided (right tail) tests, otherwise, one-sided (left tail) tests. Results deemed
significant for p-values < 0.05. To account for the effect of multiple comparisons (number of
EEG/ECG metrics, number of frequency bands, number of seizure-free days prior to the
seizure occurrence) we applied a Benjamini-Hochberg false discovery rate correction [28]
at a significance level of 5%. In the case for which the EEG/ECG metrics of the day before
the seizure were statistically significantly higher or lower compared to the corresponding
metrics of all the other previous days, we performed a bootstrapping approach to ensure
that the results were not due to chance. In particular, we randomly shuffled 100 times the
metrics values across different days (i.e., destroying the effect of the day whilst keeping
the same number of points in each day) and computed the number of times for which we
observed the same pattern (i.e., the metrics of the day before the seizure to be higher or
lower compared to the previous days). From this empirical distribution, we then obtained
a p-value. Results were deemed significant if p − value < 0.05. All calculations and
data visualization were performed in MATLAB and Statistics Toolbox Release 2020b (The
MathWorks, Inc., Natick, Massachusetts, United States) and Python version 3.10.0 (Python:
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A dynamic, open source programming language. Python Software Foundation. URL
https://www.python.org/, accessed date 9 August 2022). In addition, we used the Brain
Connectivity Toolbox [17] as well as the Raincloud Plots multi-platform tool [29].

3. Results
3.1. Temporal Evolution of the EEG and ECG Metrics

To gain insight into how brain network metrics vary across time and in particular
whether they present any particular behavior close to seizure occurrence we started our
analysis by illustrating the temporal evolution of the computed EEG metrics. Figure 2
demonstrates the temporal evolution of the brain network metrics (mean strength SM, vari-
ance of strength SV , average betweenness centrality CB, average eigenvector centrality CE)
in the alpha band, as well as the ECG metrics (HR and HRV) for the two participants (KCL1
and KCL2) who had the longest data available for analysis. We make three observations.
First, there is high variability in both EEG and ECG metrics across time. This variability
occurs regardless of the time of the day or the period of the seizure occurrence. Second,
in the KCL 1 participant, the mean strength SM and variance of strength SV tend to take
larger values in the days closer to seizure occurrence, i.e., days -1 and -2 show larger values
compared to days -11 and -10. Third, all metrics and in particular the ECG metrics, show
a partly periodic behavior, that can be possibly attributed to the presence of daily rhythms.
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Figure 2. Temporal evolution of the EEG metrics in the alpha band (mean strength SM; variance of
strength SV ; average betweenness centrality CB; average eigenvector centrality CE ) and ECG metrics
(heart rate HR; heart rate variability HRV) for the KCL 1 and KCL 2 participants. Vertical dashed red
line indicates the timestamp of the seizure. Shaded areas denote the 0:00 a.m.–8:00 a.m. time interval.

3.2. Periodicity of the EEG and ECG Metrics

Figure 2 illustrates that the EEG and ECG metrics show a strong periodic behavior.
To further investigate the contribution of different timescales in this apparent periodic
behavior we computed the power spectral densities (Lomb–Scargle periodogram) of all
metrics in all frequency bands. Figure 3 depicts the normalized power spectral densities
of all metrics in the alpha frequency band for all study participants. We observe that the
periodograms of the EEG metrics and particularly the variance of strength (SV) have in
almost all participants a dominant peak around 24 h. In addition, there is periodicity in
the subharmonics around 12 and 8 h. The ECG metrics show strong periodicity around
24 h across all patients. Interestingly, similar results hold for the other frequency bands, i.e.,

https://www.python.org/
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delta, theta, and beta (Figures S1–S3). This suggests that the temporal evolution of EEG
and ECG metrics is highly influenced by processes that occur on various timescales with
strong contributions to daily rhythms.
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Figure 3. Periodograms of all the EEG and ECG metrics in the alpha frequency band. HRV: hear rate
variability, HR: hear rate, CE: eigenvector centrality, CB: betweenness centrality, SM: mean strength,
SV : variance of strength. Note that participants KCL 3, KCL 5 and KCL 12 do not have ECG metrics
due to the absence of available ECG recordings (see Table 1).

