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Abstract

Electronic health records (EHRs) are increasingly used for clinical and comparative effectiveness 

research, but suffer from missing data. Motivated by health services research on diabetes care, we 

seek to increase the quality of EHRs by focusing on missing values of longitudinal glycosylated 

hemoglobin (A1c), a key risk factor for diabetes complications and adverse events. Under the 

framework of multiple imputation (MI), we propose an individualized Bayesian latent profiling 

approach to capture A1c measurement trajectories subject to missingness. The proposed method is 

applied to EHRs of adult patients with diabetes in a large academic Midwestern health system 

between 2003 and 2013 and had Medicare A and B coverage. We combine MI inferences 

to evaluate the association of A1c levels with the incidence of acute adverse health events 

and examine patient heterogeneity across identified patient profiles. We investigate different 

missingness mechanisms and perform imputation diagnostics. Our approach is computationally 

efficient and fits flexible models that provide useful clinical insights.
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1 Introduction

1.1 Glycemic testing and control

Diabetes is a condition requiring intensive management, and a major cause of morbidity 

and mortality. Approximately 25.2% of American seniors have diabetes and would benefit 

from individualized guidelines on glycemic testing and control (The Centers for Disease 

Control and Prevention 2017), but little clinical evidence exists to develop such plans. 

Current evidence-based guidelines encouraging tight glycemic control are most applicable 

to relatively healthy patients with diabetes. Glycemic control is usually monitored through 

glycosylated hemoglobin (A1c), which reflects blood glucose values over approximately 

the last 3 months. The American Diabetes Association (ADA) recommends A1c testing 

at least two times a year in patients who are meeting treatment goals and have stable 

glycemic control, and quarterly in patients whose therapy has changed or who are not 
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meeting glycemic goals (ADA 2018a). Individuals without diabetes have A1c values below 

5.7%, and maintaining A1c below 7% is recommended for individuals with diabetes to avoid 

chronic diabetes complications (ADA 2018a).

For patients aged 65 years or over and those with comorbid conditions, adhering tightly 

to guidelines established for those younger and healthier, might be difficult and diminish 

the quality of life. Tight control can lead to acute adverse outcomes, such as hypoglycemic 

coma, seizures, falls, fractures, motor vehicle accidents, cardiovascular events, stroke, and 

acute renal failure (Allen et al. 2001; Boyd et al. 2005; Davis and Alonso 2004; Kennedy 

et al. 2002; Pogach et al. 2007; Qaseern et al. 2007; Schech et al. 2007; Shorr et al. 1997). 

For example, the ACCORD and ADVANCE trials find that lowering A1c values increases 

the risk of cardiovascular death (Dluhy and McMahon 2008; Martin et al. 2006). The 

relationship between A1c and adverse outcomes in such patients may be U-shaped, and less 

stringent A1c goals may be appropriate (ADA 2018b).

To supplement findings from clinical trials, electronic health records (EHRs) are 

increasingly a data source for clinical and comparative effectiveness research on improving 

health care (Agency for Healthcare Research and Quality 2013; Cebul et al. 2011). The 

EHR provides a longitudinal record of patient medical information that is maintained by 

encounters in any care delivery setting, and includes key clinical data relevant to patient 

care, such as laboratory data (e.g., A1c values), demographics, progress notes, problems, 

medications, vital signs, past medical history, immunizations and radiology reports. Linked 

insurance data, for example from Medicare (U.S. Center for Medicare & Medicaid Services 

2012), provide information on adverse clinical events through billed claims. However, the 

quality of EHRs is reduced by a large amount of intermittent missing data, because data are 

typically collected in an unscheduled fashion when the patient seeks care or the physician 

orders care.

In this article, we aim to use EHR to further understand the relationship between A1c 

levels and acute adverse outcomes. Information on adverse outcomes is rarely missing, 

as it is obtained from billing records. However, A1c within 3 months prior to an event 

may not be available due to the above recommendations. Multiple additional factors 

could influence the number of missing A1c values for individual patients. Physician non-

adherence to guidelines for lab testing will cause missing values. The patient’s health 

potentially affects the propensity to test, leading to informative missingness patterns that 

may cause systematic estimation bias. As argued by Haneuse and Daniels (2016), the 

complex interplay between health care providers and patients could result in various missing 

data mechanisms. Incorporation of all available information including patient health status is 

critical to appropriately handle missing A1c values from EHRs. Furthermore, capturing A1c 

trajectories and their relationship to patient characteristics is of clinical interest for health 

risk prediction and guideline establishment.

We propose a Bayesian profiling approach to incorporate patient characteristics and infer 

latent groups of A1c measurement trajectories. The measurement trajectories reflect both 

the A1c collection patterns and A1c values across time. The Bayesian profiling approach 

is combined with multiple imputation (MI, Rubin (1987)) to produce complete datasets for 

Si et al. Page 2

Ann Appl Stat. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



general analysis purposes. As an illustration of the MI inference, we evaluate the association 

between A1c levels and the incidence of any acute health events, such as hospitalization, 

emergency room (ER) visits or death. The main novelty lies in generalizing MI with a 

flexible imputation engine, a covariate-dependent latent profile model, to depict nonlinear 

longitudinal trajectories and incorporate numerous covariates into the latent profiling.

1.2 Statistical literature on intermittently missing data

Missing A1c values in EHRs present statistical methodology challenges. Intermittent 

missing data in large-scale, unbalanced longitudinal studies, where subjects reappear after 

one or more missed visits, call for new imputation approaches especially when the missing 

values are potentially nonignorable (Little and Rubin 2002) and the observed cases are 

sparse. Simple methods (e.g., complete case analysis or last observation carried forward) 

will distort the relationship and are not recommended by the National Research Council 

(2010). Standard missing data methods in longitudinal studies focus on a common set of 

pre-specified and monotone missing times, where a measurement being missing implies 

that all follow-up measurements are also missing or dropped from the analysis (e.g., 

reviews in Ibrahim and Molenberghs (2009)). Likelihood-based, weighting or factorization 

approaches for missing data mainly apply to monotone missingness (Daniels and Hogan 

2008). Utilization of the information collected after subjects reappear will potentially correct 

bias and increase estimation efficiency, and the challenge lies in how to appropriately 

model sparse data structures with non-monotone missing patterns. Weighting adjustment for 

longitudinal data with intermittent missingness is complex and computationally demanding, 

and there is no consistent recommendation on how the weights should be included in the 

longitudinal data modeling (Little and Rubin 2002). Sun and Tchetgen (2016) consider 

inverse probability weighting for non-monotone missing at random (MAR) data, whereas we 

argue that MI provides a superior solution to coherently utilize all available information and 

offer flexibility for model building with broad analytic goals.

We seek a flexible MI engine to predict intermittent missing values. MI separates imputation 

and analysis into two steps and propagates the uncertainty due to missing data. Various 

MI software packages have been developed assuming data are MAR and based on either 

joint multivariate normal distributions, e.g., PROC MI (SAS Institute Inc. 2017), Amelia 

(King et al. 2001) and norm (Schafer 1997), or a sequence of fully conditional distributions, 

e.g., IVEware (Raghunathan et al. 2001), mice (Van Buuren and Oudshoorn 1999), and 

mi (Gelman et al. 2015). Multilevel models are embedded with MI to handle correlated 

data, such as the packages REALCOM-IMPUTE (Carpenter and Kenward 2013) and pan 

(Schafer 2016). However, existing MI software cannot handle high-dimensional data that are 

subject to high proportions of intermittent missingness in large-scale longitudinal studies, 

nor nonignorable missing values (Si and Reiter 2013).

