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Abstract: The zebrafish intestine and liver, as in other vertebrates, are derived from the endoderm.
Great effort has been devoted to deciphering the molecular mechanisms controlling the specification
and development of the zebrafish intestine and liver; however, genome-wide comparison of the
transcriptomes between these two organs at the larval stage remains unexplored. There is a lack of
extensive identification of feature genes marking specific cell types in the zebrafish intestine and
liver at 5 days post-fertilization, when the larval fish starts food intake. In this report, through RNA
sequencing and single-cell RNA sequencing of intestines and livers separately dissected from wild-
type zebrafish larvae at 5 days post-fertilization, together with the experimental validation of 47 genes
through RNA whole-mount in situ hybridization, we identified not only distinctive transcriptomes
for the larval intestine and liver, but also a considerable number of feature genes for marking
the intestinal bulb, mid-intestine and hindgut, and for marking hepatocytes and cholangiocytes.
Meanwhile, we identified 135 intestine- and 97 liver-enriched transcription factor genes in zebrafish
larvae at 5 days post-fertilization. Our findings provide rich molecular and cellular resources for
studying cell patterning and specification during the early development of the zebrafish intestine
and liver.

Keywords: enterocytes; hepatocytes; intestine development; liver development; RNA-seq; scRNA-seq;
transcription factors; zebrafish

1. Introduction

The digestive tract and accessory organs (liver and pancreas) form the digestive system,
which is specified and developed from distinct regions of the endoderm (e.g., in mice, the
stomach, liver and pancreas originate from the foregut endoderm, the small intestine
originates from the midgut endoderm and the large intestine originates from the hindgut
endoderm) [1–3]. In zebrafish, endoderm cells emerge first as individuals mingled with
mesoderm cells. Later, the endoderm cells migrate to form funnel-shaped cell aggregates
along the midline at ~24 h post-fertilization (hpf). The lower part of the funnel-shaped
endoderm develops further to yield a discernable intestinal tube, liver bud and pancreatic
bud at ~50 hpf [4–14]. By 5 days post-fertilization (dpf), with the mouth opening, the
zebrafish digestive system has been well established, marked by a fully functional liver and
a clearly patterned intestinal tube in the order of, from anterior to posterior, the intestinal
bulb, mid-intestine, hindgut and proctodeum, four functional domains [3,5,8,14]. The
development and functional specification of the zebrafish digestive system is orchestrated
by multiple genetic networks formed by signaling molecules and transcription factors
(TFs) [1,2,10,14–16]. It is worth mentioning that the zebrafish is stomachless and the
intestinal bulb is thought to be an analog of the stomach, while the hepatopancreatic duct
is fused to the rostral region of the intestinal bulb [8,14,17,18].
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Previous studies have shown that intestinal cells from the intestinal bulb toward
the proctodeum express regionalized specific genes to execute different physiological
functions, such as food digestion and nutrient absorption [3,19–22]. For example, Wang
and colleagues separated the intestine of an adult zebrafish into seven segments and
followed the microarray approach to compare the gene expression patterns. They found
that sections 1 to 5 (anatomically covering the intestinal bulb and mid-intestine) shared
similar transcriptomes, while sections 6 and 7 (mainly the hindgut together with the
proctodeum) were clustered into one group [20]. Lickwar and colleagues compared the
genome-wide mRNA and accessible chromatin data from the intestines of adult zebrafish,
sticklebacks, mice and humans. They found that there was a remarkable conservation
of genes expressed along the intestine among these four species and identified many
differentially accessible and cross-species-conserved regulatory regions in the intestine [3].
They divided the zebrafish intestine, from the anterior toward the proctodeum, into five
sub-regions, including ada+, fabp2+ rbp2a+, fabp6+ slc10a2+, lamp2+ and caudal intestine [3].
Recently, for the purpose of studying the microbe response processes in the zebrafish
intestine, Willms and colleagues pooled the intestine, liver and pancreas together from 6 dpf-
old zebrafish larvae for single-cell RNA sequencing (scRNA-seq) analysis. They annotated
18 cell types from the 35 cell clusters identified by scRNA-seq, including hepatocytes, acinar
cells, enterocytes, goblet cells, endocrine cells, tuft cells, etc. [21]. Although complicated by
the cells from the liver and pancreas, their detailed analysis showed that enterocytes, in
addition to the lysosome-rich enterocytes (LRE) [19], were composed of five cell clusters.
Unfortunately, they did not use feature genes to perform in situ hybridization to locate
these cells within the intestine [21]. Despite these valuable works, knowledge of the
gene expression profiles, cell types and their molecular features in the zebrafish larvae
intestine and liver at 5 dpf is yet to be fully elucidated, mainly due to the difficulty
and tedious labor of separating the tiny tissues at the embryonic stage. Deciphering
the transcriptomes and cell identities in the larval intestine and liver separately will no
doubt provide new molecular and cellular signatures for studying the specification and
developmental regulation of the digestive system.

In this report, we micro-dissected the intestinal tube and liver buds, respectively, from
zebrafish larvae at 5 dpf and then obtained satisfactory RNA sequencing (RNA-seq) data
from these samples. The RNA-seq data allowed us to identify not only the organ-specific
functional genes, but also the corresponding spectrum of TF genes expressed in the intestine
and liver at 5 dpf. We also obtained the RNA-seq data for three segments of the intestine
(anterior, middle and posterior) at 5 dpf, which allowed us to acquire a more elaborate
molecular view of the functional specialization of these regions at 5 dpf. Next, we acquired
the scRNA-seq data from the micro-dissected intestine and liver at 5 dpf and annotated
10 cell types in the intestine and 8 cell types in the liver. For the intestine, 3 of the 10 cell
types represented the regionalized enterocytes along the intestine at 5 dpf. In addition,
mapping the 385 intestine-specific genes identified by our RNA-seq analysis (intestine vs.
liver: fold-change > 4 and transcripts per million (TPM) > 50) to the 10 intestine cell types
by a feature plot unraveled their cellular specificity. In total, the expression patterns of
47 genes were validated by whole-mount in situ hybridization (WISH). These findings not
only extend our understanding of the molecular and cellular features in the larval intestine
and liver, but also provide a rich resource for studying the process of organogenesis and
development of the intestine and liver.