3.3. Daily Distributions of the EEG and ECG Metrics

Having observed strong contributions of the daily rhythms in the temporal evolution
of the EEG and ECG metrics (Figure 3) we sought to explore the temporal evolution of the
daily distributions of the EEG and ECG metrics. In particular, we investigated whether the
distribution of the EEG/ECG metrics on the day prior to seizure occurrence is larger or
smaller compared to the daily distributions of the corresponding metrics of all previous
days. Hence, if a participant had five seizure-free days prior to seizure occurrence, i.e.,
{d−1, d−2, d−3, d−4, d−5} we obtained for each metric five daily distributions and applied
four one-sided Wilcoxon rank sum tests (corrected for multiple comparisons, see Section 2.6)
between the metrics of the day before the seizure d−1 and the metrics of each previous
day, i.e., {d−2, d−3, d−4, d−5 }. We performed this analysis for all EEG/ECG metrics in all
frequency bands.

Figure 4 illustrates the daily distributions of the variance of strength SV in the alpha
frequency band for all patients. We found that in 7 out of 12 participants the SV distribution
of the day before the seizure was either statistically significant larger (KCL 1, KCL 4, KCL
10, KCL 11) or smaller (KCL 5, KCL 8, KCL 12) compared to the SV distributions of all
previous days. Interestingly, in 2 out of 11 patients (KCL 2, KCL 9) the SV distributions of
the two last days before the seizure occurrence were similar but statistically significantly
smaller to all previous days. In addition, in 3 out of 12 participants the daily distributions
of the SV values in the day before the seizure occurrence did not differ from the previous
days. All p-values were corrected for multiple comparisons and reported in Table S1.
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Figure 4. Daily distributions of the variance of strength SV (alpha frequency band) for each seizure
free day prior to seizure occurrence. Dots illustrate the SV values obtained from each analyzed EEG
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whose distributions are statistically significantly different (one-sided Wilcoxon rank sum test) from
the distribution of day d−1 are illustrated in red, otherwise are depicted in green.
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We performed this analysis for the remaining frequency bands, i.e., delta (Figure S4),
theta (Figure S5) and beta (Figure S6), and found that the SV distribution of the day
prior to seizure occurrence was not consistently larger or smaller compared to the dis-
tributions of the previous days. Similar findings were also found for the mean strength
(Figures S7–S10), average betweenness centrality (Figures S11–S14) and eigenvector cen-
trality (Figures S15–S18) across all frequency bands. Therefore, the only informative EEG
metric that showed significant changes in the EEG metrics′ daily distribution prior to
seizure occurrence was the variance of strength in the alpha frequency band. To also ensure
that these findings were not due to chance, we performed a bootstrap method by randomly
shuffling 100 times the SV values across different days (i.e., destroying the effect of the day
whilst keeping the same number of points in each day). From this approach, we excluded
participants whose distributions were similar across days, i.e., KCL 3, KCL6 and KCL7. All
p-values < 0.05 and hence results were not attributed to chance.

Subsequently, we performed the same analysis for the ECG metrics. Figure 5 illustrates
the daily distributions of the heart rate HR across the patients for whom there were available
ECG recordings (Table 1). In 4 out of 9 participants, the distribution of the day before
the seizure was statistically significantly larger (KCL 2, KCL7, KCL 9) or smaller (KCL 8)
compared to the HR distributions of all previous days. In one out of 9 participants (KCL
4) the HR distributions of the two last days before the seizure occurrence were similar,
but statistically significantly larger from the HR distribution of their previous day. For
the remaining four participants either the daily HR distributions were similar across days
(KCL 6, KCL 10, KCL 11) or there was a fluctuation in the HR values across days (KCL
1). The corresponding heart rate variability (HRV) distributions were qualitatively similar
however with the opposite direction from the HR distributions (Figure S19).