MI for missing not at random (MNAR) data requires a joint model for the incomplete 

variables (i.e., the A1c values) and the missingness indicators (i.e., whether A1c values 

are present on any given occasion). Examples of joint models include selection models, 

pattern-mixture models, and shared parameter models (Little 1995; Wu and Carroll 1988). 

Assumptions have to be introduced for parameter identification, which cannot be verified 
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with the available observations, and the computation is non-trivial (Ibrahim et al. 2005). 

The longitudinal A1c collection history in EHRs results in sparse observations across a 

large number of different missingness patterns and calls for flexible modeling strategies that 

account for the time dependency, borrow information across patterns and capture patient 

heterogeneity.

We jointly model the A1c missingness patterns and the lab values taking into account 

patient characteristics. To achieve parameter identification, dimension reduction and 

straight-forward interpretation, we introduce latent profiles and develop a Bayesian profiling 

multiple imputation (BPMI) approach. The novel latent profiling can handle ignorable and 

nonignorable missingness under the conditional independence assumption given the latent 

profiles, which yields a consistent estimation of parameters that are not associated with the 

latent profiles (McCulloch et al. 2016).

We assume that latent profiles are primarily determined by the trajectories of the 

longitudinal A1c measurements, including A1c values and potentially the measurement 

patterns. The latent profiling includes patient characteristics—such as socio-demographics, 

healthcare utilization measures, medications, medical complexity indicators, comorbidity 

and complications—as covariates that affect the profile assignment. This is an improvement 

over previous work that required joint modeling of the outcome variables, missingness 

indicators and covariates, leading to the need for Monte Carlo integration or approximate 

inferences (e.g., Zeldow et al. (2018)). The proposal shares a similar decomposition with 

Lin et al. (2004) but differs by the MI framework under the Bayesian paradigm. Besides 

avoiding the extra computation step of Monte Carlo integration, the posterior updating of 

BPMI has efficiency gains via Gibbs sampling and generates completed datasets for general 

analysis purposes.

As important contributions, the paper uses all available information with intermittent 

missingness to infer latent groups that are relevant to substantive interpretations, fits flexible 

mixture models that can capture irregular data distributions and develops Gibbs samplers 

to achieve computational efficiency. We examine the identified profiles and present the 

profile-specific characteristics to describe the subgroup heterogeneity.

The paper is organized as follows. Section 2 describes the EHR structure and content. 

The BPMI method is presented in detail in Section 3. We compare the new method with 

alternative imputation methods via simulation studies in Section 4 and apply it to the EHRs 

in Section 5, where our statistical and substantive findings are presented. Section 6 presents 

contributions and discusses future extensions.

2 EHR description

We extract the EHR data of adult patients with diabetes who belonged to a large academic 

Midwestern health system between 2003 and 2013. Patients are included if they have 

diabetes defined by a qualifying International Classification of Diseases-9 code for diabetes. 

We treat the first four quarters after the initial enrollment in the health care system as the 

baseline period (time 0). For inclusion, patients must have baseline A1c values and at least 
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one available follow-up A1c measurement. Patients are excluded from the analysis if they do 

not have continuous Medicare Part A & B fee-for-service, or if they are not seen at a clinic 

located in the system with access to laboratory data.

Because A1c reflects mean blood glucose over the preceding three months and quarterly 

testing is recommended for many patients, we construct a longitudinal dataset with one 

measurement per patient per three-month period (patient-quarter). When there are multiple 

A1c values available during the three months, we use the average of the measurements 

before the date of first acute health event (e.g., hospitalization, ER visit or death) date if 

there are any such events.

Missingness occurs when no measurements are available, or as occurs in a handful of cases 

(0.3%) after the first acute event in the quarter. We use the average of collected A1c values 

during the first four quarters as the baseline A1c value. Patient eligibility for inclusion is 

evaluated each quarter and patients are followed until loss to follow-up (e.g., no longer in 

the health system) or death, where for patients who die during the study period, we keep 

the patient in the dataset until after the quarter of death. Patients’ various enrollment dates 

and lengths of follow-up result in an unbalanced data structure. We identified 7372 patients 

with 113761 quarters after baseline and only 57285 available observations. The proportions 

of intermittent missingness across patients are as high as 0.97, with a median of 0.50. The 

baseline A1c values of 7372 patients center around mean 6.93% and range from 3.55% to 

17.1%, showing heterogeneity in glycemic control.

A “spaghetti” plot of A1c values is presented for 30 randomly selected patients in 2.1. 

Time trends and trajectories vary between patients, and repeated measurements of the same 

patients tend to be correlated. We consider mixed-effects models accounting for within-

patient correlation with random intercepts and slopes with respect to time or functions of 

time. While the A1c measurement trajectories present patient heterogeneity, subgroups of 

patients could share similar profiles across time. We assume each subgroup to have different 

location and scale parameters for the time trends, which results in a mixture distribution 

overall.

Our goal is to estimate the A1c trajectories over time and identify latent A1c pattern 

groups, where the patient-level covariates affect the group allocation probabilities. The latent 

profiling allocation in the model takes into account variables that predict the A1c values or 

missingness patterns. EHRs collect a rich set of patient characteristics that could predict the 

A1c trajectories and likelihood of missingness patterns. The patient-quarter structure creates 

both time-invariant and time-varying variables.

Baseline characteristics include socio-demographics, healthcare utilization measures, 

medications, complexity, comorbid conditions (Elixhauser et al. 1998), and diabetes 

complications, all of which are carried forward (e.g., chronic conditions will be assumed as 

present from diagnosis onward). The comorbid patterns are characterized by Hierarchical 

Condition Categories (HCC) risk scores. The number of adverse events, such as 

hospitalization and ER visits, and the number of ER visits that did not lead to hospitalization 

during the first four quarters, serve as proxy measures of healthcare utilization. A large 
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number of variables and low prevalence of incidence cause problems in the covariate-

dependent allocation, a well-known problem for latent class analysis (Vermunt 2010). We 

thus create a summary variable for each patient capturing the count of conditions with 

prevalence < 2%. The covariates themselves could have high co-linear dependence and 

structural constraints. We use the observed A1c values ignoring the patient-quarter structure 

and fit an ordinary linear regression to select the variables that are highly correlated with 

A1c. We then fit a logistic regression model to predict the missingness at each quarter and 

select the variables that are predictive of the missingness pattern.

The union of the two sets of selected variables results in the covariate list in Table 2.1. 

The baseline characteristics are fully observed without missing values. The table shows that 

the cohort has a modest number of complex patients. For example, 14% of patients have 

Chronic Kidney Disease, 33% suffer from moderate or severe kidney damage, 19% have 

Congestive Heart Failure, 21% have Ischemic Heart Disease, and 85% have hypertension.

Time-varying variables include age and the count of physician visits that occurred within 

each quarter. On average patients have 2.39 physician visits every three months. We exclude 

time-varying Body Mass Index (BMI), blood pressure (BP), and elevated low-density 

lipoprotein (LDL), previously shown as associated with tight A1c control (Jackson et al. 

2006; McFarlane et al. 2002; Niefeld et al. 2003) but subject to high missingness. LDL is 

often recommended for annual measurements. Measures such as BP and BMI are usually 

available when the patient sees a provider in a face-to-face visit, which occurs at A1c tests. 