2. Materials and Methods
2.1. Fish Lines and Maintenance, Ethics Statement

The AB wild-type (WT) zebrafish strain was used in this study. Fertilized eggs were
placed in a petri dish containing egg water and allowed to grow to 5 dpf at 28 ◦C. All animal
procedures were adopted in full accordance with the requirement by the ‘Regulation for the
Use of Experimental Animals in Zhejiang Province’. This work was approved by the Animal
Ethics Committee in the School of Medicine, Zhejiang University (ETHICS CODE Permit
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NO. ZJU2011-1-11-009Y). The ppardazju1 mutant was generated using the CRISPR-Cas9
method with gRNA (5′-GAACGGGCTGGTCTGGAACC-3′) specifically targeting pparda.

2.2. WISH

Embryos were fixed in 4% PFA (PBS) for 12 h at 4 ◦C. WISH probes were labeled with
digoxigenin (DIG, Roche Diagnostics, Basel, Switzerland) according to the manufacturer’s
instructions. WISH was performed as previously described [23]. To generate the WISH
probes, PCR primers were designed based on available gene sequence data (Table S1) and
PCR products were purified and confirmed by sequencing prior to the generation of the
WISH probe. Images of the WISH embryos were captured under a Nikon microscope
(AZ100, Nikon, Tokyo, Japan).

2.3. RNA-Seq and Data Analysis

The intestine tissue or liver bud were dissected from 5 dpf-old zebrafish embryos.
Intestine tissues from ~30 embryos or liver buds from ~50 embryos were pooled and then
treated with TRIZOL for total RNA extraction. The micro-dissected intestine was also cut
into three fragments corresponding to the anterior, middle and posterior portions of the
intestine, and the fragments were pooled for total RNA extraction. The obtained total RNA
(~200–400 ng/sample) was used for library construction via the Smart-seq2 protocol as
described in [24]. Library sequencing was performed on an Illumina HiSeq X Ten PE150
platform (Illumina, San Diego, CA, USA). RNA sequencing reads were aligned with HISAT2
(version 2.1.0) to the zebrafish genome (GRCz11) and ENSEMBL v99 annotations [25–27].

Analysis of the differentially expressed genes (DEGs) was conducted with DESeq2
(v1.28.1) and gene ontology (GO) set overrepresentation analysis was performed with
ClusterProfiler (v3.16.1) [28,29]. TFBS analysis for the identification of TF regulators was
performed by David Bioinformatics Resources [30].

2.4. scRNA-Seq and Data Analysis

The scRNA-seq of the intestine tissue and liver bud was performed following the
microwell-Seq approach in this study [31]. For each sample, intestine tissues or liver buds
dissected from ~50 embryos at 5 dpf were pooled and digested with ACCUTASE (Yeasen
Biotechnology, Shanghai, China). A single-cell library was generated as described [31,32].
Library sequencing was performed on an Illumina HiSeq X Ten PE150 platform. Aligned
reads and gene barcode matrices were then generated from FASTQ files, including Read
1 and Read 2, using dropEst (v0.8.5) (https://dropest.readthedocs.io/en/v0.8.5/dropest.
html). Further analyses were performed with the R package Seurat (v4.0, Vienna, Austria)
(https://mran.microsoft.com/snapshot/2020-05-30/bin/windows/base/). A threshold of
unique counts over 2500 or less than 200 was set to filter cell doublets. Low-quality cells
that had >20% mitochondrial counts were filtered.

3. Results
3.1. Identification of DEGs between the Intestine and Liver at 5 dpf

We micro-dissected the intestine (from the intestinal bulb to the proctodeum) from
the WT zebrafish embryos at 5 dpf and obtained three independent samples by pooling
intestine tissue from ~30 embryos in each sample (Figure 1A). Similarly, three independent
liver samples, each by pooling micro-dissected liver buds from ~50 embryos at 5 dpf, were
obtained (Figure 1A). The total RNA was extracted from these samples and subjected
to RNA-seq analysis. The clean bases in the three intestine and three liver samples all
exceeded 12 GB. Data filtering using the Clean Q30 Bases Rate program revealed that the
Q30 for these six samples was between 86.5% and 93.1% (Table S2). Aligning the clean reads
to the zebrafish genome (GRCz11) (http://ftp.ensembl.org/pub/release-107/, accessed
on 14 May 2022) showed that 58.4–63.4% and 80–81.9% of the total clean reads from the
three intestine and three liver samples, respectively, were mapped to the zebrafish genome
(Table S2).

https://dropest.readthedocs.io/en/v0.8.5/dropest.html
https://dropest.readthedocs.io/en/v0.8.5/dropest.html
https://mran.microsoft.com/snapshot/2020-05-30/bin/windows/base/
http://ftp.ensembl.org/pub/release-107/
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Figure 1. Identification of DEGs between the 5 dpf larval intestine and liver by RNA-seq analysis.
(A) Flow chart showing the micro-dissection of the intestinal tube and liver bud from the zebrafish
embryos at 5 dpf. The intestinal tube and liver bud are outlined with white and yellow dashed lines,
respectively, in the embryo. (B) Heatmap showing the hierarchical clustering of the 2110 intestine-
enriched and 1637 liver-enriched DEGs in the three intestine and three liver RNA-seq samples.
(C) Heatmap showing the hierarchical clustering of the 385 intestine-specific and 308 liver-specific
genes. (D,E) WISH showing the expression of 8 intestine-specific genes (D) and 8 liver-specific genes
(E). Note that the ifi30 transcripts were enriched in the hindgut. The abbreviations of gene names
followed the ENSEMBL naming system.

The expression level of each gene in each sample was calculated based on the TPM.
In total, 19,653, 18,853 and 20,820 genes in the three intestine samples and 21,378, 21,774
and 21,802 genes in the three liver samples (rowSums (counts) > 1) were identified (Table
S2; National Genomics Data Centre accession number: PRJCA006909). Unsupervised
clustering showed that the three intestine samples were clustered as one clad, while the
three liver samples were clustered as another (Figure S1). Through comparing the RNA-seq
data between the WT intestine and liver (|log2 (fold-change)| > 2 and p < 0.01 in intestine
or liver), we found that a total of 2110 genes were more abundant in the intestine (termed as
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intestine-enriched), while 1637 genes were enriched in the liver (termed as liver-enriched)
(Figure 1B; Tables S3 and S4).

