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Abstract: Osteoarthritis (OA) affects nearly 240 million people worldwide. Knee OA is the most
common type of arthritis, especially in older adults. Physicians measure the severity of knee OA
according to the Kellgren and Lawrence (KL) scale through visual inspection of X-ray or MR images.
We propose a semi-automatic CADx model based on Deep Siamese convolutional neural networks
and a fine-tuned ResNet-34 to simultaneously detect OA lesions in the two knees according to the
KL scale. The training was done using a public dataset, whereas the validations were performed
with a private dataset. Some problems of the imbalanced dataset were solved using transfer learning.
The model results average of the multi-class accuracy is 61%, presenting better performance results
for classifying classes KL-0, KL-3, and KL-4 than KL-1 and KL-2. The classification results were
compared and validated using the classification of experienced radiologists.

Keywords: CAD; OA knee; osteoarthritis; CNN; X-ray images; KL grades; deep learning

1. Introduction

Research in osteoarthritis (OA) pathology has been necessary for years due to its high
economic impact, disability, pain, and severe impact on the patient’s lifestyle. OA goes
beyond anatomical and physiological alterations (joint degeneration with gradual loss
of joint cartilage, bone hypertrophy, changes in the synovial membrane, and loss of joint
function) since cellular stress and degradation of the extracellular cartilage matrix begin
with micro-and macro-injuries [1]. Generally, OA is associated with aging. However, there
are other risk factors namely obesity, lack of exercise, genetic predisposition, bone density,
occupational injury, trauma, and gender [2,3].

OA affects nearly 240 million people worldwide [4]. According to the World Health
Organization (WHO), by 2050, approximately 20% of the world’s population will be over
60 years old. Of that percentage, 15% will have symptomatic OA, and one-third of these
people will be severely disabled [1–4].

Knee osteoarthritis (KOA) or knee joint disease is the most common type of arthritis
diagnosed, especially in older adults [2]. The population suffering from OA presents
symptoms such as chronic pain, crepitus, edema, morning stiffness, atrophy, decreased
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quadriceps muscle strength, and impaired postural control, which causes difficulty in
performing the usual activities of daily living [5].

Osteoarthritis is currently diagnosed by physical examination and commonly also
through images of X-ray, MRI scan, and arthroscopy [2]. However, these diagnostic tools
have low sensitivity and specificity due to the high level of subjectivity [6] and dependency
on the experience of the clinician making the diagnosis. The MRI technique has several
limitations, such as the expensive cost, and it depends on the chondral anatomical location
and the evaluating physician. Due to these factors, on many occasions the severity of
the chondral lesion is underestimated; observing that only 30% of the MRIs showed an
adequate cartilaginous state in all the anatomical locations.

Physicians measure the severity of knee OA according to the Kellgren and Lawrence
(KL) [7] grading system developed for visual inspection of X-ray images or MRI [4,7].
The KL system splits knee OA severity into five grades from grade 0 (normal) to grade 4
(severe) [6]. Hence, in MRI, the sensitivity oscillates between 92% in healthy cartilage and
5% in grade I lesions. Specificity also varies according to the grade of the lesion, reaching
96.5% in grade IV lesions and 38% in healthy cartilage [8].

Epidemiological studies manifest that due to the exponential growth in the prevalence
of OA, the health system is saturated, requiring a slow and repetitive process for the
diagnosis and to follow the evolution of the disease [6]. However, over the years and based
on the magnitude of the disease, other evaluation techniques have been developed, such as
shear wave elastography (SWE) [9].

SWE is a non-invasive technique, free of radiation, whose objective is to evaluate the
elasticity of the soft tissues. In OA, the atrophied function of the quadriceps femoris muscle
aggravates the pain of the knee and gradually worsens the mechanical function of the
quadriceps femoris [9].

Another technique for early detection of OA is vibroarthrography (VAG). This re-
producible, inexpensive, radiation-free, easy, and accessible tool takes advantage of the
vibrations and sounds generated by the joint during flexion-extension motion [10]. A
healthy, lubricated joint moves silently, while a pathologic joint with poorly lubricated,
rough articular surfaces generates incongruent motion and a readily noticeable sound
(crepitus) [11]. These vibratory signals in motion are generated by transient elastic waves
resulting from redistribution of joint material and can be recorded from the knee surface.
The published sensitivity and specificity range from 0.56–1 and 0.74–1, respectively [8].