The majority of BP records before 2007 in our dataset tend to be missing. Hence, the 

missingness percentages of these time-varying covariates are all above 50%, similar to those 

of A1c values.

Missing data in the time-varying covariates cause computational problems, and here we 

only consider missing A1c values and include other variables that are fully collected. The 

extension to handle missing values in the baseline and time-varying variables and perform 

a systematic variable selection by propagating all sources of uncertainty is discussed in 

Section 6.

3 Bayesian profiling multiple imputation

Denote the individual record for patient i by {Xi0, Xij, Yij, Rij, j ∈ [1, Ti]} for the total 

number Ti of tracked quarters during the follow-up, where Xi0 are the time-invariant 

covariates, Xij’s are time-varying covariates, and Yij is the variable to be imputed, A1c 

values over time. For brevity, we will refer to Yij as the longitudinal outcome. Assume that 

only Yij’s are subject to missing values, and let Rij be a time-varying binary indicator for its 

response, Rij = 1 if Yij is observed, Rij = 0 otherwise. Denote the time-varying variables by 

Yi = (Yi1, … , YiTi)
⊤, Xi = (Xi1, … , XiTi)

⊤, and Ri = (Ri1, … , RiTi)
⊤, for i = 1, … , n total 

number of patients.

Assume individuals fall into latent classes Ci = 1, … , L, where L is a finite and positive 

known integer as the total number of classes. The selection of L and the case of L being 

an unknown random variable that induces additional uncertainty are discussed in Section 

5 and Section 6. We assume that the latent class structure is primarily determined by the 
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trajectories of the longitudinal outcome and potentially its missingness pattern, and that the 

allocation probabilities are affected by the covariates.

The conditional distribution of the measurements given observed data can be expressed as

f(Y i ∣ Xi0, Xi, Ri = 1) = ∑
l = 1

L f(Ri = 1 ∣ Y i, Xi0, Xi, Ci = l)f(Y i ∣ Xi0, Xi, Ci = l)f(Ci = l ∣ Xi0, Xi)
f(Ri = 1 ∣ Xi0, Xi)

,

where f(·) denotes the distribution.

If Ri only depends on fully observed (Xi0, Xi), i.e., missingness is MAR, the observed data 

can provide valid inference since f(Yi∣Xi0, Xi, Ri = 1) = f(Yi∣Xi0, Xi). The profile structure is 

then independent of the missingness patterns.

f(Y i ∣ Xi0, Xi, Ri = 1) = ∑
l = 1

L
f(Y i ∣ Xi0, Xi, Ci = l)f(Ci = l ∣ Xi0, Xi) .

We call this marginal profiling because the latent class structure influences only the marginal 

distribution of Y. The MAR assumption can be relaxed to

f(Ri = 1 ∣ Y i, Xi0, Xi, Ci = l) = f(Ri = 1 ∣ Xi0, Xi, Ci = l), (3.1)

that is, conditional MAR, where the missingness is independent of the outcome given 

the latent classes and covariates. However, the unconditional missingness is nonignorable 

as the latent structure affects both the longitudinal outcome and missingness patterns. 

Joint modeling of (Yi, Ri) is then necessary and will be identified due to the conditional 

independence assumption given the latent classes. We call this approach joint profiling.

Joint profiling is identical to marginal profiling when the parameters in Model (3.1) do not 

change across profiles, so Ri is conditionally independent of Ci given (Xi0, Xi). Hence, the 

joint profiling approach can model both ignorable and nonignorable missing data. We will 

consider both the marginal and joint profiling for imputation and make inferences on the 

effect of A1c levels on acute health outcomes.

The latent classes are at the individual level and thus time invariant. Further, we assume 

the latent class allocation depends only on time-invariant variables f(Ci = l∣Xi0, Xi) = f(Ci 

= l∣Xi0). For computational and interpretational convenience, we assume that the outcome 

trajectory is independent of time-invariant covariates given the latent class f(Yi∣Xi, Xi0, Ci = 

l) = f(Yi∣Xi, Ci = l). That implies that the patient characteristics at baseline are represented by 

the latent profiling.

Here, the conditional independence assumption between Yij and Rij given Ci is used for 

identification, and the conditional independence assumptions involving Xi0 and Xij are 

introduced for interpretation and can be tested in the model fitting.
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Are our assumptions regarding the missing data too strong? Haneuse and Daniels (2016) 

list various sub-mechanisms—potentially MAR or MNAR—that are relevant to missing 

EHRs, such as enrollment status, encounters with the health system, measurements and 

structural changes. McCulloch et al. (2016) evaluate biased and unbiased estimation in 

longitudinal studies with informative missingness and recommend mixed-effects models. In 

addition to random effects, we introduce latent profiles with a large number of covariates, 

and expect the flexible latent profiling with rich characteristics to capture the underlying 

heterogeneity and make the assumptions at least plausible. We rigorously assess the 

imputation performances in Section 5.

3.1 Marginal profiling

Under MAR we construct latent profile models based on the collected outcomes, i.e., 

marginal profiling, which is estimated from the pattern of trajectories of the longitudinal 

outcomes.

f(Y i
obs ∣ Xi0, Xi) = ∑

l = 1

L
f(Y i

obs ∣ Xi, Ci = l)f(Ci = l ∣ Xi0) . (3.2)

Here Y i
obs denotes the observed A1c measurement for individual i. The factorization 

involves an outcome model and a latent profile model. The model specification in (3.2) 

assumes: 1) the missingness pattern is independent of the A1c values and the latent 

profiles given the covariates Rij ⫫ (Yij, Ci)∣(Xi0, Xij); 2) the A1c values are independent 

of the missingness patterns and the baseline characteristics given the latent profiles and 

time-varying covariates Yij ⫫ (Rij, Xi0)∣(Ci, Xij); and 3) the latent profiles are independent of 

the time-varying covariates given the baseline characteristics Ci ⫫ Xij∣Xi0. Since the role of 

Xi0 can be checked, Model (3.2) can be generalized by assuming the outcome depends on 

the baseline characteristics and that these are captured by the latent profiling in the current 

specification. Our sensitivity analysis in the EHR application does not find evidence against 

the specification with Xi0, as the covariates affect the allocation assignment probability of 

different profiles.

In the latent profile model, denote by f(Ci = l∣Xi0) ≐ πl(Xi0) the allocation probability of 

pattern l conditional on Xi0, for l = 1, … , L. We consider a multinomial logistic regression 

model with coefficient vector ηl, for l = 1, … , L. Set η = (η1, … , ηL) and η1 = 0  for 

identification, we have

πl(Xi0) = exp(Xi0
T ηl)

∑k = 1
L exp(Xi0

T ηk)
. (3.3)

For posterior computation we develop a Gibbs sampler by introducing Pólya-Gamma (PG) 

distributed variables wil (Polson et al. 2013),

wil ∣ (Xi0, η) ∼ PG(1, ril),
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where ril = Xi0
T ηl − log[∑k ≠ lexp(Xi0

T ηk)]. Conditional on the PG variables, the posterior 

distribution of ηl will be conjugate with normal prior distributions. The resulting Gibbs 

sampler improves the posterior fitting and outperforms rejection sampling methods with 

quick convergence.