To identify a spectrum of marker genes more specifically defining the intestine and
liver at 5 dpf, we applied more stringent criteria (TPM > 50 in intestine or liver) to
the 2110 intestine- and 1637 liver-enriched genes. In total, 385 intestine-enriched and
308 liver-enriched genes passed the criteria and were arbitrarily classified as the embry-
onic intestine-specific and liver-specific genes, respectively (Figure 1C; Tables S5 and S6).
The majority of these genes are well-known genes specifically functioning in the intestine
(e.g., cdx1b, fabp2, fabp6, etc.) or liver (e.g., apoa2, bhmt, fabp10a, etc.) [3,20,33], whereas
many others are yet to be characterized as the intestine- or liver-specific genes by check-
ing their records in Zebrafish Information Network (ZFIN) (http://zfin.org) (e.g., for
the intestine, slc15a1a, dpep1, cuzd1.1, si:ch211-202h22.9 and si:ch211-133l5.7; for the liver,
wu:fj16a03, si:ch211-284e20.8, miox, mlsl and si:ch211-186e20.7). WISH confirmed the specific
expression of the well-known intestinal genes ldha, ifi30, alpi.2, chia.1, slc34a2a and stk25
(Figure 1D) and the liver genes serpina1l, fabp10a, tfa, gc, apom, zgc112265 and zgc123103
at 5 dpf (Figure 1E). Meanwhile, WISH verified slc15a1a to be novel intestine-specific
(Figure 1D) and CR626907.1 to be liver-specific genes (Figure 1E).

3.2. Unraveling Differential Functional Processes in the Intestine and Liver at 5 dpf by GO Analysis

GO analysis of the 2110 intestine-enriched genes based on the biological process
(GO_BP) and molecular function (GO_MF) terms resulted in, though in different orders,
similar top 10 categories (Figure 2A). We analyzed the top 10 categories in the GO_BP
term in detail. The first category was ‘transmembrane transport’, containing 56 genes
that mainly encoded different solute carriers, such as slc5a1, slc15a1b, slc18b1, slc25a24,
etc. (Figure 2B; Table S7). Others included ‘proteolysis’ (42 genes, encoding various
peptidases, such as asrgl1, capn2b, cndp2, cpo, etc.) (Figure 2C; Table S7), ‘lipid metabolic
process’ (32 genes, such as acot19, gdpd3b, mogat2, plcd1b, pld1b, etc.) (Figure 2D; Table
S7) and ‘carbohydrate metabolic process’ (18 genes, including gale, treh, pgm3, pygb, chia.1,
etc.) (Figure 2E; Table S7). Interestingly, two categories, ‘actin cytoskeleton organization’
(19 genes, for actin filament assembly, including flna, smtna, pfn1, actn1, pdlim1, pdlim7,
etc.) and ‘actin filament organization’ (14 genes, mainly encoding different myosins and
their regulators, such as tpm2, myo15aa, myo5b, myo1ca, myo1eb, etc.) were also among
the top 10 categories (Figure 2F; Table S7), reflecting an active smooth muscle system
controlling the contraction of the digestive tract in zebrafish. In addition, the identification
of the ‘glutathione metabolic pathway’ (11 genes, including gsta.1, gsta.2, gsto1, gsto2, gstp2,
etc.) among the top 10 categories suggested that the intestine exhibited high antioxidant
activities (Figure 2G; Table S7). The enrichment of these pathways is fully consistent with
the known function of the intestine for food digestion, nutrient absorption and innate
immunity [3,19,20].

GO analysis of the 1637 liver-enriched genes based on the GO_BP term (Figure 3A)
showed that the top ten categories included ‘lipid metabolic process’ (53 genes, containing
mvda, acaca, lipca, fasn, cpt1ab, etc.) (Figure 3B; Table S8), ‘negative regulation of endopepti-
dase activity’ (22 genes, mainly encoding peptidase inhibitors, such as serpinf2a, serpina1,
serpine1, serpind1, serping1, etc.) (Figure 3C; Table S8), ‘blood coagulation’ (21 genes, such
as plg, fga, fgg, f9a, f10, etc.) (Figure 3D; Table S8) and ‘complement activation’ (17 genes,
mainly encoding complement components including c3a.1, c3b.1, c4, c4b, c7b, c8a, c8b,
etc.) (Figure 3E; Table S8). Notably, 4 out of the top 10 categories were related to choles-
terol/sterol biosynthesis/metabolic processes (Figure 3A). The GO_MF analysis showed
that the top two categories were classified as ‘oxidoreductase activity’ (92 genes) and
‘catalytic activity’ (49 genes), respectively, which contained genes encoding enzymes in-
volved in different metabolic reactions (Figure 3A; Table S8). Notably, ‘heme binding’ and
‘oxygen transporter activity’ were also among the top 10 categories (together 34 genes,
mainly encoding hemoglobins and cytochrome p450 family members, including hbbe1.2,
hbbe1.3, hbae3, cyp2x7, cyp1a, etc.) (Figure 3F; Table S8). The enrichment of these pathways

http://zfin.org
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is fully consistent with the known functions of the liver for nutrient metabolism, steroid
biosynthesis and producing serum proteins [33].
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Figure 2. GO analysis of the 2110 intestine-enriched DEGs identified at 5 dpf. (A) GO analysis of
the 2110 intestine-enriched DEGs under the GO_BP (upper panel) and GO_MF (lower panel) terms.
Top 10 categories are shown here. (B–G) Heatmap showing the hierarchical clustering of represen-
tative DEGs in the categories (chosen from the top 10 under the GO_BP term) of ‘transmembrane
transport’ (B), ‘proteolysis’ (C), ‘lipid metabolic process’ (D), ‘carbohydrate metabolic process’ €,
‘actin cytoskeleton/filament organization’ (F) and ‘glutathione metabolic pathway’ (G) in the three
intestine and three liver RNA-seq samples.