In search of the simplest and most effective diagnosis without invasive methods,
science has combined parameters such as VAG, the support vector machine (SVM), and
the Bayesian decision rule to perform the VAG signal classifications. The classification
experiment results demonstrate that the Bayesian decision rule can produce an overall
classification accuracy of 84%, with a sensitivity value of 0.75 and a specificity value of
0.894 [12].

Due to the high prevalence of OA, it is necessary to develop new methods and
technologies to measure OA progression, grading, and detection [4]. In this context,
the development of algorithms and applications of Machine Learning (ML) and Deep
Learning (DL) would help physicians to get diagnoses and biomarkers to measure the
status and progression of OA more effectively by performing medical image analysis
through automatic or semi-automatic systems [2].

It is convenient to optimize the diagnosis through a computer-assisted approach based
on machine learning capable of solving the diagnostic problem through automatic X-ray
diagnosis; some of these models reach a detection of 98.516% and a classification accuracy
of 98.90% [13].

In the case of knee OA, e.g., Shamir et al. [7] proposed a technique with a sliding
window strategy to locate the knee joints. Antony et al. [14] proposed a fully convolutional
network (FCN) system to detect knee joints and for the automated quantification of the
severity of KOA according to the KL scale, which obtained a better classification accuracy
with KL grades 3 and 4 than grades 0, 1 and 2 due to the slight variations in the image(s).
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Thomson et al. [15] employed shape and texture analysis combined with a random
forest classifier in the radiograph knee, with an AUC of 0.849. Chen et al. [4] proposed a
method that combined two deep convolutional neural networks to detect and classify knee
joints according to the KL scale with a classification accuracy of 69.7% using the fine-tuned
VGG-19 [16] model compared with ResNet [17] or DenseNet [18]. The approach of Tiulpin
et al. [3] to learn the symmetry of a pair of knee X-ray images and identify similarity metrics
between the lateral section and the medial section of a knee is based on the Deep Siamese
network architecture that was implemented by Chopra et al. [19]. Their results show an
average multiclass KL accuracy of 66.71% through a Deep Siamese convolutional neural
network model.

Another combination with good results is using artificial neural networks (ANN) of
RBF (Radial Basis Function) and MLP (Multilevel Perceptron) types. An accuracy of 0.9
was obtained, with a sensitivity of 0.885 and a specificity of 0.917. It has been shown that
vibroacoustic diagnostics have great potential in the non-invasive assessment of damage to
joint structures of the knee [20].

One common problem with the use of deep learning is the availability of sufficient
data for the training and validation of the models [21]. In the case of OA, there are only
a few public standard datasets, such as the Multicenter Osteoarthritis Study (MOST) [22]
and the Osteoarthritis Initiative (OAI) [23].

Here we present a computer-assisted diagnostic (CAD) system to detect and auto-
matically classify knee OA by processing X-ray images and providing the KL grade. The
proposed model is based on the Deep Siamese convolutional neural networks and a fine-
tuned ResNet-34 to detect lesions in the two knees simultaneously. The problem of the
imbalanced dataset is solved using transfer learning. Training of the model is done with a
public dataset, whereas a private dataset was used for validation. The model results of the
classification are compared with the literature and the diagnosis of experienced radiologists.
The multiclass accuracy of the model is 61%.

2. Materials and Methods
2.1. Dataset

Different collections of knee X-ray images labeled according to the Kellgren–Lawrence
(KL) scale were utilized in this work (see Table 1). The dataset used for training and
validating the proposed model was obtained from Chen et al. [4]. The dataset contains
knee X-ray data with knee KL grading; the dataset is organized from OA [14]. The dataset
is a multi-center, longitudinal, prospective observational study of knee osteoarthritis (KOA)
aiming to identify biomarkers for OA onset and progression. This dataset [4] consists
of 4796 participants ranging in age from 45 to 79 years. The dataset contains about nine
thousand images, with the KL-0 class having the largest number of images and KL-4 the
smallest number of images.