3.4. Lateralization of the Seizure Focus

Having investigated the temporal evolution of the daily distributions of the EEG
metrics prior to seizures and found that the alpha frequency band is the most informative,
we sought to explore whether we can use the EEG metrics in the alpha band for further
analysis. We investigated whether the analyzed data could be informative to lateralize
the hemisphere of the seizure focus. Five study participants had a clear seizure focus
(Table 1; KCL 1, KCL 8 had a seizure focus on the right hemisphere; KCL 4, KCL 5, KCL
6 had the seizure focus on the left hemisphere). Figure 6 depicts the distributions of
the average eigenvector centrality of each hemisphere across all analyzed patients. We
found that in four out of five patients the hemisphere that contained the seizure focus had
statistically significantly higher eigenvector centrality compared to the other hemisphere.
We performed this analysis for the other EEG metrics, i.e., mean strength, variance of
strength, betweenness centrality, however, in mean strength and variance of strength there
were at least 3 out of 5 patients for which there was not a statistically significant difference
between the distributions of the two hemispheres (Figures S20 and S21). In addition, in
the average between centrality in 2 out of 5 participants there were statistically significant
differences between the two hemispheres and in one participant the difference was in
another direction (Figure S22).
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Figure 5. Daily distributions of the heart rate HR for each seizure free day prior to seizure occurrence.
Dots illustrate the HR values obtained from each analyzed ECG segment, whilst histograms and
boxplots depict their distribution. Horizontal lines in the boxplots indicate the median. The day
before the seizure occurrence, i.e., d−1 is denoted with blue. Days whose distributions are statistically
significantly different (one-sided Wilcoxon rank sum test) from the distribution of day d−1 are
illustrated in red, otherwise are depicted in green.



Biomedicines 2022, 10, 2662 11 of 15

Biomedicines 2022, 10, x FOR PEER REVIEW 11 of 16 
 

3.4. Lateralization of the Seizure Focus 
Having investigated the temporal evolution of the daily distributions of the EEG met-

rics prior to seizures and found that the alpha frequency band is the most informative, we 
sought to explore whether we can use the EEG metrics in the alpha band for further anal-
ysis. We investigated whether the analyzed data could be informative to lateralize the 
hemisphere of the seizure focus. Five study participants had a clear seizure focus (Table 
1; KCL 1, KCL 8 had a seizure focus on the right hemisphere; KCL 4, KCL 5, KCL 6 had 
the seizure focus on the left hemisphere). Figure 6 depicts the distributions of the average 
eigenvector centrality of each hemisphere across all analyzed patients. We found that in 
four out of five patients the hemisphere that contained the seizure focus had statistically 
significantly higher eigenvector centrality compared to the other hemisphere. We per-
formed this analysis for the other EEG metrics, i.e., mean strength, variance of strength, 
betweenness centrality, however, in mean strength and variance of strength there were at 
least 3 out of 5 patients for which there was not a statistically significant difference be-
tween the distributions of the two hemispheres (Figures S20 and S21). In addition, in the 
average between centrality in 2 out of 5 participants there were statistically significant 
differences between the two hemispheres and in one participant the difference was in an-
other direction (Figure S22). 

 
Figure 6. Distributions of the Average Eigenvector Centrality 𝐶ா of each hemisphere in the alpha 
frequency band. Each dot depicts the 𝐶ா value of the right (green) or left (orange) hemisphere as 
computed from a single EEG segment. KCL 1 and KCL 8 participants had the seizure focus on the 
right hemisphere (p-values 3.13 × 10ି  and 3.54 ×, respectively, one-sided Wilcoxon rank-sum 
test), whilst KCL 5, KCL 6 and KCL 4 had the seizure focus on the left hemisphere (p-values 1.75 × 10ିଵସ, 3.63 × 10ି and 0.9, respectively, one-sided Wilcoxon rank-sum test). 

4. Discussion 
In this study, we examined the multiday temporal evolution of brain network metrics 

prior to seizure occurrence. Using samples of scalp EEG recordings from every single hour 

Figure 6. Distributions of the Average Eigenvector Centrality CE of each hemisphere in the alpha
frequency band. Each dot depicts the CE value of the right (green) or left (orange) hemisphere as
computed from a single EEG segment. KCL 1 and KCL 8 participants had the seizure focus on the
right hemisphere (p-values 3.13× 10−6 and 3.54×, respectively, one-sided Wilcoxon rank-sum test),
whilst KCL 5, KCL 6 and KCL 4 had the seizure focus on the left hemisphere (p-values 1.75× 10−14,
3.63× 10−7 and 0.9, respectively, one-sided Wilcoxon rank-sum test).