We noticed that, although ‘lipid metabolic process’ under the GO_BP term and ‘oxi-
doreductase activity’ under the GO_MF term were among the top 10 categories in both the
intestine and liver (compare Figure 2A with Figure 3A), the exact genes involved were dis-
tinct in these two organs (compare Figure 2D with Figure 3B, and Table S7 with Table S8). In
addition, while the intestine expressed a variety of peptidases, the liver expressed different
peptidase inhibitors (compare Figure 2C with Figure 3C). Hence, the larval intestine and
liver have established their own unique transcriptomes for accomplishing their functions
at 5 dpf.
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Figure 3. GO analysis of the 1637 liver-enriched DEGs identified at 5dpf. (A) GO analysis of the
1637 liver-enriched DEGs under the GO_BP (upper panel) and GO_MF (lower panel) terms. Top
10 categories are shown here. (B–F) Hierarchical clustering heatmap comparing representative genes
in the categories of ‘lipid metabolic process’ (B), ‘negative regulation of endopeptidase activity’ (C),
‘blood coagulation’ (D) and ‘complement activity’ (E) under the GO_BP term and ‘heme/oxygen
binding’ under the GO_MF term (F). These categories were among the top 10 under the GO_BP or
GO_MF terms.

3.3. Mining TFs Regulating the Expression of the Intestine- and Liver-Enriched Genes at 5 dpf

The above data demonstrate that the intestine tube and liver bud functionally specified
at 5 dpf. TFs are context-dependent regulators of gene expression essential for cell fate spec-
ification and maintenance, and for executing cellular functions [14,34,35]. We performed a
TF search (AnimalTFDB3.0) using the genes detected by our intestine and liver RNA-seq
as baits and identified 263 and 208 TFs expressed in the intestine and liver, respectively,
based on the cutoff criteria of an average TPM of = 5, including 168 commonly expressed
TFs (Tables S9 and S10). By checking the intestine TF gene list, we noticed that these
TFs regulated respective cellular and biochemical pathways in the intestine. For example,
cdx1b, hnf4a and gata5 are known to regulate the development of the gut epithelium; atoh1,
ets2, her9 and family members of klf and elf are known to regulate the differentiation of
absorptive and secretory intestinal epithelial cells; and xbp1, smad5, cebpa and cebpb are
known to regulate the various metabolic pathways (Table S9) [2,3,14]. For the 208 liver
TFs, prox1, hhex, hlx and family members of foxa are known to regulate the budding and
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differentiation of the liver; onecut (hnf6) and hnf1b are known to regulate the cholangiocyte
differentiation; and family members of cebp, ppar, hmgb and klf are known to regulate genes
involved in the hepatic metabolic pathways (Table S10) [10,36–38].

Next, we performed another TF search within the 2110 intestine- and 1637 liver-
enriched genes and identified 135 intestine-enriched and 97 liver-enriched TFs, respectively
(Figure 4A, Tables S11 and S12). The 135 intestine-enriched TFs included the well-known TF
genes cdx1b and gata5 [3]; however, some others, including hoxb13a, hoxc3a, osr2 and si:ch211-
202h22.9, are yet to be characterized functionally in the intestine (Figure 4A, Table S11).
Among the 97 liver-enriched TFs, prox1a and hhex are well-known liver TFs [14,36]., while
egr1, nr2f5 and pparda have not been characterized functionally in the liver (Figure 4A,
Table S12). pparda has several paralogs, including ppardb in the zebrafish genome, and
Pparda shares high homology with human PPARD and PPARG (Figure S2). WISH con-
firmed the liver-enriched expression of pparda in WT at 3 dpf (Figure S3A). To access the
function of pparda in liver development, we generated a pparda frameshift mutant fish line
via the CRISPR-Cas9 approach (Figure S3B). WISH experiments using the fabp10a probe
revealed that only a proportion of the ppardazju1/zju1 homozygous mutants displayed a
mild small liver phenotype (Figure S3C,D), probably due to functional compensation by
its paralogs (e.g., ppardb) (Figure S2). WISH using the intestinal marker fabp2 probe and
exocrine pancreas marker trypsin probe revealed that the mutant intestine and exocrine
pancreas appeared relatively normal when compared with WT (Figure S3C). In addition to
the intestine- and liver-enriched TFs, 160 TFs were found to be expressed at similar levels
between the intestine and liver (|log2 (fold-change)| < 2), including pan-endodermal TFs,
such as foxa1, gata6, hnf4a and hnf4b (Figure 4A).

To confirm the RNA-seq data, we performed a WISH experiment and demonstrated
the enrichment of cdx1b, osr2, pdx1, hoxb13a and si:ch211-202h22.9 in the intestine (Figure 4B)
and egr1, prox1a, tfcp2l1 and foxa2 in the liver (Figure 4C). The enriched expression of
si:ch211-202h22.9 in the intestine and egr1 and tfcp2l1 in the liver bud at 5 dpf has not been
reported previously. Interestingly, the WISH result showed that, while cdx1b was expressed
along the entire intestine, pdx1 was expressed in the anterior bulb and osr2 in the posterior
bulb toward the hindgut (Figure 4B). In contrast, the expression of hoxb13a appeared to be
restricted to the proctodeum region (Figure 4B).

Next, we submitted the 2110 intestine-enriched genes as target genes to TFBS analysis
on David (https://david.ncifcrf.gov/tools.jsp) for the purpose of identifying TFs responsi-
ble for regulating the expression of these genes. This program was built based on human
data, so it first needed to match the zebrafish target genes to their corresponding human or-
thologues and then search for their human TF regulators. In total, 1438 out of the 2110 genes
had a match in the database, and 27 human TFs (FDR < 0.01) were identified to regulate
their expression. Each TF was found to regulate multiple target genes. and each target gene
could be regulated by different TFs (Figure 4D; Table S13). For example, PPARG, HNF1
and COUP regulated 1088, 747 and 554 target genes, respectively, whereas SLC5A7 and
ACE2 can be regulated by the TFs GATA1, HNF1 and COUP (Table S13). Similarly, analysis
of the 1637 liver-enriched target genes showed that 1275 qualified baits could be regulated
by 126 TFs (FDR < 0.01) (Figure 4E; Table S14). To our surprise, a greater number of TFs
were identified for the liver genes than the intestine genes, suggesting that the transcription
regulation networks for liver genes might be more complicated; however, it could merely
be because the datasets were more complete for the liver genes in building up the database.
It was unexpected that GATA1, a key regulator of erythrocyte development, was identified
to regulate the expression of the intestine-enriched genes via this analysis. This could
be due to the 2110 intestine-enriched genes being obtained by comparing with the liver
transcriptomes, and we could not exclude the possibility that some of these 2110 genes
might have been expressed in the blood cells. Alternatively, the data used to construct the
TFBS database might contain datasets obtained by GATA1 overexpression. Since GATA
family members share the DNA-binding motif overexpressed GATA1, it probably activated
some of the intestine genes in their samples. Nevertheless, this analysis suggests that