Let cil = I(Ci = l) be the latent class indicator and introduce the normal prior distribution 

N(bl, Bl) on the coefficients ηl, the conditional posterior distribution of ηl given w is 

multivariate normal, π(ηl ∣ − ) ∼ N(ml
∗, Sl

∗). Here Sl
∗ = (VTΩlV + Bl

−1)−1, V is the design 

matrix with each row Xi0
T , Ωl = diag(w1l, … , wnl), and ml

∗ = Sl
∗(Bl

−1bl + STml), where ml is a 

vector in Rn, and the ith component is ml
(i) = cil − 1 ∕ 2 + wil{log[∑k ≠ lexp(Xi0

T ηk)]}.

For the collected longitudinal and continuous A1c measurements, we assume a linear mixed-

effects model with profile-specific coefficients and variances (βC
∗ , σC

2 ). Let Di denote a Ti × 

p covariate matrix, with associated p-vector of coefficients β. The jth row of Di, denoted by 

Dij, is then a p-vector of covariate values measured at time j. Covariates for profile-specific 

effects βCi
∗  and for individual-specific random effects bi are denoted by the Ti × q matrix 

Di
∗ and the Ti × r matrix Di

∗ ∗ , respectively, both with structures similar to Di. There may 

be overlap of the covariates in Di, Di
∗ and Di

∗ ∗ , including main effects and high-order 

interactions of Xi. Deterministic functions of time, for example, basis spline functions of 

time in our EHR application, can be included in the covariates.

Y i = Diβ + Di
∗βCi

∗ + Di
∗ ∗ bi + ϵi

bi ∼ N( 0 , Σr × r), and ϵi ∼ N( 0 , σCi
2 ITi × Ti),

(3.4)

which is a linear mixed-effects model with a mixture of location and scale parameters 

varying across profiles. The profile-specific coefficients βCi
∗  can capture the differential 

trajectories of A1c measurements with time-varying covariates in Di
∗. Model (3.4) is 

a location and scale mixture model that is flexible enough to capture non-Gaussian 

distributions as shown in Figure 2.1. Here Σr×r is the covariance-variance matrix of the 

individual-specific random effects bi, which could be simplified as a diagonal matrix if 

the components of bi are treated as independent or a scalar if bi only represents random 

intercepts.

We assign weakly informative and conjugate prior distributions to the parameters (Gelman 

et al. 2008). The prior specification and full conditional posterior distributions as efficient 

Gibbs sampler are presented in Appendix B.1. After convergence, based on the posterior 

samples of the parameters, we can impute the missing A1c values and disseminate 

completed datasets.

3.2 Joint profiling

With MNAR, we jointly model the A1c values and missingness patterns given the covariates 

to obtain the joint profiling structure
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f(Y i, Ri ∣ Xi0, Xi) = ∑
l = 1

L
f(Y i ∣ Xi, Ci = l)f(Ri ∣ Xi, Ci = l)f(Ci = l ∣ Xi0), (3.5)

where Yi includes both observed and missing measurements. The joint model has three 

components: the latent profile model, the longitudinal outcome model and the longitudinal 

response propensity model.

This model captures the MNAR dependence between the outcome and missingness patterns 

that jointly determine the latent profiles. The response indicator is conditionally independent 

of the outcome given the latent profiles and covariates, i.e., conditional MAR: Rij ⫫ (Yij, 

Xi0)∣(Ci, Xij). Conditional MAR makes models identifiable, yet flexible for dimension 

reduction and interpretation.

We consider a generalized linear mixed-effects model with a logit link for the longitudinal 

response indicator Rij, conditional on latent classes and random effects ei ~ N(0, E) with E 
as a covariance-variance matrix.

logitPr(Rij = 1 ∣ Xij, Ci, ei)) = Dijα + Dij
∗ αCi

∗ + Dij
∗ ∗ ei, (3.6)

where the covariates (Dij, Dij
∗ , Dij

∗ ∗ ) could overlap or be different from those selected in 

Model (3.4) as subsets of the main effects and high-order interactions in Xij.

3.3 Summary

The full model specification under marginal profiling is summarized below:

Y i ∼ N(Diβ + Di
∗βCi

∗ + Di
∗ ∗ bi, σCi

2 ITi × Ti)
Ci ∼ Multinomial(π1(Xi0), …, πL(Xi0))

πl(Xi0) = exp(Xi0
T ηl)

∑k = 1
L exp(Xi0

T ηk)
bi ∼ N( 0 , Σr × r), β ∼ N(0, Σβ), Σr × r ∼ Inverse‐Wishart(νb, Σb)
σl

2 ∼ Inverse‐Gamma(a, b), ηl ∼ N(bl, Bl), for l = 1, …, L .

(3.7)

The full model specification under joint profiling is summarized below:
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Y i ∼ N(Diβ + Di
∗βCi

∗ + Di
∗ ∗ bi, σCi

2 ITi × Ti)
Rij ∼ Bernoulli(Pr(Rij = 1))

Inverse‐logit(Pr(Rij = 1)) = Dijα + Dij
∗ αCi

∗ + Dij
∗ ∗ ei

Ci ∼ Multinomial(π1(Xi0), …, πL(Xi0))

πl(Xi0) = exp(Xi0
T ηl)

∑k = 1
L exp(Xi0

T ηk)
bi ∼ N( 0 , Σr × r), β ∼ N(0, Σβ), Σr × r ∼ Inverse‐Wishart(νb, Σb)
αl ∼ N(0, Σα), ηl ∼ N(bl, Bl), σl

2 ∼ Inverse‐Gamma(a, b),
ν ∼ N(0, Σν), γl ∼ N(0, Σγ), ei ∼ N(0, E), E ∼ Inverse‐Wishart(νe, Σe) .

(3.8)

We set the hyper-parameters equal to 1 and specify an independent covariance matrix 

structure. Our inference is not sensitive to the specification of hyper-parameter values (e.g., 

0.1, 0.01) under noninformative or weakly informative prior settings, as expected given the 

large sample sizes in the application. The PG variables wil’s are introduced for posterior 

updating with η. We develop the Gibbs sampler with two sets of introduced Pólya-Gamma 

distributed variables for posterior computation with models (3.3), (3.4) and (3.6) under 

weakly informative and conjugate prior distributions. The imputation of missing A1c values 

is nested in the iterative process, unlike marginal profiling, where parameter estimation and 

data augmentation are implemented simultaneously. Computational details are presented in 

Appendix B.2.

For ease of interpretation of the potential profiling structure, we fix the number of latent 

patterns L to be a small integer, chosen with the aid of diagnostic tools for model selection 

described in Section 5.1. The model can be extended to allow nonparametric Bayesian 

modeling, such as the dependent probit stick-breaking process (Rodríguez and Dunson 

2011). However, discrete covariates with low prevalence tend to cause separation problems 

with a large number of latent profiles, as in our application study.

The BPMI in (3.7) and (3.8) uses mixture models to fiexibly capture irregular distributions, 

incorporate time trends, and latent profiles allow us to jointly model the outcomes and 

nonignorable missingness patterns.