4. Discussion

In this study, we examined the multiday temporal evolution of brain network metrics
prior to seizure occurrence. Using samples of scalp EEG recordings from every single hour
of each day we inferred functional brain networks in four frequency bands across multiple
days. We quantified the topological properties of the brain networks using metrics from
graph theory, i.e., mean strength, variance of strength, average betweenness centrality
and average eigenvector centrality. We found that the brain network metrics fluctuate
over time (Figure 2) and exhibit periodic-like behaviour with prominent circadian features
(Figure 3 and Figures S1–S3). Considering the contribution of daily rhythms in the temporal
evolution of the brain network metrics, we investigated whether the metrics in the day prior
to seizure were statistically significantly larger or smaller compared to all previous days. We
found that in 7 out of 12 patients the variance of strength in the alpha band on the day prior
to seizure was significantly different to all previous days, and in 2 out of 12 patients the
two last days prior to the seizure had similar distributions but were significantly different
to all previous days (Figure 4). Having observed that the alpha frequency band is the most
informative band in the temporal evolution of brain network metrics, we sought to explore
whether the graph metrics can be used to lateralize the seizure focus in the alpha band. We
found that in 4 out 5 patients who had a clear seizure focus the eigenvector centrality was
able to lateralize the hemisphere of the seizure focus (Figure 6).

Tools from network neuroscience have been widely used to characterize topological
properties of functional networks inferred from EEG recordings [10]. In the context of
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epilepsy, Khambhati et al. [30] showed that long-term frequency-dependent reorganization
of interictal functional networks reflects seizure proneness. In addition, Chowdhury et al.
2014 [31] showed that mean degree (equivalent to strength) in the low alpha band is able
to distinguish PWE from controls whilst Pegg et al. [32] showed that mean degree can
distinguish people with well-controlled and drug-resistant focal epilepsy. Furthermore, the
variance of strength has been reported to be higher in PWE and their first-degree relatives
compared to controls [31]. Eigenvector centrality is closely associated with computational
metrics that quantify the tendency of a brain network to generate seizures and it is able to
identify brain regions responsible for seizure generation [33,34]. Moreover, betweenness
centrality has been reported as a useful metric to identify brain regions that are neighboring
to the seizure onset zone [35]. Hence, we used in this study four network metrics, i.e., mean
strength (quantifies network connectedness), variance of strength (variation in the node
strength distribution), average eigenvector centrality (quantifies presence of network hubs)
and average betweenness centrality (quantifies presence of nodes that act like network
bridges), to capture different topological properties of the functional networks.

We found that the brain network metrics fluctuate over time and show periodic be-
haviour with a peak period around 24 h (Figure 2, Figure 3 and Figures S1–S3). These
findings are in line with previous studies that investigated the temporal evolution of brain
network metrics using intracranial EEG recordings. Kuhnert et al. [13] and Geier et al. [15]
inferred functional brain networks and used strength, betweeness centrality, clustering
coefficient, and shortest path length to characterize the topological properties of the net-
works. They reported temporal fluctuations of the metrics over time to a greater or lesser
extent as well as the strong contribution of daily rhythms in this temporal variation. How-
ever, those studies did not perform their analysis on specific frequency bands but applied
broadband filtering.

When we examined the temporal evolution of the daily distributions of brain network
metrics, we asked whether the metric’s distribution in the day prior to seizure takes smaller
or larger values compared to all previous days (Figure 3 and Figures S4–S19), and found
that the most informative metric was the variance of strength in the alpha frequency band
(Figure 3). In 7 out of 12 participants the distribution of the variance of strength in the
day prior to seizure was consistently larger (4 participants) or smaller (3 participants)
compared to all previous days. In 2 out of 12 patients, the variance of strength distributions
of the two last days prior to seizure was similar but statistically significantly smaller to all
previous days. The variance of strength quantifies the variability of the strength values
across the network nodes. High variance of strength means that the network has nodes
whose strength is much higher than the average strength of the network. This might indicate
a more regular network topology with nodes that act like hubs. On the other hand, low
variance of strength means that the strength values across nodes are similar. Lower strength
variability could be linked to increased synchronization (i.e., all nodes tend to connect
together tightly and have similar large strength values) or decrease in synchronization
(i.e., the connections between the nodes become looser and all nodes have similar small
strength values). It is suspected that seizures are generated due to the imbalance between
inhibition and excitation [36]. Previous studies that used intracranial EEG recordings and
studied changes in phase synchronization and network topology metrics before, during and
after seizure in a high temporal resolution (from seconds and minutes to hours) reported
both a decrease and increase in synchronization prior to seizure occurrence, however,
a synchronization decrease is the most prevalent [36–38]. In addition, Schindler at al. [12]
reported that the network topology changes from a more random structure to more regular
in seizures and returns back to randomness towards seizure termination.