https://david.ncifcrf.gov/tools.jsp
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the expression of genes in the intestine and liver is regulated by complex transcription
regulatory networks [14,34,35].
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Figure 4. Mining TFs regulating the expression of intestine- and liver-enriched genes at 5 dpf.
(A) Heatmap showing the hierarchical clustering of the 32 intestine-enriched, 19 liver-enriched and
18 representatives of the commonly shared TFs. (B,C) WISH showing the expression of 5 intestine-
enriched and 4 liver-enriched TFs at 5 dpf. (D,E) List of putative TFs identified by TFBS analysis
on David (https://david.ncifcrf.gov/tools.jsp) to regulate the expression of 2110 intestine-enriched
(D) and 1637 liver-enriched genes (E). The number of genes presumably regulated by each TF and
the relevant p-value are as indicated (p-value < 0.01). The names of the human TFs are provided
together with a bracket showing the name of corresponding zebrafish TF (following the ENSMBL
naming system).

3.4. Identification of DEGs among the Anterior, Middle and Posterior Regions of the Intestine at 5 dpf

To gain more insight into the gene expression profiles in different functional domains
along the larval intestine, we micro-dissected the entire intestine at 5 dpf and then cut the
intestine into anterior (S1), middle (S2) and posterior (S3) segments (Figure 5A). S1, S2
and S3 from 17 embryos were separately pooled and the total RNA was extracted from
the pooled intestine segments for RNA-seq analysis. Analysis of the RNA-seq data from
three independent samples for each segment identified, on average, 22,802, 22,997 and
23,991 expressed genes in S1, S2 and S3, respectively (Table S15, National Genomics Data

https://david.ncifcrf.gov/tools.jsp
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Centre accession number: PRJCA006909). Unsupervised clustering analysis showed that
the S1 and S2 segments displayed expression patterns more similar to each other than
to that of the S3 segment (Figure S4), much like the situation in the adult intestine [20].
Enrichment analysis (|log2 (fold-change)| > 1 and p < 0.05) showed that 452 genes were
enriched in S1, 309 in S2 and 2449 in S3 (Figure 5B; Tables S16–S18).
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Figure 5. RNA-seq analysis of the gene expression profiles in the anterior (S1), middle (S2) and
posterior regions (S3) of the intestine at 5 dpf. (A) Graph showing the region covered by the S1,
S2 and S3 intestine fragments. (B) Hierarchical clustering heatmap comparing the 452 S1-enriched,
309 S2-enriched and 2449 S3-enriched DEGs among the three S1, S2 and S3 RNA-seq samples at
5 dpf. (C) Hierarchical clustering heatmap showing the distribution of 385 intestine-specific genes
within the three S1, S2 and S3 RNA-seq samples at 5dpf. (D–G) WISH showing the expression of
representative genes in the regions of S1 (intestinal bulb) (D), S1 + S2 (bulb + mid-intestine) (E), S3
(hindgut) (F) and S1+S2+S3 (entire intestinal tube) (G). (H–J) GO analysis of the 452 S1-enriched (H),
309 S2-enriched (I) and 2449 S3-enriched (J) genes under the GO_BP and GO_MF terms. The top
5 categories are provided. (K) Information for the 8 S1-enriched, 1 S2-enriched and representatives of
the 77 S3-enriched TF genes identified by RNA-seq.



Cells 2022, 11, 3290 11 of 19

Cross-comparison of the 385 intestine-specific genes (Table S5) with the genes detected
by the S1, S2 and S3 RNA-seq showed that 36 genes were notably enriched in S1 and 103
in S3. Interestingly, S1 and S2 shared a large number of the intestine-specific genes when
compared with their expression in S3. Meanwhile, S1 and S2 each shared some intestine-
specific genes with S3, while very few genes were detected in all three regions (Figure 5C).
WISH confirmed zgc:112146, neu3.3 and stom13b to be enriched in S1 (Figure 5D); cd36,
slc6a19a.1 and lta4h in S1 plus S2 (Figure 5E); slc10a2, tdo2b and ctsl.1 in S3 (Figure 5F); and
si:dkeyp-73b11.8 and tmsb1 in all three regions (Figure 5G).

GO analysis of the S1-enriched DEGs showed that the top five categories in both
GO_MF and GO_BP terms were mainly related to the muscle contraction process (40 genes,
including myhb, myh7, myh7l, smyyc2, tnnc1b, tnni1b, tnnt3a, etc.) (Figure 4H; Table S19),
suggesting a strong contraction activity of the zebrafish intestinal bulb, an analog of the
true stomach in higher vertebrates [19]. For the S2-enriched DEGs, GO analysis identified
the peptidase activity and their inhibitors, blood coagulation, complement activation and
cholesterol homeostasis to be among the top five categories in the GO_MF and GO_BP
terms (Figure 5I; Table S20), suggesting that the S2 region is responsible for breaking down
nutrients, such as proteins, cholesterol transportation and mucosal immunity [3,19,21]. For
the S3-enriched DEGs, the top five categories in the GO_MF and GO_BP terms included the
categories of ‘multicellular organism development’ (133 genes), ‘ion transport’ (118 genes)
and ‘heparin binding’ (Figure 5J; Table S21), suggesting that the S3 region is still developing
and carries out the function of ion absorption [3,20,21].