4 Simulation

We evaluate the imputation quality and MI inferential validity in repeated sampling. We 

simulate unbalanced longitudinal data, and the outcome is subject to intermittent missing 

values. For each sample, we generate n = 500 subjects with varying lengths of follow-up 

periods Ti’s randomly selected from {1, … , 10} and time-invariant covariates Di with 

four binary indicators simulated from Bernoulli’s distributions with probabilities 0.2, 0.3, 

0.4, and 0.5, respectively. The time-varying covariate is the time after the first collection, 

where we use tij denoting the time points of collection divided by 4 to mimic the quarter 

structure in the EHR data. We consider different outcome generation models and different 

missingness mechanisms, as we now describe.
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In Case 1, we groups the 500 subjects into L = 3 classes with allocation probabilities 

exp(Diηl)/(1 + exp(Diηl), where η1 = 0 , ηl = 0.5 *(1:5) – 0.5 * l, for l = 2, 3. The outcome 

Y is simulated from a 3-component finite mixture of normal distributions with mean 

μij = bi + Diβ0 + tijβ1l + tij2 β2l and standard deviation (sd) σl, for l = 1, 2, 3, respectively. 

Here we set β0 = (2, 2, 2, 2, 2), β11 = 0, β12 = −2, β13 = 2, β21 = 0, β22 = 1, β13 = 1, σ1 = 

0.1, σ2 = 1, and σ3 = 3. We assume the intermittent missingness is MAR with the response 

probability Pr(Rij = 1) = exp(Diα0) + tij)/(1 + exp(Diα0 + tij)) for j = 2, … , Ti, i = 1, … n, 

where α0 = (−2, −1, 0, 1, 2). The missingness mechanism depends on the main effects of 

the covariates and time. The missingness proportion is around 38%. The data generation and 

missingness mechanism in Case 1 are consistent with the outcome models and identification 

assumptions under marginal profiling, denoted as Mixture–Main.

In Case 2, the outcome is simulated from a normal distribution with mean μij = bi + Ditijβ0 + 

tijβ1 and sd=1, where the interaction term between the time-invariant covariates and time are 

included with β0 = (2, 2, 2, 2, 2) and β1 = 1. The model assumes that the linear trends vary 

across individuals. The missingness mechanism is the same as that in Case 1. We denote the 

data generation and missingness mechanism in Case 2 as Interaction–Main, which differs 

from the outcome model assumptions under BPMI.

In Case 3, the outcome model has the same specification as that in Case 2, with interaction 

terms. The missingness also depends on the interaction terms between the time-invariant 

covariates and time: Pr(Rij = 1) = exp(ei + Diα0 + tijα1 + Ditijα2) / (1 + exp(ei + Diα0 + tijα1 

+ Ditijα2)) for j = 2, … , Ti, i = 1, … n, where α0 = (1, 1, 1, 1, 1), α1 = −0.5, α2 = (−2, 

−1, 0, 1, 2), and eij ~ N(0, 1), with resulted missingness around 20%. We denote the data 

generation and missingness mechanism in Case 4 as Interaction–Interaction, which differs 

from assumptions for both the outcome and missingness mechanism under BPMI.

In Case 4, the outcome model is the same as that in Case 1. 

We assume that the missingness depends on the group structure, and it 

is conditionally MAR but marginally MNAR. The response probability is 

Pr(Rij = 1) = exp(ei + Diα0 + tijα1l + tij2 α2l) ∕ (1 + exp(ei + Diα0 + tijα1l + tij2 α2l)) for j = 2, … , 

Ti, i = 1, … n, where α0 = (1, 1, 1, 1, 1), α11 = 0, α12 = −2, α13 = 2, α21 = 0, α22 = −4, α23 

= 4, and eij ~ N(0, 1), resulting in around 35% of missing values. The scenario in Case 3 is 

similar to that under joint profiling, denoted as Mixture–Mixture.

In Case 5, we violate the conditional MAR assumption by specifying the response 

propensity still depends on the outcome given the group structure. The remaining 

specifications are the same as those in Case 4. This case is denoted as Mixture–Outcome.

We implement the marginal profiling approach (BPMI-MAR), the joint profiling approach 

(BPMI-MNAR), with the popular imputation methods MICE and multilevel imputation 

MICE-2l, to generate 10 imputed datasets each. Both MICE and MICE-2l assume MAR. 

MICE treats measures at the 10 time points as 10 different variables, performs fully 

conditional chained imputation with linear regression models and fills in missing values with 

draws from observed cases based on predictive mean matching by default. This accounts 
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flexibly for the correlation between repeated measures but ignores any pattern across time. 

MICE generates balanced data, where measures at all time occasions are filled in even 

though some are not eligible in the intrinsic data structure. MICE-2l fits a multilevel model 

for the outcome with a random intercept and a random slope for time. MICE-2l fits a linear 

time trend, and assumes normality of all random components. Hence, BPMI differs from 

the other two approaches in being able to handle MNAR, having more flexible distributional 

assumptions, modeling the time trend in a flexible manner and in handling covariates in an 

implicit manner with potential interaction terms rather than by an explicit inclusion of main 

effects.

We run BPMI-MAR in the exact specification in (3.7) for 3000 iterations and BPMI-MNAR 

in (3.8) for 2000 iterations with L = 3. The time-varying covariates in BPMI include the 

basis spline functions of time used in Section 5 and given in Appendix A. Our quantities 

of interest are the average values of the outcome in the follow-up period, across j = 2, … , 

10. We perform repeated sampling for 100 times and stack the generated samples treated as 

the population. We combine the MI inferences and calculate average values of the bias, root 

mean squared error (RMSE) and nominal coverage rate of 95% confidence intervals for each 

of these four approaches. We divide the bias and RMSE by the true value and present the 

relative bias (Rel–Bias) and relative RMSE (Rel–RMSE), and coverage rates in Figure 4.1.

The marginal profiling approach is the most robust and efficient method across the five 

cases. In Case 1, the sequential imputation MICE generates unbiased estimates but with 

larger RMSEs and smaller coverage rates than the BPMI-MAR. The performance of joint 

profiling BPMI-MNAR is competitive, with relatively larger bias and RMSE but negligible 

differences. The coverage rates of multilevel imputation models MICE-2l are generally 

lower than 0.95 even with large RMSEs.

Case 2 shows that BPMI can recover the interaction effects through latent profiling when 

the covariates enter through the allocation probabilities but are excluded in the outcome 

modeling and imputation. This is also confirmed in Case 3, when interaction terms are 

present in the response propensity model. In Case 4, with marginal MNAR and conditional 

MAR, MICE and MICE-2l fail to yield valid inferences as both methods assume MAR. 

The BPMI approaches outperform with small bias, RMSEs and reasonable coverage rates. 

The outputs of joint profiling BPMI-MNAR did not show improvement over those under 

marginal profiling. This could be due to the Monte Carlo error with not enough number 

of repeated samples or the computation problems of BPMI-MNAR that requires more 

iterations to converge. Both BPMI and MICE generate large biases and RMSEs in Case 5, 

when the missing data mechanism assumption is violated.

5 Imputation and Inference with EHRs

In a two-step MI process, we first apply BPMI to impute missing A1c values in the 

EHRs and secondly make inference on how A1c relates to acute diabetes outcomes. The 

observed A1c values range from 3.3% to 17.3% with mean 7.1% and are right-skewed with 

multiple modes. We use the location and scale mixture distribution as a flexible strategy 

to capture the irregular distribution. In the profile allocation model (3.3), the time-invariant 
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covariates Xi0 are the baseline characteristics listed in Table 2.1. In the A1c outcome and 

response propensity models (3.4) and (3.6), the covariates in Dij with fixed effects include 

the constant ones and the time-varying variables, age and the count of physician visits. The 

covariates in Dij
∗  represent the functions of time in years with slopes changing across classes. 