Table 1. Description of the raw dataset and the processed dataset. The numbers in the tables indicate
the number of knee images used in each group.

Group Dataset Images KL-0 1 KL-1 KL-2 KL-3 KL-4

Raw dataset Chen et al., 2019 [4] 9182 3253 1770 2578 1286 285
Raw dataset Private hospital 376 58 65 95 113 45

Training Chen et al., 2019 [4] 20,022 4422 4395 4262 4648 2295
Validation Chen et al., 2019 [4] 1359 270 270 270 270 270

Test Private hospital 225 45 45 45 45 45
1 Kellgren–Lawrence grading system, KL-0 (normal) to grade KL-4 (severe).

For testing the model, a dataset composed of 376 knee X-ray images from a private
hospital was used [24]. The dataset was classified according to the KL scale by clinical
experts in OA pathology.
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2.2. Preprocessing

The number of images from Chen et al. [4] dataset varies according to the KL scale;
hence, it presents a class imbalance problem. The effect of class imbalance on classification
is detrimental to the performance of the model [25]. To improve the class imbalance, we
applied oversampling to the minority classes of the dataset based on the concepts exposed
by Buda et al. [25]. In addition, new training data were created from existing data through
data augmentation techniques [26].

Image data augmentation involves transformed versions of the original image belong-
ing to the same class. The transformation applied to the images was a random rotation
between −7 to 7 degrees, and the color jitter randomly changed the images’ brightness,
contrast, and saturation [26]. All images that could not be seen after the transformation
was discarded.

After preprocessing, 90% of this image set was used for model training and the rest for
validation. In the test dataset, images with a knee prosthesis or treatment of bone fracture
at the knee level were discarded. For a balanced dataset, 45 images of each class were taken,
giving a total of 225 images (see Table 1).

2.3. Network Architecture

The convolutional neural network used in this work is based on a fine-tuned ResNet-
34 [17], which was pre-trained on the ImageNet database [27]. Since the ResNet-34 was
trained to classify images amongst 1000 different classes, the original model’s last fully
connected (FC) layer was modified, and two extra FC layers were added in order to employ
the transfer learning methodology (see Figure 1). Since the ResNet-34 network was trained
with color images (RGB) for computer vision tasks, the training process was adapted as
X-ray images are greyscaled. Therefore, the grayscale channel of the X-ray image was taken
as input for each of the channels of an RGB image.
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Figure 1. Representation of the ResNet-34 architecture modified with two fully connected (FC) layers
added. The figure was adapted from [28].

To identify similarity metrics between the lateral and medial sections of a knee, we
used the Deep Siamese network [2] to allow learning the characteristics of knee osteoarthri-
tis and the level of disease. The images were cropped on the lateral and medial sides. The
medial side image was horizontally flipped to maintain symmetry with the lateral image.
The Deep Siamese CNN was fed a pair of images: the image of the lateral section provides
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one branch of the network while the image of the medial compartment was fed to the other,
as shown in Figure 2.
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The two branches of the network are composed of the same stages. Each branch would
learn the exact characteristics of the input images. Each branch consists of a convolution
network; the first step on the convolution network before entering ResNet layers (blue
boxes) consists of a convolution, batch normalization, and max-pooling operation. Each
ResNet layer comprises multiple blocks, consisting of convolution, batch normalization,
and a ReLU to an input.

The ResNet layer is followed by an average pool block, which is the input of the FC
layers. At the end of each branch, we have a map feature of input, and the result from
the two networks are concatenated. The final block is a SoftMax, which returns the model
result as a distribution of probabilities between 0 and 1 for each KL class (see Figure 3).

Figure 3. Software pipeline used in this project. The figure was adapted from [29].

3. Results
3.1. Classification of KL Degrees

The metrics used to analyze the results are confusion matrix, accuracy, precision,
and recall.