To identify the TFs involved in the regional specification of the intestine, we blasted
the 263 intestine-expressed TFs against the 452 S1-enriched, 309 S2-enriched and 2449
S3-enriched genes. The result showed that 8, 1 and 77 TF genes were among the S1-, S2-
and S3-enriched genes, respectively (Figure 5K; Table S20). Notably, pdx1, sox19a and foxi3a
were enriched in S1; osr2 was enriched in S2; and cdx4, foxd2 and many hoxa and hoxb family
members were enriched in S3 (Table S22). WISH confirmed that the expression of pdx1
was enriched in the S1 region, osr2 in the S2 and S3 regions and hoxb13a in the S3 region
of the intestine at 5 dpf (Figure 4B), suggesting that these TFs are likely to be involved in
functional specification or cell fate maintenance in these sub-domains.

3.5. scRNA-Seq Analysis Identified 10 Cell Types within the Intestine at 5 dpf

The above data clearly demonstrate that the intestinal cells in the S1, S2 and S3
regions exhibit distinctive molecular features. Previous reports have shown that the adult
zebrafish intestine inner epithelium is composed of absorptive enterocytes, secretory goblet
cells, enteroendocrine cells and stem cells, surrounded by smooth muscle cells, enteric
nerves, resident immune cells, etc. [3,19,21,39,40]. To better understand the relationship
between the intestinal cells in different functional domains and to identify more feature
genes to mark different cell types in the zebrafish larvae intestine, we micro-dissected
entire intestines from WT at 5 dpf and performed an scRNA-seq analysis (customized
microwell-seq method) [31]. A total of 1229 cells met the quality control criteria (minimum
of 200 genes and less than 20% mitochondrial genes per cell) and were selected for data
analysis (Figure S5) (National Genomics Data Centre accession number: PRJCA006909).

UMAP of the scRNA-seq data of the 1229 cells grouped the cells into 10 clusters
(cluster 0–9) (Figure 6A, left). The dot plot based on the feature genes (Figure S6, Table S23)
showed that these 10 cell clusters represented 10 cell types, including goblet cells (cluster
2), immune cells (cluster 3), enteroendocrine cells (cluster 5), smooth muscle cells (cluster
6), epidermal cells (cluster 8) and newly identified Otop2 cells [21] (cluster 9) (Figure 6A,B).
WISH using the feature genes as probes defined the distributions of the goblet cells (agr2+),
enteroendocrine cells (pyyb+) and smooth muscle cells (tagln+), respectively, along the
intestine (Figure 6C).
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Figure 6. scRNA-seq analysis identified 10 cell types in the WT intestine at 5 dpf. (A) Visualization
of integrated unsupervised clustering of cells in the UMAP plot of the sequenced 1229 cells from
the WT intestines (left), together with cell annotations (right). (B) Dot plot of 4 marker genes for
each cell cluster (cluster 0–cluster 9) for cell type annotation. (C,D) Feature plot together with WISH
showing the expression of feature genes in the goblet (agr2), enteroendocrine (pyyb) and smooth
muscle cells (tagln) (C), and in the intestinal bulb (gsto2), posterior bulb plus mid-intestine (fabp2,
fabp6) and hindgut (ctsbb) cells (D).

Clusters 0, 4 and 7 represented functionally differentiated absorptive enterocytes
(Figure 6A,B; Figure S6). WISH using the cluster 4 feature gene gsto2 revealed its higher
expression in the intestinal bulb (Figure 6D). In contrast, the expression of cluster 7 feature
genes ctsbb was more restricted in the hindgut (Figure 6D). dab2 was also a feature gene
for the cluster 7 cells (Figure 6B), suggesting that cluster 7 contained the recently defined
lysosome-rich enterocytes (LRE) [19,21]. Interestingly, cluster 0 cells were not uniform in
their gene features; for example, some feature genes (ucp1, cyp7a1) appeared to be restricted
in the cluster 0 cells, while some others were shared with cluster 4 (apoc2, apoa4b.1, chia.2
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and fabp2, etc.) or with cluster 7 (fabp6, grn1 and epd12, etc.) (Figure S6). Based on the
expression patterns of fabp2 and fabp6 (Figure 6D), we suggest that the cluster 0 cells might
be from the mid-intestine, which can execute broad cellular functions.

The cluster 1 feature genes were shared by the goblet, enteroendocrine, hindgut and
Best4/Otop2 cells (Figure 6B; Figure S6). Considering the fact that the intestine tissue was
harvested at 5 dpf, when the intestine was still developing, cluster 1 cells might represent
a group of fate-uncommitted multi-functional cells that might have the potential to be
differentiated further into a more specific cell type later, or these cells might be temporal at
this development stage and might be replaced by new, more specifically differentiated cells
during the process of intestine maturation. This is worth further investigation in the future.
Our scRNA-seq data identified characteristic molecular features to distinguish the different
epithelial cells along the intestinal tube at 5 dpf.

3.6. scRNA-seq Analysis Identified Eight Cell Types within the Liver bud at 5 dpf

Currently, there is no specific cell atlas for the zebrafish liver bud at 5 dpf [21,41].
The liver bud was micro-dissected from WT larvae at 5 dpf and subjected to scRNA-
seq analysis [31,32]. A total of 3045 cells met the quality control criteria (minimum of
300 genes and less than 20% mitochondrial genes per cell) and were selected for data
analysis (Figure S7) (National Genomics Data Centre accession number: PRJCA006909).
Analyzing the scRNA-seq data based on gene features (Figure S8, Table S22) identified eight
cell types (clusters 0 to 7) (Figure 7A). To our surprise, the annotation of cell clusters with
feature genes identified six clusters (0 to 5) belonging to the hepatocytes (Figure 7A). Based
on the heatmap of feature genes, it appeared that clusters 0 and 1 were close to each other,
as were clusters 2 and 3 (Figure S8). Cluster 4 appeared to be related to clusters 2 and 3, but
had unique genes. For example, the violin plot showed that fdps and hmgcs1 were highly
enriched in the cluster 4 hepatocytes (Figure 7B), whereas msmo1 was enriched in both
cluster 3 and 4 hepatocytes (Figure 7B). The sectioning of the WISH embryos showed that,
while bhmt was ubiquitously expressed in all hepatocytes, fdps, hmgcs1 and msmo1 were
expressed only in a proportion of the hepatocytes (Figure 7C). The remaining two clusters
represented erythrocytes (cluster 6) and cholangiocytes (cluster 7) (Figure 7A). Notably,
in addition to epcam (Figure 7B), we identified CR318588.4 and pfn1 to be the molecular
markers for the larval cholangiocytes (Figure S8).