We use the basis spline functions of time with (1%, 15%, 20%, 50%, 75%, 90%) quantiles 

as six knots and cubic terms as a piecewise polynomial regression, and the nine spline 

functions used as covariates in Dij
∗  with profile-specific coefficients as shown in Appendix 

A. The spline functions are chosen based on model fitting criteria and can handle complex 

shapes to create smooth curves. Details on diagnostics of model specifications are provided 

in Section 5.1. Random intercepts are introduced by Dij
∗ ∗ .

To set up the initial values of the Markov chain Monte Carlo (MCMC) updating, we fit 

an ordinary linear regression and use the coefficient estimates as initial values for β and 

βl
∗’s whose starting points are the same across classes. The initial values of η’s are 0 , 

representing an initial equal probability of class allocation. The scale parameters start at 0.1, 

and the random effects are initially drawn from normal distributions with mean 0 and the 

initial scales.

We implement posterior computation for both marginal and joint profiling. The MCMC 

algorithms efficiently achieve convergence with Gibbs samplers as diagnosed by trace-

plots of the posterior samples, where 15000 iterations under marginal profiling and 5000 

iterations under joint profiling take ~5 hours to finish each with R codes run on a standard 

laptop (3.5 GHz Dual-Core Intel Core i7, 16 GB Memory), and the computational speed can 

be substantively improved with R−C++ interface and parallel computing resources. We run 

the MCMC chains long enough to obtain 100 multiply imputed datasets and 500 replicated 

datasets to check if imputation is able to predict observed outcomes. For classification, we 

follow Goodman (2007) with a hard partitioning and keep one random assignment based 

on a random draw from the component-specific probabilities across iterations. Our analysis 

shows that the results are not sensitive to the classification rules.

5.1 Model diagnostics and comparison

We use the Bayesian information criterion (BIC) and the log-pseudo marginal likelihood 

(LPML) to select the number of classes, L. For BIC, we use the posterior mean estimates of 

related parameters and obtain the likelihood conditional on the class allocation. LPML is the 

sum of logarithms of conditional predictive ordinates and estimated using posterior samples 

of parameters, θ(t), t = 1, … , T, and LPML = [1 ∕ T ∑t = 1
T 1 ∕ f(Y i ∣ θ(t))]−1 (Gelfand and 

Dey 1994). This is an approximation of the leave-one-out cross-validation using importance 

sampling. We use f(Yi∣θ(t)) for the marginal profiling and f(Yi, Ri∣θ(t)) for the joint profiling.

We restrict L to be small to avoid computational problems due to the separation of the 

low-frequency predictors, such as dementia and renal failure. Table 5.1 presents the BIC 

and LPML values for models with different L values. The model with the smallest BIC 

and largest LPML will be favored. We see that the model with L = 3 classes presents a 

reasonable choice both for marginal and joint profiling.
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To assess whether imputations are plausible, we perform a posterior predictive check and 

generate replicated datasets that are predicted values of observations based on the posterior 

estimates of model parameters after convergence (Meng 1994). Let {R(1), … , R(T0)} be 

the collection of the T0 replicated data sets. We then compare statistics of interest in each 

replicated dataset to those in the observed dataset D. Suppose that S is some statistic of 

interest, let SR(t) and SD be the values of S computed from R(t) and D, respectively. The 

quantities S include the mean, 2.5% percentile and 97.5% percentile of A1c levels for every 

patient and for every quarter. For the patient-level summaries, we look at the two-sided 

posterior predictive probabilities as diagnostic tools defined as

ppp = 2
T0 ∗ min( ∑

t = 1

T0
I(SR(t) − SD > 0), ∑

t = 1

T0
I(SR(t) − SD < 0)) .

When the value ppp is small, for example, less than 5%, this suggests that the replicated 

data sets systematically differ from the observed data set, with respect to that statistic. With 

larger ppp values, the evidence does not contradict that the imputation model preserves 

the observed characteristics of that statistic (He et al. 2010; Si et al. 2016). For the 7372 

patient-level A1c summaries, the marginal profiling model yields 52 ppp values that are 

below 1% for the average, and the numbers of below 1% ppp values for the 2.5% percentile 

and the 97.5% percentile are 238 and 375. The number of ppp values that are below 1% 

for these three statistics under joint profiling is 66, 464 and 678, respectively. Based on the 

low proportions of small ppp values, the posterior predictive check does not indicate lack 

of model fit in recovering the trajectories. However, the performance of joint profiling is 

inferior to marginal profiling in preserving the observed mean values across patients.

For the quarter-level A1c summaries, we compare the predictions with the observed values 

under the two profiling approaches. The 95% predictive credible intervals greatly overlap 

with the empirical 95% confidence intervals (CIs). Figure 5.1 shows that the posterior 

predictive mean estimates are generally close to the observed mean values, except for 

two observations, and both approaches perform competitively and similarly. We check the 

parameter estimates in Model 3.1, and find that the coefficients do not change across 

profiles. This explains the similar performance of joint profiling and marginal profiling.

We also compare BPMI with MICE and MICE-2l, by examining the summaries of the 

imputed A1c values. Figure 5.2 depicts the average values and 95% confidence intervals 

of A1c measurements in the follow-up period from the 5th to the 44th quarter. We do not 

have a gold standard for the missing values and aim to check which method can recover the 

data structure. With the MAR assumption for MICE and BPMI under marginal profiling, 

the time dependence structure should be the same between the imputed data and observed 

data. Comparing the trajectories of the imputed data to those of the observed data in Figure 

5.1, marginal profiling under BPMI yields imputation that presents the patterns most similar 

to the observed data, showing the trend of BPMI first flat and then increasing. The failure 

of MICE to impose a time structure results in wiggly averages and the last measurement 

having the lowest value. In addition, the need for MICE to impute occasions post drop-out 

or death may have led to inconsistent means in the later quarters. The multilevel imputation 

Si et al. Page 15

Ann Appl Stat. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MICE-2l smooths the variation across time and presents a linear trend, which is different 

from the observed trends in Figure 5.1. Both MICE approaches tend to generate larger 

imputed values than those under BPMI, potentially due to the ability of BPMI to better 

replicate a multimodal skewed distribution of A1c values.

In fact, BPMI imputes a substantially higher proportion of A1c values in the 6-7% range 

and fewer in the 7-8% range or below 6% than do MICE or MICE-2l. Based on a randomly 

selected single imputed dataset, 18.3% of the imputed values from BLPM are below 6%, 

44% values are between 6% and 7%, and 23% values are in the 7-8% range. However, the 

imputed values from MICE have 20% below 6%, 37% between 6% and 7%, and 27% in 

the 7-8% range, and the percentages from MICE-2l are 21%, 36% and 28%, respectively. 

Having more imputed data in the below 7% range resonates clinically with the fact that 

patients in that range have met ADA goals and may be seen as needing less frequent A1c 

testing.

5.2 Inference and profiling

After MI, we analyze the completed datasets to evaluate the association of A1c with 

acute health event incidence and depict the different trajectories of A1c values across time 

indicated by the profiling structure.

5.2.1 Association of A1c with acute adverse events—We aim to address whether 

using imputed data affects inferences on how glycemic control is associated with acute 

diabetes outcomes. Since marginal profiling and joint profiling present similar results, we 

use the results under marginal profiling as an illustration. It should be noted that the MAR 

assumption here applies to missing A1c. The complete case analysis (CCA) applies to the 

occasions with collected A1c values and causes exclusion of the outcomes available at the 

occasions where A1c values are missing. Hence, missingness in the outcome is induced by 

missing A1c and may be MAR or MNAR, but imputing A1c restores all the outcomes.