The proposed model was tested and evaluated using the private clinic dataset. The
confusion matrix for the KL grading results is presented in Figure 4. Table 2 summarizes
the number of the true positive (TP), false positive (FP), and false negative (FN) values,
precision, recall for each KL class and the execution time of the model to classify all the test
dataset images.



Diagnostics 2022, 12, 2362 7 of 13Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 4. Confusion matrix for KL grading according to the proposed model. 

For the implementation and training of the ResNet-34, the Pytorch framework and 
an Nvidia Tesla P-100 GPU card were utilized. The model was trained for 50 epochs, de-
tecting overfitting at 40 epochs. To reduce the overfitting, the training data were in-
creased through data augmentation. As a result, the overfitting no longer occurred after 
40 epochs but instead started at epoch 50. To reduce overfitting without compromising 
the model accuracy (Figure 5), early stopping was applied when the validation accuracy 
did not improve after 50 epochs 

 
Figure 5. Evolution of the accuracy for the training set and the validation set. 

3.2. KL Model Comparison 
The performance of the proposed model was compared with the diagnosis of expe-

rienced radiologists and clinicians from different hospitals in Ecuador. Each clinician la-
beled 11 knee X-ray images from the test dataset. The results are shown in Table 3 and 
Figure 6. The results obtained by the model are close to the assessment of the experts 
with the highest rate of diagnosis agreement in classes KL-0, KL-3, and KL-4. The per-
formance for the KL-1 class is closer to the assessment of the expert with the lowest di-
agnosis rate. The results for the KL-2 type are between the highest rate of diagnosis and 
the lowest rate of diagnosis. 

Figure 4. Confusion matrix for KL grading according to the proposed model.

Table 2. Summary of TP, FP, and FN values for each KL class.

Kellgren–Lawrence
Scale TP FP FN Precision Recall Execution Time

KL-0 32 14 13 70% 71%

6.11 s
KL-1 20 17 25 54% 44%
KL-2 27 17 18 61% 60%
KL-3 40 36 5 53% 89%
KL-4 20 2 25 91% 44%

For the implementation and training of the ResNet-34, the Pytorch framework and an
Nvidia Tesla P-100 GPU card were utilized. The model was trained for 50 epochs, detecting
overfitting at 40 epochs. To reduce the overfitting, the training data were increased through
data augmentation. As a result, the overfitting no longer occurred after 40 epochs but
instead started at epoch 50. To reduce overfitting without compromising the model accuracy
(Figure 5), early stopping was applied when the validation accuracy did not improve after
50 epochs
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3.2. KL Model Comparison

The performance of the proposed model was compared with the diagnosis of experi-
enced radiologists and clinicians from different hospitals in Ecuador. Each clinician labeled
11 knee X-ray images from the test dataset. The results are shown in Table 3 and Figure 6.
The results obtained by the model are close to the assessment of the experts with the highest
rate of diagnosis agreement in classes KL-0, KL-3, and KL-4. The performance for the KL-1
class is closer to the assessment of the expert with the lowest diagnosis rate. The results for
the KL-2 type are between the highest rate of diagnosis and the lowest rate of diagnosis.

Table 3. Model performance comparison with expert assessment.

Kellgren–Lawrence Scale Expert 1 Expert 2 Expert 3 Our Model

KL-0 73% 100% 36% 73%
KL-1 27% 73% 91% 27%
KL-2 64% 36% 36% 50%
KL-3 64% 36% 36% 73%
KL-4 82% 27% 73% 73%
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Table 4 compares the results obtained in this work with other published studies.
The table collects different metrics reported by the authors, including average multiclass
accuracy, kappa coefficient, and network training information. As shown, the results
obtained by our model outperform the results of Antony et al. [14]. Mainly, our model
performs with a higher accuracy and kappa coefficient for classification but does not achieve
the results obtained by Tiulpin et al. [3] and Zhang et al. [29].

Table 4. Model comparison to other models according (kappa an average multiclass accuracy).