3.7. Cellular Expression Specificities of the 385 Intestine-Specific and 308 Liver-Specific Genes

To identify more feature genes for each cell type in the intestine and liver at 5 dpf,
we examined the expression of the 385 intestine-specific and 308 liver-specific genes in
each individual cell acquired by the intestine and liver scRNA-seq, respectively. The
scenario was that these genes were obtained from RNA-seq analysis by applying stringent
criteria for higher specificity (|log2 (fold-change)| > 2) and more abundancy (TPM > 50)
between the intestine and liver (Tables S5 and S6). We first examined the expression of the
385 intestine-specific genes. Overall, 10 genes were not detected by the intestine scRNA-
seq; the remaining 375 genes were differentially expressed in different cell clusters, except
for cluster 1 (Figure 8), further suggesting that cluster 1 might be an undefined cell type
at the larvae stage (Figure 6A,B). Notably, although different in terms of abundance, the
majority of the 375 intestine-enriched genes were obviously enriched in the absorptive cells
represented by clusters 0 (mid-intestine), 4 (intestinal bulb) and 7 (hindgut). Meanwhile,
fully consistent with the RNA-seq analysis of the S1, S2 and S3 segments, it appeared that
cluster 0 and cluster 4 cells displayed similar expression patterns for the 375 intestine-
specific genes, and cluster 0 and cluster 7 cells shared a fraction of these genes (Figure 8).
Detailed analysis revealed that the feature genes of cluster 0 (adh8b, anpepb and pck1),
cluster 2 (goblet cells, icn, cnfn and agr2), cluster 3 (immune cells, pfn1), cluster 4 (fabp1b.1,
stoml3b and gsta.1), cluster 5 (enteroendocrine cells, pyyb, insl5a and ccka), cluster 6 (smooth
muscle, tagln, acta2 and myl9a), cluster 7 (ctsbb, ctsh and dab2), cluster 8 (epidermis, cfl1l
and gstp2) and cluster 9 (Otop2 cells, cfd and ca4b) were among the 385 intestine-specific
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genes (compare Figure 6B with Figure 8). Therefore, the analysis not only validated
the cell types for the intestine at 5 dpf, but also assigned the cellular specificity of the
375 intestine-specific genes.
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Figure 7. scRNA-seq analysis identified 8 cell clusters in the WT liver at 5 dpf. (A) Visualization of
integrated unsupervised clustering of cells in the UMAP plot of the sequenced 3045 cells from the WT
liver. (B) Violin graph showing the expression of hamp in all cell types, of faps and hmgcs1 in cluster
4, of msmo1 in both cluster 3 and 4 cells and of epcam in cluster 7 (cholangiocytes). (C) Sections of
embryos after WISH using the probes for detecting the transcripts of bhmt (pan-hepatocyte marker),
faps, hmgcs1 and msmo1. Note that bhmt was expressed abundantly in the liver bud, whereas faps,
hmgcs1 and msmo1 were expressed only in a proportion of cells in the liver bud. A red dashed line
separates the liver region (L) and intestinal lumen (IN).
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Figure 8. Cellular expression specificities of the 385 intestine-specific genes. Heatmap showing the
expression of the 375 intestine-specific genes (10 genes were not detected by the intestine scRNA-seq)
at the single-cell level in each cell cluster identified by the intestine scRNA-seq.

Next, we examined the expression of 308 liver-specific genes at the single-cell level
(Figure S9). Thirteen genes were not detected by the liver scRNA-seq. Surprisingly, except
for the erythrocytes (cluster 6), the remaining 295 genes lacked an obvious pattern of
enrichment in the rest cell clusters (Figure S9), suggesting that, although our scRNA-seq
separated the hepatocytes into six subtypes, these hepatocytes expressed a great range of
similar functional genes (Figure S9).

4. Discussion

By 5 dpf, the zebrafish digestive system has been well established to accomplish its
physiological function and meanwhile continues their development. In this report, we
obtained the gene expression profiles in the zebrafish intestine and liver bud at 5 dpf. Our
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data are complementary to previous reports [3,20,21,41], which allowed us to not only
understand the genes required for executing the physiological function, but also genes for
encoding signaling molecules and TFs for continuous development and for determining
the specific function in these two organs at 5 dpf. Data analysis showed that the liver
bud and intestine not only shared a large number of house-keeping genes for maintaining
routine cellular activities, but also some common endoderm identity genes, including
pan-endodermal TFs, such as Gata factors (Gata4/5/6) and FoxA factors (FoxA1/2/3),
which are essential for the specification and development of the entire zebrafish digestive
system [1,16,33,42–44]. Data analysis also clearly showed that the intestine and liver bud at
5 dpf expressed the intestine- or liver-enriched genes related to signal transduction. For
example, among the intestine-enriched genes, efna2a and CT990561.1 related to Ephrin
signaling, which is essential for the establishment of the intestinal lumen, were identi-
fied [17]. Among the liver-enriched genes, bmpr2b related to Bmp signaling, fgf10b related
to Fgf signaling and dkk3a related to Wnt signaling, which are known to be essential for
liver development and function, were identified [9,45–47]. Notch1b and jag1a, related to
Notch signaling during the development of the biliary system, were also identified among
the liver-enriched genes [48,49]. The larval intestine and liver also adopted distinctive
categories of TFs for their fate specification. For example, among the liver-enriched genes,
hhex and prox1a, two well-known genes for liver development, as well as stat5a, were
identified [13,14,50]. On the other hand, pdx1 and cdx1b, for intestinal development and
functioning, were identified among the intestine-enriched genes [14,51–53].