The overall incidence of any acute health events is 16% across the patient-quarters. We 

predict this incidence by a seven-category discrete A1c indicator (< 6%–reference level, 

6–6.5%, 6.5–7%, 7–7.5%, 7.5–8%, 8–9%, ≥ 9%), where the levels are chosen to coincide 

with those used by ADA to translate A1c into blood glucose level (ADA 2018a). For 

simplicity, we do not add other factors. For each imputation, we estimate the incidence from 

logistic regression models and account for the correlation between repeated measures of 

the same patient by implementing generalized estimating equations with an exchangeable 

working correlation structure. We apply MI combining rules (Rubin 1987) to obtain the 

standard error estimate accounting for the uncertainty due to imputation. Figure 5.3 depicts 

the predicted incidence for individuals grouped by A1c levels from the four methods, and 

Table 5.2 presents both the point estimates and 95% CIs of the predictions. Figure 5.3 shows 

that the relationship between A1c values and the risk of adverse outcomes is U-shaped.

Importantly, all analyses verify that A1c at or above 8% is associated with a higher 

incidence of adverse events than levels of 6-7.5% as expected from ADA recommendations 

to maintain level below 7% or below 6.5%, if possible. In fact, imputation does not notably 

change means for the two categories above 8%, where less than 10% of A1c values are 
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imputed. Results for levels < 6%, where approximately 20% of values are imputed, are 

mixed, with BPMI as well as CCA showing a significantly higher incidence of acute events 

at this level of control than for A1c levels 6-7. 5%. While MICE and MICE-2l also show 

higher incidence at A1c< 6% than at the next two higher levels, these differences are not 

statistically significant.

The incidence between A1c of 6% and 8% shows the largest differences between CCA 

and analyses with imputed data. MICE and MICE-2l agree with BPMI in showing higher 

incidence than CCA in this range, but BPMI shows a slightly lower incidence than the 

other two methods, indicating that BPMI tends to place more low risk individuals in this 

category. The evidence from BPMI is similar to the finding in Li et al. (2019). The fact 

that all methods show higher incidence than CCA in this range may be due to a complex 

interplay of reasons for missed A1c tests and their consequences, where missed A1c may be 

a marker for either good and stable glycemic control, or for lower utilization of preventive 

care. Future work will study the heterogeneous effects of patent complexity in the nonlinear 

relationship.

It seems that the probability of missingness depends on the outcome in this example, so 

that the missingness induced by A1c is MNAR in the acute event model. However, it is less 

clear if explicitly taking the outcome into account would change the relationship between 

imputed A1c and the outcome. Doing so would require specifying a correct model for the 

relationship between A1c and the outcome. Including the outcome as a covariate with main 

effects in MICE-2l, made no difference in predictions. We posit that imputing the A1c 

from a rich set of repeated measures for each individual minimizes the information the 

outcome can bring to the imputation. It should also be noted that baseline event incidence 

was included as a covariate in the imputation.

5.2.2 Profiling heterogeneity and interpretation—As one important byproduct of 

BPMI, the latent profiling provides an interpretable summary of patient heterogeneity in 

A1c trajectories. As an illustration, we randomly draw the latent class indicators based on 

the posterior allocation probabilities and use the last draw for the profiling assignment. The 

three profiles have different trajectories over time and different scales. Figure 5.4 shows the 

estimated spline functions and 95% CIs, as well as the observed A1c values across profiles. 

We present the two plots in Figure 5.4 to illustrate the profiling structure, but they are not 

directly comparable. The spline functions (Di
∗βCi

∗ ) are part of the mean structure, so the two 

plots have different y-axis ranges. Meanwhile, we have included additional time-varying 

variables, and they both have significantly positive relationships with A1c values, where the 

coefficient estimate of age is 0.007 with 95% CI (0.006, 0.008), and the coefficient estimate 

of the count of physician visits is 0.003 with 95% CI (0.001, 0.006).

The profile allocation assigns 3694 patients to the largest class with the smallest variability 

of residuals, 0.29. The smallest class has 996 patients and the largest variability of A1c 

values (1.42), with large coefficients of the spline functions. The remaining class has 2692 

patients, and the estimated variability of A1c values is 0.65. The patients within Profile 1 are 

under good control with low A1c levels and stability, of whom all the A1c values are below 
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9%. Patients within Profile 2 are under fair control with modest A1c values, while those with 

Profile 3 are under bad control with high A1c levels and variability.

The profiling is primarily dependent on the A1c trajectories, and the profile allocation 

probabilities are predicted by the baseline covariates. Figure 5.5 and Table 5.3 provide 

the descriptive summary of the baseline characteristics and the corresponding coefficients 

for profile allocation. The patients in poor control in Profile 3 tend to be non-white, have 

Medicaid coverage and more complications (such as Depression, Entitlement Disability, Eye 

disease, Psychoses and Obesity), and take Insulin. These patients also have more ER visits, 

more adverse events, higher HCC and baseline A1c values than those in good/fair control.

The coefficients for allocation across profiles give the logarithm of the relative odds to be 

assigned to other profiles compared to Profile 1. With higher baseline HCC and A1c values, 

the patients tend to be out of good control. Non-white patients with Chronic Pulmonary 

Disease, Entitlement Disability, other neurological disorders, Obesity, Psychoses and taking 

the hypoglycemic drug, have significantly higher odds of being out of good control. The 

patients with Dementia, Eye disease, congestive heart failure and those who take Insulin or 

Sulfonylureas tend to have good A1c control.

6 Discussion

Electronic health records play an increasingly important role in evidence-driven research on 

effective approaches to clinical therapy. However, as data are collected in an unstructured 

manner when patient contacts occur, EHR suffers from missing data, where for example, 

outcomes and predictors are not always available in the same time interval. MI is an 

attractive approach for filling in data needed for various analyses, allowing assessment of 

imputation uncertainty. However, few methods exist for filling in intermittently missing data 

in long time sequences. In addition, the missing mechanism is often complex raising the 

possibility of informative missingness. We develop a method for multiple imputation based 

on Bayesian latent profiling, which allows for missingness being intermittent and potentially 

MNAR. The method allows for a flexible mixture distribution by allowing location and scale 

parameters to vary across latent profiles, covariates to predict profile membership and a time 

trend to be modeled by splines. We compare BPMI with popular MI MAR based approaches 

MICE and MICE-2l by simulations in a range of settings, and find BPMI to be the most 

unbiased and efficient. We apply our method to missing A1c in EHRs, and find BPMI to 

perform well with 3 latent classes, in terms of BIC, LPML and posterior predictive checks. 

Hence, the theoretical properties for our approach seem to be satisfactory.

As we predict acute adverse outcomes from the EHR with and without imputation, BPMI 

as well as MICE and MICE-2l predicts more adverse events than does CCA in the 7-8% 

A1c range. Hence, CCA analysis of the EHR data cannot be trusted. While a MAR structure 

fits the A1c data, it appears that the missingness induced in the outcome by missing A1c 

is not MAR. However, all outcomes are restored when A1c is imputed. Our future work 

will explore including the acute outcomes in the imputation as generally recommended. 