In patients with a clear seizure focus we also found that average eigenvector centrality
was higher in the hemisphere of the seizure focus (Figure 6). Eigenvector centrality is
a measure of node importance and in the context of epilepsy surgery, it has been shown to
serve a useful marker for the identification of network hubs and brain regions responsible
for seizure generation [33,34]. In addition, Coito et al. 2015 [39] studied directed connec-
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tivity in patients with left and right temporal lobe epilepsy and found different patterns
of time-varying connectivity between the two groups as well as the concordance of the
highest outflow region with the epileptogenic zone.

Considering that the EEG acquisition occurred simultaneously with an ECG acqui-
sition we also investigated the multiday temporal evolution of heart rate and heart rate
variability metrics. We quantified the heart rate variability using the root mean square of
the successive difference of R-peaks (RMSSD). Previous studies have shown that RMSSD
correlates with ECG frequency metrics, and it is a reliable metric even in ultra short-term
ECG recordings [26,27]. We found that the HR and HRV have a strong periodicity of around
24 h (Figure 3). This is in line with recent work from Karoly et al. [40] and Gregg et al. [41]
that used wearable devices to investigate heart rate cycles in people with epilepsy and
found the presence of circadian and multiday cycles. In addition, we found that in 4 out
of 9 participants the HR distribution of the day before the seizure was statistically signif-
icantly larger (3 participants) or smaller (1 participant) compared to the distributions of
all previous days. In one out of 9 participants (KCL 4) the HR distributions of the two last
days before the seizure occurrence was similar, but statistically significantly larger than
the HR distribution of the previous day. The corresponding heart rate variability (HRV)
distributions were qualitatively similar to the HR distributions however with opposite
trend (Figure S19).

Our findings should be interpreted by taking into account the study′s limitations. First,
the study participants were under combination therapy with two or more antiepileptic
drugs (AEDs) and during their stay in the EMU there was an ongoing change in the AEDs
in a patient specific manner (see Table S2). In addition, the analysed cohort was small and
hence further studies are needed to extend and validate our findings.

In conclusion, the findings of this study suggest that multiday brain network metrics
computed from EEG recordings could potentially be used to characterize brain network
changes that occur prior to seizures. In addition, they show promise as potential biomarkers
for the estimation of seizure risk and their incorporation in the study pipelines for long-term
wearable EEG mobile monitoring for epilepsy forecasting and management.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10102662/s1, The Supplementary material contains
Table S1: Table with the original p-values (one-sided Wilcoxon rank-sum test) between the variance
of strength distribution of the day prior to seizure (d−1) and the corresponding distribution of all
previous days; Table S2: Table with the Patients Antiepileptic drug treatment before their admission
to the hospital and the drug changes during patients stay to the hospital; Figure S1: Periodograms of
all the EEG and ECG metrics in the delta frequency band; Figure S2: Same as Figure S1, but in the
theta band; Figure S3: Same as Figure S1, but in the beta band; Figure S4: Daily distributions of the
variance of strength SV (delta frequency band) for each seizure free day prior to seizure occurrence;
Figure S5: Same as Figure S4 for the theta band; Figure S6: Same as Figure S4 for the beta band; Figure
S7: Same as Figure S4 for the mean strength and delta band; Figure S8: Same as Figure S4 for the
mean strength and theta band; Figure S9: Same as Figure S4 for the mean strength and alpha band;
Figure S10: Same as Figure S4 for the mean strength and beta band; Figure S11: Same as Figure S4 for
the average betweenness centrality and delta band; Figure S12: Same as Figure S4 for the average
betweenness centrality and theta band; Figure S13: Same as Figure S4 for the average betweenness
centrality and alpha band; Figure S14: Same as Figure S4 for the average betweenness centrality and
beta band; Figure S15: Same as Figure S4 for the average eigenvector centrality and delta band; Figure
S16: Same as Figure S4 for the average eigenvector centrality and theta band; Figure S17: Same as
Figure S4 for the average eigenvector centrality and alpha band; Figure S18: Same as Figure S4 for
the average eigenvector centrality and beta band; Figure S19: Daily distributions of the heart rate
variability HRV for each seizure free day prior to seizure occurrence; Figure S20: Distributions of the
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Variance of Strength SV of each hemisphere in the alpha frequency band; Figure S22: Distributions of
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