Based on morphology and molecular markers, previous studies have divided the
zebrafish intestine into the intestinal bulb, mid-intestine, hindgut and proctodeum re-
gions [5,19]. A recent report based on scRNA-seq data derived from a mixture of the
liver and intestine dissected from zebrafish larvae at 6pf identified 18 cell types, including
enterocytes, goblet cells and enteroendocrine cells, the three main cell types in the gut
epithelia [21]. They further divided the enterocytes into five sub-groups, but without deter-
mining their corresponding positions along the intestine. Our scRNA-seq clearly identified
the clusters that appeared to match the sub-regions in the intestine [5]. Our WISH using
gene-specific probes determined the positions of these cell clusters along the intestine. For
example, neu3.3- and pdx1-positive cells were located at the anterior region of the intesti-
nal bulb. Because the hepatopancreatic duct was fused with the intestine at the anterior
region of the intestinal bulb, these cells might function to collect the secreted products
from the liver and pancreas [14,19]. Plotting the 385 intestine-specific genes against each
individual cell together with the WISH experiments, we identified that tmsb1-positive cells
were located at the posterior region of the intestinal bulb, while osr2-positive cells were
at the mid-intestine region. The hindgut was marked by slc10a2-positive cells, while the
proctodeum was marked by stk25a- and ctsl.1-positive cells. Based on this new knowledge,
future studies will focus on how these cells are specialized, especially regarding the genetic
and signaling network formed by specific signaling molecules and TFs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11203290/s1. Figure S1: Heatmap showing the hierarchical
clustering of all genes detected in three intestine and three liver RNA-seq samples; Figure S2:
Alignment of the amino acid sequences of zebrafish (Zf) Pparda, Ppardb, Pparaa and Pparab, and
human (Hu) PPARD and PPARG. The corresponding gene accession number is provided at the end.
Identical amino acids are highlighted with a ‘*’ in the row of ClustalCo. Figure S3: Loss-of-function
of pparda leads to a small liver phenotype. (A) WISH showing the liver-enriched expression of pparda
in WT at 3 dpf. (B) Diagrams showing the pparda genomic structure on Chr 22 (top), the gRNA
target sequence (underlined in WT sequence) and 7 bp deletion in the ppardazju1 mutant (middle)
and WT Pparda and the resultant mutant peptide (bottom). TGA in red: premature stop codon in
the ppardazju1 mutant. (C) Representative WISH image comparing the development of liver (fabp10a
probe), intestine (fabp2 probe) and exocrine pancreas (trypsin probe) between WT and ppardazju1.
The number of larvae showing the WISH pattern out of total larvae examined is provided in the
bottom right corner. (D) Statistical analysis of the fabp10a signal in WT and ppardazju1. ****unpaired

https://www.mdpi.com/article/10.3390/cells11203290/s1
https://www.mdpi.com/article/10.3390/cells11203290/s1


Cells 2022, 11, 3290 17 of 19

t-test p < 0.0001. Figure S4: Heatmap showing the hierarchical clustering of the TPM-based top
10,000 genes detected in the S1, S2 and S3 RNA-seq samples. Figure S5: Quality analysis of the
scRNA-seq data from the WT intestines at 5 dpf. The number of identified unique genes (top left),
number of UMI transcripts (top right) and mitochondrial gene percentage (bottom left) in each cell are
plotted. The corresponding cell types annotated are shown in the bottom right. Figure S6: Heatmap
showing the top differentially expressed genes in each cell cluster identified in the WT intestines
by scRNA-seq. Transcriptomes from 1229 WT intestine cells were used to construct the heatmap
using the Seurat package. Figure S7. Quality analysis of the scRNA-seq data from the WT liver at
5 dpf. The number of identified unique genes (left), number of UMI transcripts (middle panel) and
mitochondrial gene percentage (right) in each cell are plotted. Corresponding cell types annotated
are shown in the far right. Figure S8. Heatmap showing the top differentially expressed genes
in each cell cluster identified in the WT liver by scRNA-seq. Transcriptomes from 3045 WT liver
cells were used to construct the heatmap using the Seurat package. Figure S9. Cellular expression
specificities of the 308 liver-specific genes. Heatmap showing the expression of 308 liver-specific
genes at the single-cell level in each cell cluster identified by the liver scRNA-seq. Table S1: List of
primer sequences for cloning gene probes for WISH. Table S2: Quality analysis of the RNA-seq data
and mapping information for the clean reads for the intestine and liver samples. Table S3: List of the
2110 intestine-enriched genes. Table S4: List of the 1637 liver-enriched genes. Table S5: List of the 385
intestine-specific genes identified at 5 dpf. Table S6: List of the 308 liver-specific genes identified at
5 dpf. Table S7: Information for the top 10 categories under the GO_MF and GO_BP terms for the
2110 intestine-enriched genes. Table S8: Information for the top 10 categories under the GO_MF and
GO_BP terms for the 1637 liver-enriched genes. Table S9: List of the 263 TF genes expressed in the
intestine identified at 5 dpf. Table S10: List of the 208 TF genes expressed in the liver identified at 5
dpf. Table S11: List of the 135 intestine-enriched TF genes identified at 5 dpf. Table S12: List of the 97
liver-enriched TF genes identified at 5 dpf. Table S13: List of TFs regulating the expression of the 2110
intestine-enriched genes. Table S14: List of TFs regulating the expression of the 1637 liver-enriched
genes. Table S15: Quality analysis of the RNA-seq data and mapping information for the clean reads
of the S1, S2 and S3 segments. Table S16: List of the 452 S1-enriched genes identified at 5 dpf. Table
S17: List of the 309 S2-enriched genes identified at 5 dpf. Table S18: List of the 2449 S3-enriched genes
identified at 5 dpf. Table S19: Information for the top 5 categories under the GO_BP and GO_MF
terms for the 452 S1-enriched genes. Table S20: Information for the top 5 categories under the GO_BP
and GO_MF terms for the 309 S2-enriched genes. Table S21: Information for the top 5 categories
under the GO_BP and GO_MF terms for the 2449 S3-enriched genes. Table S22: List of S1-, S2- and
S3-enriched TFs identified at 5 dpf. Table S23: List of feature genes for the 10 cell clusters identified
by the intestine scRNA-seq. Table S24: List of feature genes for the 8 cell clusters identified by the
liver scRNA-seq.
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