However, it is unclear how much this would change the imputed values given the availability 

of rich A1c trajectories and many covariates. It is also challenging to specify the model to 
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properly account for the non-linear relationship and patient heterogeneity. Our approach 

avoids the need to model the dependence of the outcome on A1c, and improves the 

availability of the A1c values for investigating other outcomes. Importantly, our method 

fits a very flexible mixture model to capture the data distribution.

Several questions regarding the application of our method arise. We considered the case 

when only A1c values are missing and include numerous covariates. In practice, EHRs will 

suffer from incomplete information beyond A1c, such as the baseline variables in Table 

2.1. With multivariate incomplete variables, joint imputation or sequentially conditional 

imputation is necessary. It is also uncertain how many latent classes are needed. BPMI 

makes the crucial assumption of conditional independence, given the latent classes. Likely, 

a greater number of classes makes this assumption more plausible, but leads to difficulties 

including covariates, especially those with low prevalence. Our diagnostics does not find 

evidence against the assumed model. Future work will investigate the specific role of 

different aspects of patient complexity on the relationship of A1c to acute outcomes. 

This will address substantive questions as well as further illuminate the plausibility of the 

imputations.

Several extensions of BPMI may be of interest. Besides the incorporation of time-varying 

health outcomes into modeling, other time-varying variables including BP, BMI, and 

LDL can provide additional information to impute the A1c levels. To handle their high 

missingness percentages, we can simultaneously model the trajectories and impute missing 

values via joint mixture membership profiling (Airoldi et al. 2019). The number of latent 

profiles can be treated as random in future work. With more information available from 

EHR, systematic variable selection in an integrative inference framework needs further 

investigation. For longitudinal data with intermittent missingness and nonlinear trajectories, 

it would be useful to connect our joint modeling approach with existing approaches for 

monotone missingness or weighting adjustments (Hogan and Daniels 2008; Robins et al. 

2000).
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Figure 2.1: 
Observed A1c values of 30 randomly selected patients. Each line represents one patient, 

with segments connecting two available subsequent A1c measurements.
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Figure 4.1: 
Performance of MI inferences on the average outcome values at 9 follow-up occasions with 

10 imputed datasets comparing different approaches: marginal profiling (BPMI-MAR), joint 

profiling (BPMI-MNAR), sequential imputation MICE and multilevel imputation MICE-2l.
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Figure 5.1: 
Posterior predictive check on quarter-level summaries for marginal and joint profiling 

approaches. The black triangles represent the means of observed data, the red dots are the 

posterior predictive mean estimates, and the red error bars are the 95% credible intervals of 

the predictive means.
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Figure 5.2: 
Comparison of the average of imputed A1c values and 95% confidence intervals obtained by 

BPMI, MICE and MICE-2l across follow-up quarters. The wide CI of the MICE output for 

the last quarter (6.11, 7.40) is omitted.
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Figure 5.3: 
Comparison between MI inferences and complete case analysis (CCA) in predictive acute 

health event incidence risk.
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Figure 5.4: 
Estimated spline functions with 95% confidence intervals and observed A1c values of 

patients across profiles.
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Figure 5.5: 
Frequency distribution of categorical baseline characteristics and their coefficients for 

profile allocation.
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Table 2.1:

Summary of baseline characteristics: mean (standard deviation) and percentage.

Sociodemographics

 Age 69.91 (10.76)

 Female 53%

 White 93%

 Medicaid 14%

Utilization

 Adverse event count 0.58 (0.88)

 Hierarchical condition categories 1.41 (0.98)

 Number of emergency room visits 0.12 (0.37)

Comorbidity and complication

 Count of low prevalence conditions 0.21 (0.54)

 Chronic kidney disease 14%

 Chronic pulmonary disease 18%

 Dementia 5%

 Depression 16%

 Entitlement disability 18%

 Eye disease 14%

 Hypertension 85%

 Hypothyroidism 14%

 Fluid and electrolyte disorders 14%

 Other neurological disorders 7%

 Obesity 16%

 Psychoses 9%

 Renal failure 7%

 Solid tumor without metastasis 6%

 Lower extremity ulcer 7%

 Valvular disease 8%

 Kidney damage-light 16%

 Kidney damage-mild 51%

 Kidney damage-moderate 30%

 Kidney damage-severe 3%

 Congestive heart failure 19%

 Ischemic heart disease 21%

Medication prescribed

 Insulin 13%

 Sulfonylureas 17%

 Hypoglycemics 16%

 Other 54%
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Table 5.1:

Comparison of models with different number of profiles (L).

Marginal profiling Joint profiling

L BIC LPML L BIC LPML

2 126857 −106129 2 323529 −192506

3 124145 −94305 3 329037 −174286

4 130872 −97579 4 334345 −180697

5 136263 −97315

6 137082 −97397
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Table 5.2:

Predictive acute health event incidence risk and 95% confidence intervals for individuals grouped by A1c 

levels.

BPMI MICE MICE-2l CCA

< 6% 0.174 (0.164, 0.182) 0.168 (0.16, 0.177) 0.169 (0.161, 0.178) 0.175 (0.164, 0.187)

6 – 6.5% 0.162 (0.156, 0.169) 0.164 (0.157, 0.169) 0.164 (0.157, 0.171) 0.157 (0.149, 0.164)

6.5 – 7% 0.161 (0.154, 0.168) 0.164 (0.157, 0.169) 0.164 (0.157, 0.169) 0.154 (0.147, 0.161)

7 – 7.5% 0.164 (0.157, 0.172) 0.165 (0.158, 0.172) 0.165 (0.158, 0.172) 0.157 (0.149, 0.165)

7.5 – 8% 0.165 (0.157, 0.175) 0.167 (0.157, 0.175) 0.165 (0.156, 0.174) 0.155 (0.146, 0.165)

8 – 9% 0.178 (0.169, 0.187) 0.178 (0.169, 0.187) 0.177 (0.167, 0.185) 0.175 (0.164, 0.185)

9%+ 0.193 (0.179, 0.206) 0.192 (0.179, 0.206) 0.192 (0.179, 0.206) 0.196 (0.182, 0.211)
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Table 5.3:

Descriptive statistics of baseline characteristics (first 4 quarters) and their coefficients for allocation across 

profiles.

Profile 1 Profile 2 Profile 3

Descriptive statistics: mean (sd)

#low prevalence 0.22 (0.54) 0.21 (0.54) 0.21 (0.54)

#ER visits 0.11 (0.39) 0.10 (0.29) 0.17 (0.45)

#Adverse events 0.54 (0.85) 0.57 (0.86) 0.73 (0.97)

HCC 1.26 (0.84) 1.57 (1.11) 1.57 (1.01)

Age 71.52 (9.98) 69.76 (10.28) 64.33 (12.73)

A1c 6.38 (0.63) 7.23 (0.93) 8.5 (1.66)

Coefficients: log-odds (95% CI)

Intercept 0 −6.08 (−7.51, −4.94) −9.15 (−10.29, −8.01)

#low prevalence 0 −0.34 (−0.52, −0.16) −0.44 (−0.68, −0.21)

#ER visits 0 −0.46 (−0.81, −0.13) −0.41 (−0.79, −0.05)

#Adverse events 0 0.12 (−0.01, 0.25) 0.15 (−0.02, 0.32)

HCC 0 0.58 (0.36, 0.73) 0.59 (0.36, 0.76)

Age 0 −0.06 (−0.07, −0.04) −0.11 (−0.12, −0.09)

Baseline A1c 0 1.35 (1.25, 1.46) 2.06 (1.92, 2.19)
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