Model Learning Rate Optimizer Kappa Average Multiclass
Accuracy

This work 1 × 10−4 Adam 0.79 61.71%
Tiulpin et al., 2018 [3] 1 × 10−4 Adam 0.83 66.71%

Antony et al., 2017 [14] 1 × 10−3 SGD 0.77 59.52%
Zhang et al., 2020 [29] - - 0.88 74.81%
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3.3. Classification and User Interface

A graphic interface has been developed where X-ray images can be loaded and
displayed. To process an X-ray image of the knee, users must first select directory in
the upper navigation bar. Once the directory is selected, all the *.dcm files will be loaded in
the navigation panel (Figure 7a).
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resolution of the original images could improve our results, but of course this also in-
creases the computational cost. Moreover, potentially misclassified images in the train-
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In this context, X-ray images have some advantages such as economic costs and ac-
cessible technology, even in low-income countries. However, it is fundamental to take 
care of the alignment of the X-ray beam and the orientation of the patellofemoral com-
partment for the diagnosis by radiographic images; these details help to identify the nar-

Figure 9. The graphic interface where the classification of severity of the knee osteoarthritis (KOA) is
shown according to the KL grades from the radiographic image.

4. Discussion and Conclusions

In this project, an approach for automatically diagnosing and grading knee OA from
plain radiographic images is presented and integrated with a graphical interface for manu-
ally selecting the region of interest.

Table 4 details the values of multiclassification compared with similar works [3,15,29].
Our method achieves an average multi-class accuracy of 61.71%, which is a good value,
especially with the classification of classes KL3 and KL 4.

The model seems to perform poorly in classifying KL-1 and KL-2 classes. This effect is
a limitation in the model developed. However, it is susceptible to improvement in future
works with better image preprocessing techniques and a better curation of the dataset. This
is due principally to the fact that the X-ray images are operant dependent and also there is
a slight difference between classes KL-1 and KL-2.

The interface developed gives the possibility to the physician to select the best region of
interest according to the best professional criteria. In addition, as stated by Zhang et al. [29],
there are intrinsic difficulties in distinguishing class KL-1 from KL-0 and KL-2 even for
experienced specialists. This last point can be seen in Table 3, e.g., the average classification
from experts in KL-1 and KL-2.

However, the model presents similar results for classifying classes KL-0, KL-3, and
KL-4 compared to radiologists (see Table 3). Nevertheless, the model obtains a good
accuracy, and kappa scores outperform previous studies reported (see Table 4); the model
can learn relevant features of OA and that learning can be transferred to different data sets.

The fact that compressed images were utilized for training may constitute a limitation
as it could have led to the loss of information present in the images; hence, a higher
resolution of the original images could improve our results, but of course this also increases
the computational cost. Moreover, potentially misclassified images in the training dataset
could somewhat affect the model’s performance. In addition, our model could be enhanced
by using more significant amounts of training images with a broader group of experts for
the classification.

In this context, X-ray images have some advantages such as economic costs and
accessible technology, even in low-income countries. However, it is fundamental to take care



Diagnostics 2022, 12, 2362 11 of 13

of the alignment of the X-ray beam and the orientation of the patellofemoral compartment
for the diagnosis by radiographic images; these details help to identify the narrowing of
the articular space (thickness of the articular cartilage), osteophytes and sclerosis of the
subchondral bone [10].

Currently, the KL classification is the most used clinical tool for the radiographic
diagnosis of OA [30]. Another essential factor to consider for medical decision-making
through X-ray images is the sensitivity and specificity of this KL scale which reaches 90%
and 24.6% [31], respectively.

The significant variability of symptoms in OA delays and hinders diagnosis. However,
pain is the main symptom requiring medical attention; pain also has a direct association
with radiological changes, as a study of 4680 participants [32] reported that 78.8% of
participants with OA felt pain, as diagnosed by X-ray.

The latter represents a moderate value in the early stages of joint injury, so the clinical
aspect is needed to reach the diagnosis [33]. This radiographic-clinical disagreement may
be manifested by the multifactorial origin of pain in each patient and the pain tolerance of
each individual [32]. It is here that data processing plays a crucial role in optimizing time
and reaching consensus on the different medical criteria.

Finally, the developed CAD constitutes a tool for training young specialists and
medical students. In future works, we plan to present results about the processing of
medical images with clinical data, which means working on a better personalization of the
treatment and diagnosis.
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